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Abstract

This paper addresses the prohlem of estahlishing cor­

respondences hetween two sets of visual features using

higher-order constraints instead of the unary or pairwise

ones used in classical methods. Concretely, the correspond­

ing hypergraph matching problem is formulated as the max­

imization ofa multilinear objective function over all permu­

tations ( ~ f the features. This function is defined hy a tensor

representing the affinity hetween feature tuples. It is maxi­

mized using a generalization of spectral techniques where

a relaxed problem is first solved by a multi-dimensional

power method, and the solution is then projected onto the

closest assignment matrix. The proposed approach has

heen implemented, and it is compared to state-(~f-the-art al­

gorithms on both synthetic and real data.

1. Introduction

Establishing correspondences between two sets of visual

features is a key problem in computer vision tasks as di­

verse as feature tracking [SJ, image classification [ISJ or

retrieval [23J, object detection [4J, shape matching [28, 16J,

or wide-baseline stereo fusion [21]. Different image cues

may lead to very different matching strategies. At one end

of the spectrum, geometric matching techniques such as

RANSAC [81, interpretation trees [II J, or alignment [121

can be used to efficiently explore consistent correspondence

hypotheses when the mapping between image features is as­

sumed to have some parametric form (e.g., a planar affine

transformation), or obey some parametric constraints (e.g.,

epipolar ones). At the other end of the spectrum, visual ap­

pearance alone can be used to find matching features when

such an assumption does not hold: For example, bags­

of-features methods that discard all spatial information to

build some invariance to intra-class variations and view­

point changes have been applied quite successfully in im­

age classification tasks [26,271. Modern methods for image
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matching now tend to mix both geometric and appearance

cues to guide the search for correspondences (see, for ex­

ample, [IS, 18]).

Many matching algorithms proposed in the 80s and 90s

have an iterative form but are not explicitly aimed as op­

timizing a well-defined objective function (this is the case

for RANSAC and alignment methods for example). The

situation has changed in the past few years, with the ad­

vent of combinatorial or mixed continuouslcombinatorial

optimization approaches to feature matching (see, for ex­

ample [4, 19, 20, 28, 161).1 This paper builds on this work

in a framework that can accommodate both (mostly local)

geometric invariants and image descriptors. Concretely, the

search for correspondences is cast as a hypergraph match­

ing problem using higher-order constraints instead of the

unary or pairwise ones used by previous methods: First­

order methods based (for example) on local image descrip­

tions are susceptible to image ambiguities due to repeated

patterns, textures or non-discriminative local appearance for

example. Geometric consistency is normally enforced using

pairwise relationships between image features. In contrast,

we propose in this paper to use higher-order (mostly third­

order) constraints to enforce feature matching consistency

(see Figure I) This work generalizes the spectral matching

method of [16] to higher-order potentials: The correspond­

ing hypergraph matching problem is formulated as the max­

imization of a multilinear objective function over all permu­

tations of the features. This function is defined by a tensor

representing the affinity between feature tuples. It is max­

imized by first using a multi-dimensional power method to

solve a relaxed version of the problem, whose solution is

then projected onto the closest assignment matrix.

The three main contributions are (I) the application of

the tensor power iteration for the high-order matching task,

used with a tighter relaxation based on constraints on the

column norms of assignment matrices, (2) the design of

appropriate similarity measures which can be chosen ei-

1To be fair, it should be noted that optimization-based approaches to

graph matching were considered a key component of object recognition

and scene analysis strategies in the 70s, see for example the classical text

by Ballard and Brown 13, Ch. 111.
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2. Graph matching for computer vision

2.1. Previous work

We consider two images, and assume that we have ex­

tracted N I features from image 1, and N 2 features from

image 2. We do not assume that N I = N 2 , i.e., there

may be different numbers of points in the two images to

be matched. Throughout this paper, for s = 1,2, all indices

is,js, ks will be assumed to vary from 1 to N s. We will

also note i = (iI, i2), j = (jl,j2), k = (k l , k2) pairs of

potentially matched points.

Let Pt be the i th point of image s. The problem of

matching points from image 1 to points from image 2 is

equivalent to looking for an N I x N 2 assignment matrix X

such that Xi, i2 is equal to 1 when pI is matched to p2
, 21· 22'

and to 0 otherwise. In this paper, we assume that a point in

the first image is matched to exactly one point in the sec­

ond image, but that two points in the second image may

be matched to an arbitrary number of points in the first im­

age, i.e., we assume that the sums of each column is equal

to one, but put no with constraints on the row sums. (this

framework can easily be extended to allow matching points

from the first image to no points in the second image using

dummy nodes such as in[4]). Thus, we consider the set A
of assignment matrices:

2.2. Mathematical Formulation

score(X) = 2: H i"i2,j"joXi"i2 X j"j2'

i 1,iz,Jl,j2

A = {X E {O I}N'XN2
"'. X· . = I}, 'L....J 2 1 21,22 •

Note that our definition is not symmetric (i.e., if we switch

the two images, we obtain different matchings). It can sim­

ply be made symmetric by considering the two possible

matchings and combining them in a (mostly application­

dependent way), e.g., by taking the union or intersection

of matchings.

In [4, 7, 16], the matching problem is formulated as the

maximization of the following score on A:

notion of neighborhood.

Recently, the computer vision community has put much

effort in increasing the order of complexity of the models

used: For example, Kohli et al. [13] introduce a high­

order clique potential for segmentation, but the type of

energy is limited to specific types of functions, and the

alpha-expansion framework used there leads to a local opti­

mum. Moreover, Zass and Sashua [25] formulate the search

for higher-order feature correspondences as a hypergraph

matching problem. We will use the same formulation but

a different optimization setup. In addition, unlike these au­

thors, we will refrain from using independence assumptions

(that mayor may not be justified depending on the situa­

tion) to factor our model into first-order interactions. As

will be shown in the comparative experiments of Section 7,

explicitly maintaining higher-order interactions in the opti­

mization process will lead to superior performance.

•

•

• ••

• •

• •

As noted earlier, finding correspondences between visual

features (such as interest points, edges, or even raw pixels)

is a key problem in many computer vision tasks. The sim­

plest approach to this problem is to define some measure of

similarity between two features (e.g., the Euclidean distance

between Sift descriptors of small image patches [18]), and

match each feature in the first image to its nearest neigh­

bor in the second one. This naive approach will fail in the

presence of ambiguities such as repeated patterns, textures

or non-discriminative local appearance. To handle this dif­

ficulty, some papers try to enforce some geometric consis­

tency between pairs of feature correspondences. The basic

idea is that if the points PI and P ~ of image 1 are matched

to points P2 and P ~ of image 2, then the geometric relation

between PI and P ~ , and the ones between P2 and P ~ should

be similar.

Several pairwise geometric relations have been used.

Leordanu and Hebert [16] use only the distance between

two points, leading to a potential which is invariant to rota­

tion. Berg et al. [4] use a combination of potential based

on distance and based on angle (scale invariant), to find

a trade-off between rotation and scale invariance. Some

other methods (e.g., [23, 28]) use neighborhoods, by only

assuming that neighbor points should be matched to neigh­

bor points. One difficulty here is to define an appropriate

•
Figure I. Left: second-order potentials can be rotation-invariant

by comparing distances between matched points. Right: Third­

order potentials can be similarity-invariant by comparing angles

of triangles.

ther to improve invariance of the matching, or to improve

the expressivity of the model (see Section 5), and (3) an

£I-norm relaxation instead of the classical £2-norm relax­

ation, that allows solutions which are more discriminative

but still allows efficient power iteration solutions (see Sec­

tion 4). The proposed approach has been implemented, and

it is compared to state-of-the-art algorithms on both syn­

thetic and real data. As shown by our experiments (Sec­

tion 7), our implementation is, overall, as fast as these

methods in spite of the higher complexity of the under­

lying model, with better accuracy on standard databases.

The source code of our software is available online at

http://www.di.ens.frFduchenne.
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where H i" i2,Jd2 (which is equal to Hi,) with our notations

for pairs) is a binary potential corresponding to the pairs

of points (Pil , Pj ') of image 1, and (Pi2 , Ph) of image 2.

High values of H correspond to similar pairs. This graph

matching problem is actually an integer quadratic program­

ming problem, with no known polynomial-time algorithm.

Approximate methods may be divided into two groups of

algorithms. The first group is composed of methods which

use spectral representations of adjacency matrices (see, e.g.,

124, 16]). The second group is composed of algorithms

which work directly with graph adjacency matrices, and

typically involve a relaxation of the complex discrete op­

timization problem (see, e.g., 12]). In this paper, we focus

on improvements on spectral methods.

In [7, 16], the set of matrices over which the optimiza­

tion is performed is thus relaxed to the set of matrices with

Frobenius norm IIXllii equal to Ni/
2

, leading to the sim­

pler problem:

In turn, this can be rewritten as maxllxIIF=N.~/2 X
T

H X

where, abusing the notation, X is this time considered as a

N 1N2 vector, and H as an N 1N2 by N 1N2 symmetric ma­

trix. This is a classical Rayleigh quotient problem, whose

solution is Ni/
2

times the eigenvector X* associated with

the largest eigenvalue (which we refer to as the main eigen­

value) of the matrix X [9l, and can be computed efficiently

by the power iteration method described in the next section.

An important constraint that is put on H is that it is point­

wise non-negative. In this situation, the Perron-Frobenius

theorem [9] ensures that X* only has non-negative coef­

ficients, which simplifies the interpretation of the result: In

order to obtain an assignment matrix in A, i.e., a matrix with

elements in {a, I} and proper column sums, the matching is

discretized using a greedy algorithm.

2.3. Power iteration for eigenvalue problem

The power iteration method is a very simple algorithm

for computing the main eigenvector of a matrix, which is

needed for matching.

Input: matrix H

Output: V main eigenvector of H

1 initialize V randomly;

2 repeat

3 I V f- HV;

4 V f- V/11V112 ;

5 until convergence;

Algorithm 1: Power iteration for eigenvalue problem.

This algorithm converges geometrically to the largest

eigenvalue of the input matrix [9]. In our situation, H is

very sparse and we want to take advantage of it. Each step

of the power iteration algorithm requires only O(rn) op­

erations, where rn is the number of non-zero elements of

H. Typically, in our situations, the algorithm converges in

around 20 steps.

3. Tensor formulation

We propose to use tensors to solve the high-order feature

matching problem. Indeed, using tensors is quite natural to

generalize the idea of spectral matching 1161 which deals

with a matrix. Previous works only use point-to-point and

pair-to-pair comparisons for their matching. In this paper,

we want to compare tuples of points. So, we now want

to add higher-order terms to the score function defined in

Eq. (I). For simplicity, we will focus from now on third­

order interactions. Generalizations to higher-order poten­

tials is (in theory at least) straightforward.

We define a new high-order score:

score(X) = l: Hi"i2,jd2,k,,l'2Xi,,i2Xj,,J2Xk,,l'2' (2)

i 1 ,'i2jl,]2,k1 ),:2

where we assume that we have a super-symmetric tensor,

i.e., invariant by permutation of indices in {il,]l, kd or

{i 2 ,.h, k2 }.

Here, the product Xii ,i 2 Xii ..h X k1 .k2 will be equal to 1

if the points {il,.h, kd are all matched to the points

{i 2 ,h, k2 }, and 0 otherwise. In the first case, it will add

H i" i2,j"j2,k
"

k2 to the total score function. This is a sim­

ilarity measure, which will be high if the sets of features

{i 1, .h, kd is similar to the set {i2 , .h, k2 }.

Note that we can rewrite the score compactly using ten­

sor notation as (see [22] for more details): score(X) =
HXil X ~ 2 XXi3 X. In section 5, we will explain how the

higher-orders potentials can be used to have more invariant

or more expressive features.

3.1. Tensor power iteration

To find the optimum of the new high-order score of

Eq. (2), we want to use a generalization of the previously

mentioned power iteration, as proposed in [14], for the

equivalent problem of computing the rank-I approxima­

tions of the tensor H. Their algorithm presented below ex­

tends Algorithm I.

This method does not reach a global optimum. However,

it converges to a local maximum for tensors which leads to

convex functions of X [22J In our experiments, it converges

almost always to a very satisfactory solution. Also, the au­

thors of [22] propose a smart way to initialize it, to lead to

a quantifiable proximity to the optimal solution.
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Input: supersymmetric tensor H

Output: V main eigenvector of H

1 initialize V randomly;

2 repeat

3 V +- H ';X;:I V;X;:2 V ;

4 ( i.e. Vi, Vi +- Lu,k hi,j,kVjVk )

5 v+- V/11V112 ;
6 until convergence;

Algorithm 2: Supersymmetric tensor power iteration (third

order).

We can also see that as in the matrix case, the result­

ing vector will have only positive values. That is required

to have a meaningful result. Indeed, negative values of X

in the score in Eq. (2) would prevent us from interpret­

ing H i" idd2,k
"

k2 as a similarity potential activated only

when all corresponding pairs are matched.

3.2. Tensor power iteration for unit norm columns

In our context of only constraining the sums of the

columns, we can design a tighter relaxation of A than ma­

trices of fixed Frobenius norm, namely as the set C2 of ma­

trices whose Euclidean norms of each of the N 2 columns

are equal to one.

We can extend the previous algorithm to the following:

Input: supersymmetric tensor H

Output: V = [VI, ... , V N
2

] stationary point

1 initialize V randomly;

2 repeat

3 V +- H ~ I V '~2 V ;

4 ( i.e. V'i, Vi +- L'i,:i,k hi,j,kV{lJk )

5 V'i2, V(:,i 2 ) +- V(:,'i2)/IIV(:,'i2)112;

6 until convergence;

Algorithm 3: Supersymmetric tensor power iteration (third

order) with unit norm constraints.

We extended the proof of 122 J, to our new constraints.

We can thus prove that this algorithm has the same nice

properties of the previous one: if the score is a convex func­

tion of X, then Algorithm 3 converges to a stationary point

(see proof in Appendix). Note that we can always make the

score convex by adding a multiple of the function X T X,

which does not change the value on our set of constant unit

column matrices and thus does not change the optima of the

score on C2 .

Finally, we have a natural projection step here to the set

A by considering, for each column, the index that is maxi­

mum in the solution obtained from the previous algorithm.

3.3. Merging potentials of different orders

It could be interesting to include in the matching process,

in the same time, information about different orders (e.g.

considering in the same time pair similarities, and triplet

similarities). To do this a first solution is to include the low­

order information into the tensor of the highest-order poten­

tial. Cour and Shi [7] presented a method to do this in the

second order case. The generalization is straightforward for

our setting. However, in our power iteration framework, it

is equivalent to use the simple following algorithm (which

could also be extended to constrain columns to have unit

norms):

Input: several supersymmetric tensors Hi of order t

Output: V main eigenvector of H

1 initialize V randomly;

2 repeat

3 V +- H 4 ;X;:1 V:>Y2 V :>93 V +
4 H 3 :3:1 V:>Y2 V + H 2 :>YI V + HI;

5 ( i.e. V'i, Vi +- Lu,k,l hi,:i,k,IV{lJkVI +
Li,j,k h1,j,kV j Vk + L'u,k hLVj + hI )

6 v+- V/11V112 ;
7 until convergence;

Algorithm 4: Multiple Order Supersymmetric tensor power

iteration (fourth order).

4. gl-norms vs. g2-norms of columns

One of the main problems of spectral relaxations is that

the solution is often uniform, which means that it is hard to

extract from it an assignment matrix with values in {G, I}.

We claim that this is due to the relaxation of the set A of

assignment matrices to matrices in C2 with all columns with

unit f2-norm. In fact, we can also relax the set A to the

matrices in CI with all columns with unit £I-norm (i.e., sum

of absolute values), and as we show in Figure 2, it leads to

results that are more easily interpretable.

In the context of second-order interactions, solving the

pI-norm problem cannot be done by power iterations. How­

ever, in our higher-order context, this can seamlessly be

done. Indeed, solving

max L ,Hi.] XiX]'
XEC"X?,O ),,},. .

is equivalent to solving

" 2 2max L..J," Hi.}Y; Y],
YEC

2
1,.1 , , ,

with the change of variable, Vi, y;2 = Xi. The order of this

new problem is 4, but using the tensor power iteration al­

gorithm, the complexity is still as low as the first problem.

Using this algorithm we obtain in practice an almost com­

pletely binary solution, as shown in Figure 2. This method

is easily extended to solve any high-order matching prob­

lem.
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Figure 3. Left: Diagram illustrating the features used in the pro­
posed projective-invariant potential. Right: the three sets of four
aligned points used to compute the cross ratio.
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Similarity-invariant potentials The basic idea is that un­

der a similarity transformation the angles of a triangle are

unchanged. In practice, we describe each triangle by the

sines of its three angles (see figure 1).

Affine-invariant potentials As the weighted mean is

conserved by affine transforms, we can design a descriptor

of the image inside a triangle. We normalize the triangle as

an equilateral one, and then compare the intensity patterns

of normalized triangles by normalized cross correlation.

Figure 2. Top: Values of the assignment matrix, when the £2 -norm
is used. (hard to project). Bottom: When using the £l-norm, we
obtain directly a very clear assignment matrix with minor adjust­
ments.

5. Building tensors for computer vision

We can use higher-order potentials to increase either the

geometric invariance of image features, or the expressivity

of the models. We describe here a few possible potentials.

They are all based on computing a Gaussian kernel between

appropriate invariant features. Clearly, many other poten­

tials are possible.

In this section we will only consider third-order po­

tentials. As shown in Figure 1, classical methods try to

remove ambiguities by looking for matches that preserve

some properties of point pairs. Here, we will try to con­

serve properties of point triplets. In particular, in most of

the cases, we will use the properties of the triangle formed

by three points. Basically, if the points (Pi, Pi, Pi) are

matched to the points (pf, pi, pi), the corresponding tri­

angles should be similar.

In [16] rotation and translation-invariant potentials based

on edge lengths and angles are used since it is impossible

to build invariants to larger classes of transformations from

feature pairs alone. Here, we propose using potentials based

on triplets of points, which can be made invariant to richer

classes of transformations, including (planar) similarities,

affine transformations, and projective ones.

Projective-invariant potentials Inspired by [17], we can

also develop higher-order potentials invariant to projective

transforms. If we sample only feature points on lines, we

can use the edge direction as an additional feature, and focus

on properties of three points and three directions that are

conserved under projective transforms. The main property

conserved by a projective transform is the cross ratio. So

if we suppose that the triangle we are looking at is flat, we

can geometrically build three lines with four points on each

(see figure 3). We will use the three cross-ratios defined by

those points to make a perspective-invariant potential.

6. Implementation

In the case of d-th order potentials, the brute force algo­

rithm has a complexity O(n2d
), where n = max{N1 , N2 }.

Previous algorithms use 50 - 100 points and require approx­

imately O(n3
) operations, for second order potentials. We

developed an efficient algorithm which has in the general

case a complexity of approximately O(n3 + nd log(n))

For clarity reasons, we will explain the algorithm in

the case d = 3, but it is straightforward to generalize

it. First, it is very time consuming and not very mean­

ingful to use all the triangles, so as in [25] we only sam­

ple t triangles per points in image 1. We take t = 20

in our experiments. We believe that this number of tri­

angles is more than enough to obtain a robust matching.

Then, we sample all the possible triangles of image 2,

and compute their descriptors. We use a kd-tree to store
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them efficiently. For each of the selected triangles of im­

age 1, we find the k (500 in our implementation) near­

est neighbors of image 2. Then we start the power itera­

tion with h i" j"k , J2,h,k2 = exp( -rlltriangle(il,jl, k1)­

triangle(i2,j2, k2)11 2) if triangle(i1,jl, kd is the set of

features computed from Section 5 from image 1 and

triangle(i2, j2, k2) for one of its nearest neighbors in im­

age 2. We take r = 2 in our experiments.

The total complexity of the algorithm is O(nd log(n) +
ntk log(n)). The final algorithm typically last one second

for 80 points.

Smart selections of triangles There exist several strate­

gies to select triangles depending of your final goal. If one

wants to match and allow deformations, the triangle should

be selected at small scales. On the other hand, if one wants

to capture the global property of a shape, he should select

big triangles.

7. Experiments

7.1. Artificial data

Following [25, 16], we first used artificial data in order

to easily compare quantitatively our algorithm to the state­

of-the-art. We sampled randomly and uniformly points on

the 2D plane. We created a second set of points by perturb­

ing the first one. Then, we compared different algorithms

trying to match those two sets. The accuracy of the algo­

rithm is computed as the proportion of good matches. In

all the experiments presented here, we only use the simple

similarity-invariant potential presented in section 5.

In order to have a fair comparison between our method

and the probabilistic hypergraph matching [25], we first

compute the tensor as described earlier. Then, we marginal­

ize it as explained in [25]. Then we use the resulting vector

with the algorithm provided online. We also compare to

spectral matching [16] to show the improvement of using

higher-order potentials.

First, we added a Gaussian noise to the position of the

second set, rotate them, and add outliers. The results are

shown in Figure 4 (top). We can see that our method out­

performs the others. Our interpretation is that when many

outliers are added, the ambiguities of pairwise methods [16]

increase, because many pairs become similar, while triplets

are less likely to become similar. Moreover, probabilistic

hypergraph matching [25] reduces the high-order problem

to a first-order one, so that it is likely to match points which

have the same neighborhoods. Such a method thus become

ambiguous when there are many outliers.

Second, we added Gaussian noise, rotation, and rescal­

ing. Indeed, the low-order matching methods, such as the

spectral method, cannot handle those transformations. In

Figure 4 (bottom), we can see that our method and the one

-e-Tensor Matching (our work)

"'* Spectral Method
-e- Hypergraph Matching

-";f<
_~ 60

>.
() 00

~
::J "

~

',:-----=--------;'60:--------;':------c:

Number of outliers

-, ,
Scale effect 1.1 x

Figure 4. Top: Accuracy as a function of the number of added

outliers. Bottom: Accuracy, as a function of the rescaling. (e.g.

x = 2, correspond to a scaling of 1.12
).

of [25] are indifferent to those transformations, but perfor­

mance of [16] drops to 50% after a scaling of only 1.1 or

0.9, and quickly reach the chance level at 1.2 or 0.8.

7.2. House Dataset

The House dataset is a commonly used dataset to test

performance of matching algorithm. Some objects are taken

from different viewpoints and some keypoints which are

present on every frame are labeled. The scale is always

roughly the same, but the transformation is now projective.

As the ground truth is provided, it is also easy to compute

the accuracy of the algorithm. In Figure 5, we can see that

the low-order algorithm cannot handle the fact that in per­

spective transforms, some points move more than some oth­

ers.

7.2.1 Natural images

We took images from the Caltech-256 image database [10]

which are objects on a clear background. We extracted from

those the silhouettes and subsample them. We can then

match images from the same class using our algorithm; re­

sults are presented in Figure 6. Our tensor-based algorithm
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-e-Tensor Matching (this work)

-e- HyperGraph Matching

if " "'*'" Spectral Method

c:
:="'20

base line

Figure 5. House data.

Figure 6. Matching silhouettes from the Caltech-256 database.

is able to match objects with slightly different visual ap­

pearances and in the presence of strong deformations.

8. Conclusion

In this paper, we have proposed a tensor-based algorithm

for high-order graph matching. We have reached state-of­

the-art performance by using simple potentials which are

invariant to rigid, affine or projective transformations. This

work can extended in a number of ways, by considering

more complex features, either on triplets, or potentially

quadruplet or more to be fully invariant to richer classes of

transforms. Moreover, it is natural to follow the approach

of [6] to learn potentials automatically from labelled or par­

tially labelled data.

A. Power iterations for unit norm columns

In this appendix, we consider the problem of maximizing

a convex function on V on a product of spheres in dimen­

sion N I , i.e., on the set C2 . The following proposition ex­

tends the result of [22] from spheres to products of spheres.

We consider the general algorithm:

Input: Convex function f
Output: V = [VI, ... , VN

2
] stationary point of fin C2.

I initialize V randomly;

2 repeat

3 I V <---- \7f(V) ;
4 V <---- [vdllvII12"" ,VN2/llvN2112];
5 until convergence;

Algorithm 5: Power iteration for maximizing a convex

function f in X E O2 .

Proposition A.I If the function f is differentiable on
jRN1 x N 2 and strictly convex, Algorithm 5 is an ascent

method and converges to a stationary point of f on C2 .

Proof In this proof, we refer to the i 2-th column of any

matrix V as Vi2. Given vO in C2, one iteration of Algo­

rithm 5 applied to vO leads to the matrix VI with i 2 -th col­

umn equal to vl2 = \7 f(VO)i2/11\7 f(VO)i2112. Since f is

strictly convex, for all w in jRN1 xN2 , f(w) ~ f(vO) +

Li2 \7 f( v O ) ~ (Wi2 - v?J, with equality if and only if w =
vO. We thus have:

f(v l
) ~ f(VO)+Li2 \ 7 f ( v O ) ~ ( v I 2 -v?J

~ f(vO) + Li2 \ 7 f ( v O ) ~ ( V ? 2 - v?J = f(vO),

because for each iI, \ 7 f ( v O ) ~ v I 2 = II\7f(vO)iJ2 ~

\7 f( v O ) ~ V?2' We have equalities above if and only if

VI = vO and, for each i 2, \7 f(VO)i2 is equal to a positive

constant times V?2' This shows that each iteration is in­

creasing the cost function. Since f is continuous and C2

is compact, if we denote by v t the sequence of iterates, the

sequence f( vt) is non-decreasing and bounded, hence con­

vergent. Since having f(vO) = f(v l
) implies vI = va,

the sequence v t is also converging, and its limit V
OO is such

1986



that for each i 2 , \If(VOO
)i2 is equal to a positive constant

times v::' i.e., V
OO is a stationary point of f on the product

of spheres C2 [1].
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