
ith the ever-increasing network traffic 

and Internet connectivity of smart devices, 

more attack events are being reported. As a 

result, network forensics remains a topic of 

ongoing research interest in the Internet of 

Things (IoT). In this article, we present a novel tensor-based 

forensics approach for virtualized network functions (VNFs). 

An event tensor model is proposed to formalize the network 

events, and then, it is used for effectively updating the core 

event tensor. We then introduce a similarity tensor model to 

integrate the core event tensors on the orchestration and man-

agement layer in the network function virtualization (NFV) 

framework. Finally, we present an evidence tensor model for 

network forensics, where we demonstrate how evidence ten-

sors can be merged.

With the rapid development of electronics and communica-

tions technologies, the computing power, storage capabilities, 

and energy capacity of small smart devices [1], [2] have great-

ly improved. The IoT enables connected things with new 

capabilities to provide unlimited services for humans. It con-

sists of billions of interconnected cross-domain heterogeneous 

A Tensor-Based Forensics 
Framework for Virtualized 
Network Functions in the 

Internet of Things
Utilizing tensor algebra in facilitating  

more efficient network forensic investigations.

By Shunli Zhang,  
Laurence T. Yang,  
Liwei Kuang,  
Jun Feng,  
Jinjun Chen,  
and Vincenzo Piuri

©
IS
T
O
C
K
P
H
O
T
O
.C
O
M
/W

H
A
4

W

© 2019 IEEE. Persona! use of this materiai is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this materiai for advertising or promotional purposes, creating new collective works, for rasale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 



entities, in which the entity often refers to a smart sensor, 

smart actuator, human, or potentially any physical entities or 

virtual components that can provide/request a service [3]–[5].

Like any other information system, the IoT also depends 

on the combination of hardware, software, and architectures. 

The traditional IoT mixes management and processing logic 

in the same hardware devices, which makes the IoT more 

complex and tougher to manage. As a new paradigm of the 

IoT, NFV was proposed to deal with this problem [6] by sepa-

rating the control plane from the data layer to simplify IoT 

production. The characteristics and benefits associated with 

NFV can be broadly categorized into a separation of software 

from hardware, flexible deployment of network functions, 

function allocation in hierarchical processing infrastructures, 

resource allocation, intelligent processing, and dynamic ser-

vice provisioning.

NFV introduces great granularity, flexibility, elasticity, 

and visibility to the IoT, but it also brings new security and 

privacy challenges [6]. For instance, in essence, decoupling 

the data plane and the control plane in NFV equivalently 

leaves a door to the attackers for exploiting the vulnerabili-

ties of NFV controllers, application programming interfaces, 

networking protocols and applications, and further damages 

the trust relations. Therefore, the security and privacy issues 

of the IoT need to be studied more and improved, and net-

work forensics is essential in this perspective. While the var-

ious network forensic domains, such as email, web, and 

multimedia, and network traffic analysis [e.g., Internet Pro-

tocol (IP) traceback] have been widely studied, NFV has not 

yet been explored enough [7].

In this article, we focus on NFV forensics by employing a 

tensor model. Tensor has been broadly utilized in applications. 

This is not surprising as tensor is known to be efficient and 

effective for data representation, where high-quality core data 

can be appropriately extracted by employing tensor decompo-

sition [8] methods. The latter has also been used to analyze 

and mine data in diverse research fields, such as face recogni-

tion and information retrieval. We observe that a tensor model 

can also be used to efficiently represent network events and 

forensic evidence. By integrating the tensor model with NFV, 

network forensic effects can be greatly enhanced. Specifically, 

in this article, we demonstrate how tensor algebra can be uti-

lized in NFV to facilitate forensic investigations.

EXISTING WORKS

NFV allows one to decouple the network function from the 

specific hardware [9] and can be used to support VNFs on vir-

tual machines. The VNFs can also be located in the cloud to 

allow for greater flexibility, scalability, and efficiency. Tensor 

is a relatively new concept, although it has been widely 

applied in different settings. For instance, the extensible order 

tensor model has been used to represent heterogeneous data as 

a unified model. Tensor decomposition [8] is a powerful data 

analysis tool in data-driven applications (e.g., big data), such 

as trend estimation and multiclustering. High-order singular 

value decomposition (HOSVD) is a popular tensor decompo-

sition method and can be utilized for data mining domains, 

such as data reduction and tag recommendations. While there 

have been separate studies focusing on network forensics, the 

tensor model, and NFVs, no study has examined the potential 

to integrate a  tensor model and NFV to facilitate more effi-

cient network forensic investigations. This is the gap we deal 

with in this article.

PROPOSED TENSOR-BASED FORENSICS MODEL

HARDWARE RESOURCES AND VIRTUALIZATION LAYERS

The hardware resources layer in a forensics model (Figure 1) 

consists of computing devices, storage equipment, and net-

work equipment. All of these resources are employed to pro-

vide the underlying capabilities to support high-level 

functions, and they can be considered 

as the infrastructure. These resources 

are managed by the virtualization layer, 

which changes the physical devices to 

a logical view to provide a uniform 

resource pool.

VNF AND A CORE EVENT 

TENSOR MODEL

The VNFs execute on the virtualization 

layer. In our approach, we construct the 

evident tensor model for each VNF. The 

HOSVD method is used for extracting 

the core event tensor, which is then 

uploaded to the management and 

orchestration layer for integration and 

construction of the evidence model. The 

Core Event Tensor Evidence

Tensor

Unified

Event

Tensor

NFV Management

and OrchestrationHardware Resources

Virtualization Layer

VNF VNF VNF VNF

FIGURE 1. The proposed tensor-based forensics model.

Tensor is a relatively new concept, 
although it has been widely applied 
in different settings.



incremental method is employed to dynamically update the 

core event tensor with the evolving data stream.

MANAGEMENT AND ORCHESTRATION LAYER

This module is in charge of unifying the collective core event 

tensor models and the construction of the evidence tensor 

model. In our approach, we also present a similarity tensor to 

measure the similarities of the core event tensor and fuse 

them as a loosely integrated event tensor model. Then, the 

probabilities are computed to construct the evidence tensor 

model for network forensic investigations.

CONSTRUCTION OF AN EVENT TENSOR MODEL

EVENT TENSOR MODEL

Let  RT
P1 2

!
# fI I I denote a Pth-order tensor. The data char-

acteristics can be represented as tensor orders ., , , p1 2 fI I I  

This article formalizes the network events in network devic-

es to a tensor model. We can build a seventh-order event ten-

sor model T  event , R sip tip sport dporp dev dest
!

# # # # # #I I I I I I I  and the 

tensor orders and, , , , , ,sip tip sport dporp dev destI I I I I I I  denote 

time, source IP, destination IP, source port, destination port, 

devices, and event description, respectively. All network 

events detected in the networking devices are represented as 

event tensor models.

CORE EVENT TENSOR AND INCREMENTAL 

UPDATING METHOD

A tensor decomposition method is used for extracting core 

event information from the proposed event tensor model. To 

a primitive tensor ,T  the core tensor S and approximation 

tensor Sl can be computed by utilizing the HOSVD method 

(for the detailed calculation process, refer to [8]).

In this article, an incremental method is utilized for effec-

tively updating the core event tensor of the primitive event 

tensor model. Assume that matrix ,T U V1 1 1 1
T

R=  T2 is a new 

arrived matrix, then the new matrix ,T T1 26 @ can be incremen-

tally and dynamically broken by projecting the arrived col-

umns of matrix T2 to the truncated matrix .T1  The linear 

operations are performed when the added blocks reach. And 

then the updated truncated matrix and singular values are 

uploaded to the management and orchestration layer. Leverag-

ing the incremental method, the network devices can effec-

tively update the core event tensors. Accordingly, the 

similarity tensor model and the evidence tensor model will be 

changed based on the updated core event tensor models.

SIMILARITY TENSOR AND EVIDENCE TENSOR

SIMILARITY TENSOR MODEL

Figure 2 displays the sixth-order similarity tensor model

 ,RTsim
time location port des event event

!
# # # ##I I I I I I  where , , ,time location portI I I  

and  desI  refer to the time, location, port, and description, 

respectively. Tensor order eventI  denotes the network event. We 

used four dimensions in the port order to measure the port sim-

ilarity. For example, in the right-hand table of Figure 2, the 

dimension value three denotes that the two network events 

have the same destination port but different source ports. The 

tensor subspace : , : , , , : ,( )0 0 0T  is used for representation of a 

network event, while the subspace , , : , , : , :( )0 0 0T  is used to 

measure the port similarity of two network events. For 

instance, in Figure 3, the tensor element , , , , ,( )t j k i0 0 0  reveals 

that a network event i is inspected at time j and in location .k  

The tensor element , , , , ,( )t m n0 0 1 0  denotes that the network 

event m and n have the same source port and destination port. 

The tensor order desI  is employed for the description of a net-

work event. The description content of a network event can be 

coded as ASCII and represented in the tensor subspace 

, , , : , : ,( ) .0 0 0 0  We use the description order to represent some 

special similar characteristics of network events.

EVIDENCE TENSOR MODEL

We now describe our evidence tensor model for network 

forensics. The fourth-order evidence tensor is defined as

,RTevidence
node node nattr eattr

!
# ##I I I I  where the tensor orders ,nodeI  

and,nattr eattrI I  denote network nodes, node attributes, and

edge attributes, respectively. For instance, in Figure 3, sup-

pose the node Node1 remotely installs NetSpy on Node ,  2

then the tensor element , , ,( )1 0 0 0t  is equal to 0.4 and tensor
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FIGURE 3. The fourth-order evidence tensor.
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FIGURE 2. A sixth-order similarity tensor model.

An incremental method is utilized 
for effectively updating the core 
event tensor of the primitive event 
tensor model.



element , , ,( )2 0 0 0t  is 0.7. The edge is denoted as a tensor 

element , , ,( ),1 2 0 0t  whose value is 0.6. Here, we can refer 

to the calculation of probabilities for tensor elements [10]. 

The description NetSpy Installed for this edge is represented 

along the tensor order .I eattr

MERGING EVIDENCE TENSOR MODELS

Inspired by the approaches in [10], we propose merging the evi-

dence tensor models to generate a new evidence tensor model. 

Upon conclusion of the merging process, new tensor elements 

are generated, and the probabilities for the network nodes and 

edges are updated. For example, in Figure 4, the value of tensor 

element , , ,( )1 0 0 0t1  is equal to 0.4, , , ,( )2 0 0 0t1  is 0.7, 

, , ,( )1 2 0 0t1  is 0.6, the value of tensor element ( )t 2, 0, 0, 02  is 

equal to 0.8, ( )t 5, 0, 0, 02  is 0.5, and ( )t 2, 5, 0, 02  is 0.7. After 

the merging process, the values of tensor elements change to 

0.7, 0.94, and 0.88, respectively.

In the proposed tensor-based forensics approach, the 

merging of the evidence tensor models is executed at the 

management and orchestration layer in the NFV framework. 

This newly generated evidence tensor model can then be 

used for network forensic investigations.

A CASE STUDY

Data security is one of the most serious 

problems in the IoT because intruders 

have a large scope for attack possibili-

ties. The intuitive examples are traffic 

jams and malicious activities. Here, we 

explain how the proposed tensor-based 

forensics method can be used to con-

struct a network attack model compris-

ing commonly seen attacks, such as 

port scans, repeated login attempts and 

others related attacks in IoT.

THE NETWORK STRUCTURE

The experiments were carried out on 

a platform constructed with Ubuntu 

14.04, OpenStack Kilo. The VNF 

consists of a virtual firewall, virtual 

intrusion detection system, and virtual 

deep packet inspection. As shown in 

Figure 5(a), port scanning and denial-

of-services attack tools were installed 

in the attacker computer ,Node( )1  and 

the target victim computers were in 

the same network as the attacker-con-

trolled computer.

DESCRIPTION OF NETWORK 

ATTACKS

In our case study, the attacker-con-

trolled computer utilized the port 

scanning tool to collect the Trans-

mission Control Protocol (TCP) and 

User Datagram Protocol port infor-

mation from the targeted computers, 

and it knew that a particular comput-

er node, ,Node2  opened a mass of 

TCP port. Thus, the attacker could 

select a specific port and initiate a 
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FIGURE 4. Merging the two evidence tensor models.
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network attack. Here, we assume that the login attempt 

attack to Node2 was conducted by the attacker-controlled 

.Node1  Utilizing the port 3306 vulnerability, the attacker 

sent the user name and password to the My Structured 

Query Language (MySQL) database server on Node2 and 

successfully logged in to Node s2 \  database server.

EVENT TENSOR AND EVIDENCE TENSOR

Figure 5(b) details the event tensor model constructed with 

the port scanning and login attempt information. The subten-

sor space, consisting of the tensor orders and ,I Itime dev  and

 Idport  describes the login attempt event. At 13:27:57 on 26 

February 2017, the TCP port 3306 was remotely connected to 

Node .2  This network event reveals that the attacker ( )Node1  

attempts to login to the MySQL server ( ) .Node2  Using the 

event tensor, we first  construct a third-order evidence subten-

sor, Tevidence ! ,R
node node eattr# #I I I  where the tensor orders 

and node eattrI I  denote network nodes and edge attributes, 

respectively. In this scenario, we assume that there are four 

computer hosts and three network attack methods as previ-

ously discussed. Three types of network attack can generate 

2
3 attack combinations. Hence, .RTevidence

4 4 8
!

##  Figure 5(c) 

and (d) shows two different third-order evidence tensors, and 

Figure 5(e) is the merged evidence tensor.

REDUCTION AND INCREMENTALLY 

UPDATING OF EVIDENCE TENSOR

After obtaining the integrated evidence tensor, the original ten-

sor data are processed for data reduction using both the 

HOSVD and the incremental HOSVD methods. Then, we 

obtain the most valuable core tensor and truncated matrixes. 

The  4 4 8# #  primitive evidence tensor can be decomposed 

into three ,4 2#  ,4 2#  8 3#  truncated matrices and a 2 2 3# #  

core tensor. Here, the data reduction rate is 40.625%, thus 

achieving a savings of 59.375% in storage space. This, conse-

quently, results in an improved computational efficiency. When 

the tensor elements are updating, employing the incremental 

method computing the truncated matrices and core tensor can 

be efficiently improved. Figure 5(f) and (g) presents the find-

ings from using the HOSVD and the incremental HOSVD 

method, respectively.

CONCLUSION

Network forensics are increasingly important in our intercon-

nected digital society. Thus, it is important for forensic tech-

niques to keep pace with technological advancements. We 

demonstrated the potential of utilizing tensor algebra in facil-

itating more efficient network forensic investigations. More 

specifically, we proposed a tensor-based forensics model for 

VNFs. An event tensor model was then used to represent net-

work events, and the incremental method was utilized to effi-

ciently update the generated event tensor. The updated core 

event tensors were then submitted to the management and 

orchestration layer for integration. We also introduced a simi-

larity tensor model to fuse the event tensors and an evidence 

tensor model to facilitate network forensic investigations. 

Finally, we demonstrated the practicality of this approach 

using a case study in the IoT.
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