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Abstract— With the development of the brain-computer
interface (BCI) community, motor imagery-based BCI sys-
tem using electroencephalogram (EEG) has attracted
increasing attention because of its portability and low
cost. Concerning the multi-channel EEG, the frequency
component is one of the most critical features. However,
insufficient extraction hinders the development and appli-
cation of MI-BCIs. To deeply mine the frequency informa-
tion, we proposed a method called tensor-based frequency
feature combination (TFFC). It combined tensor-to-vector
projection (TVP), fast fourier transform (FFT), common spa-
tial pattern (CSP) and feature fusion to construct a new
feature set. With two datasets, we used different classifiers
to compare TFFC with the state-of-the-art feature extrac-
tion methods. The experimental results showed that our
proposed TFFC could robustly improve the classification
accuracy of about 5% (p < 0.01). Moreover, visualization
analysis implied that the TFFC was a generalization of
CSP and Filter Bank CSP (FBCSP). Also, a complemen-
tarity between weighted narrowband features (wNBFs) and
broadbandfeatures (BBFs) was observed from the averaged
fusion ratio. This article certificates the importance of fre-
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quency information in the MI-BCI system and provides a new
direction for designing a feature set of MI-EEG.

Index Terms— Brain–computer interface, electroen-
cephalogram, motor imagery, common spatial pattern,
tensor-to-vector projection, fast fourier transformation.

I. INTRODUCTION

THE brain-computer interface (BCI) is a communication
control system, which is directly established between the

brain and external electronic devices, using signals gener-
ated during brain activity [1]. The BCIs have shown great
potentials applying in various fields such as communication,
synchronous control, asynchronous control [2], and rehabil-
itation [3]. Electroencephalogram (EEG) is one of the most
common signals used for building a BCI system because of
its cost-effectiveness, noninvasive implementation, and porta-
bility. Throughout numerous BCI studies, growing attention
has been dedicated to analyzing EEG of motor imagery (MI)
[4]–[9]. This interest is due to MI-BCI’s ability to allow both
healthy and disabled people to control electronic devices using
self-regulate brain signals without an external stimulus. No
external stimulus, which is a distinctive feature of the MI-BCI,
brings it excellent application potentials.

The MI-BCI system’s framework is based on the fact
that the brain’s activity in a specific area could be changed
when the patients (or subjects) imagine moving a certain part
of their bodies [10]. The spatial distribution and frequency-
band’s energy are two essential aspects to characterize
MI-EEG [11]. Around the design of the spatial filter, a large
amount of works have been produced to decode the MI-EEG
signals [12]–[14].

Among these works, the most important one was the
common spatial pattern (CSP) algorithm, which was the root
node of other algorithms, and a large amount of works were
derived from it. CSP-rank was a filtering channel selection
algorithm [15], which was used to remove blackundant chan-
nels while improving BCI systems’ performance. It sorted
the importance of channels according to the coefficients of
spatial filters, and the optimal channel set was determined by
the highest cross-validation accuracy. For the same channel
selection problem, Correlation based channel selection CSP
(CCS-CSP) used a correlation-based method to select the
channels that contained more correlated information [16].
To include a spatial priority in the learning process, Spa-
tially regularized CSP (SRCSP) added a regularization term
to spatially penalize non-smooth filters [17]. Because the
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L1-norm has lower sensitivity to the outlier, Difference and
ratio of average L1-Norm CSP (DRL1-CSP) [13] defined a
new L1-norm-based feature ranking function to select the
more efficient features. Also, DRL1-CSP further fused the
L1-norm-based feature ranking and Fisher scores ranking by
Dempster–Shafer Theory [18]–[20] to built a more robust
feature selection mechanism.

We found a commonality after sorting out these works:
almost all of these methods used 8-30 Hz band-pass filters,
which was a relatively broad frequency band. Therefore, in this
article, the features extracted by these methods were called
broadband features (BBFs).

Moreover, the Filter Bank CSP (FBCSP) architecture cre-
ated another trend [21], [22]. This architecture used multiple
narrowband bandpass filters rather than the classic single
bandpass filter and successfully extracted narrowband fea-
tures (NBFs) related to MI. Many works have been derived
[23]–[25], based on the FBCSP framework. This architecture
also have achieved good results on public datasets. These
methods calculated features in each narrow frequency band
and then selected k features with the most discriminative abil-
ity. Note that the selection operation may be an unsafe oper-
ation. Because of that, the features on the narrow frequency
bands may lost the possibility of linearly weighting each other.

Through the analyses of previous works, we found two
significant shortcomings in these works. First, in the CSP
framework, many works only focused on 8-30 Hz broadband
information but ignoblack narrowband information [12]–[14].
Second, even though some subsequent researches focused
on narrowband information based on the filter bank strat-
egy, some potentially useful information was lost due to
their crude feature selection [22], [26]–[28]. Almost all the
FBCSP-based methods would inevitably use feature selection
methods, which could cause narrowband information to be
selected or discarded. In other words, the fused features among
these narrow bands were ignoblack. In addition, increasing
numbers of studies have provided a clue that there may be
complementarity between broadband and narrowband infor-
mation [6], [29]. Combining them may enable the classifier
to obtain better classification capabilities. If there is a feature
extraction method that can fuse the two parts of information
without losing the information fusion potential among the nar-
row frequency bands, the performance of the brain-computer
interface system could be further improved.

To solve these shortcomings discussed above, we firstly
constructed a spatial-spectrum tensor based on FFT and used a
tensor analysis method, named Uncorrelated Multilinear Dis-
criminant Analysis (UMLDA) [30], to extract more discrimi-
native weighted NBFs (wNBFs) hidden in narrow frequency
bands. Secondly, we fused these features with BBFs to obtain
a more robust feature set named TFFC. Classifiers trained on
TFFC have better classification performance. The novelty and
contribution of this article can be summarized as follows:

1) A spatial-spectrum tensor was constructed by FFT.
2) The wNBFs were extracted by the tensor analysis

method named UMLDA.
3) The BBFs and wNBFs were fused to obtain a more

robust feature set named TFFC.

4) Implying the complementarity of BBFs and wNBFs in
MI tasks.

The remainder of this article is organized as follows.
Section II shows the methods used in our study. In section III,
we briefly introduce our dataset. The baseline methods and the
experimental results are discussed in section IV. In section V,
the reasons for the success of TFFC and the shortcomings of
TFFC are discussed. Finally, section VI concludes this article.

II. METHOD

This paper follows the notation conventions in multilinear
algebra, pattern recognition, and adaptive learning literature.
Vectors are denoted by lowercase boldface letters, e.g., x;
matrices by uppercase boldface, e.g., X; and tensors by
calligraphic letters, e.g., X . Their elements are denoted with
indices in parentheses. Indices are denoted by lowercase
letters, spanning the range from 1 to the uppercase letter
of the index, e.g., p = 1, 2, . . . , P . In addressing part
of a vector/matrix/tensor, “:” denotes the full range of the
respective index and n1:n2 denotes indices ranging from n1
to n2. In this paper, only real-valued data are consideblack.
The overall architecture of our method is shown in Fig. 1,
and more details are as below:

A. Tensor Algebra

An N th-order tensor is denoted as A ∈ R
I1×I1×...×IN [31].

It is addressed by N indices in, n = 1, 2, . . . , N , and each in

addresses the n-mode of A. The n-mode product of a tensor
A by a matrix U ∈ R

Jn×In , denoted by A ×n U, is a tensor
with entries

(A ×n U)(i1, . . . , in−1, jn, in+1, . . . iN )

=
∑

in
A(i1, . . . , iN ) · U( jn, in). (1)

The scalar product of two tensors, A,B ∈ R
I1×I1×...×IN is

defined as

�A,B� =
∑

i1
· · ·

∑
iN
A(i1, . . . , iN ) · B(i1, . . . , iN ) (2)

A rank-one tensor A equals to the outer product of N
vectors: A = u(1) ◦ u(2) ◦ · · · ◦ u(N), which means that
A(i1, . . . , iN ) = u(1)(i1) · u(2)(i2) · · · u(N)(iN ) for all values
of indices.

B. Spatial-Spectrum Tensor Generation

The original segmented EEG data is M-order tensor Xeeg ∈
R

IT ×IC , where the number of modes M is 2, IC is the
number of channels, and IT is the number of sample
points. A transformation from spatial-temporal formulation to
spatial-spectrum formulation is desperately needed to conduct
a spatial-spectrum tensor analysis. We use Fast Fourier Trans-
form (FFT) to complete the purpose.

X �
eeg = f f t (Xeeg) (3)

where f f t (•) calculates the one-sided FFT along with the first
mode with 1024 points. Note that the frequency components in
X � are under fs according to Nyquist sampling theory, where
fs = Fs

2 and the Fs is the sampling frequency. The motor
imagery-related frequency components are not high. Since the
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Fig. 1. Overall architecture. The training phase is divided into two branches. In the first branch, the segmented MI-EEG trial is processed by
band-pass filtering and FFT to construct the spatial-spectrum tensor. The UMLDA algorithm projects the spatial-spectrum tensor into a feature
vector, which is the wNBFs. In the second branch, the CSP algorithm extracts a feature vector of length 6, the BBFs, from the segmented and
band-pass filteblack MI-EEG trial. The classifier is trained on the TFFC, which is a combination of wNBFs and BBFs. The downward arrow (↓) in the
picture represents the parameters that need to be learned in the training set. In the test phase, only the feature index calculated from the training
set is used.

TABLE I
THE NARROWBANDS USED IN THIS ARTICLE

frequency components related to motor imagery are mainly
located between 8 Hz and 30 Hz, we need to extract the com-
ponents of interest from X � and discarded the unrelated parts.
Following the FBCSP algorithm’s setting, we established nine
narrow frequency bands to extract the interested components.
The extraction process is defined below.

XF (i, j) = log((

∑bi
k=ai

X �
eeg(k, j)

bi − ai + 1
)2)

ai = li × 1023

fs
+ 1, bi = hi × 1023

fs
+ 1 (4)

where li and hi are the lower cut-off frequency and the
upper cut-off frequency of the i -th frequency band. XF (i, j)
is the Differential Entropy (DE) of Xeeg in the ith frequency
band of the jth channel [32], [33]. The XF ∈ R

IF ×IC is the
spatial-spectrum tensor we wanted, where the IF is nine. The
frequency bands used in this article are shown in Table. I.

C. Common Spatial Pattern Extraction
The CSP algorithm is an effective spatial filtering method

commonly used to extract features in MI-based BCI systems.

The spatial filters are consideblack projection vectors and
are calculated to maximize the variance of one class while
minimizing the other class’s variance. Consider two classes of
EEG signals Xi,1, Xi,2 ∈ R

IT ×IC from the experimental i th
trial, where IC is the number of channels, and IT denotes the
number of sampling points. The spatial covariance matrix of
class c is computed as follows:

∑
c

= 1

nc

∑nc

i=1
XT

i,cXi,c (5)

where nc represents the number of trials in class c. Then,
the spatial filter that maximizes the variance of one class and
minimizes the variance of the other can be calculated by

Jc(w) = wT ∑
cw

wT
∑

c̄w
s.t .�w�2 = 1 (6)

where w is the spatial filter. The optimization of the Rayleigh
quotient can be converted to the generalized eigenvalue
problem

∑
c
w = λ

∑
c̄
w (7)

where λ and w are the generalized eigenvalue and eigen-
vector. The spatial filters Wcsp are formed by eigenvectors
corresponding to m maximum and minimum eigenvalues.

The projection signal Z of the signal trial is given by

Z = WcspX (8)

Then, the pth feature of the single trial can be obtained as
follows:

f p = log(ZpZT
p ) (9)
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where Zp is the pth row of Z (p = 1, 2, . . . , 2m). And
fcsp is the final feature vector, where fcsp = [ f1, f2, · · · ,
f2m ] ∈ R

2m .

D. Multilinear Spatial-Spectrum Feature Extraction

The tensor’s projection has two types. Tensor-to-tensor pro-
jection (TTP) [34] and tensor-to-vector projection (TVP) [30].
We used the UMLDA algorithm, a TVP method, to project
a tensor X ∈ R

I1×I1×...×IN to a vector y ∈ R
P by a set

of elementary multilinear projections (EMPs) learned from

data, denoted as {u(1)T

p , u(2)T

p , · · · , u(N)T

p }, p = 1, 2, · · · , P .
P is the number of components we wanted and the pth
component of y is obtained from the pth EMP as y(p) =
X ×1 u(1)T

p ×2 u(2)T

p · · · ×N u(N)T

p . The UMLDA’s objective

is to determine a set of P EMPs {u(n)T

p , n = 1, · · · , N}P
p=1

that maximize the scatter ratio while producing features with
zero correlation. In this study, N is 2 corresponding to space
mode and spectrum mode, and P is set to be 50. We apply
the UMLDA algorithm on the space-spectrum tensor XF as
below:

fss(p) = XF ×1 u(1)T

p ×2 u(2)T

p , p = 1, 2, · · · , P. (10)

where fss ∈ R
P is extracted feature vector.

E. Features Fusion and Fisher Score Rank

We use vector concatenation to fuse features from CSP
algorithm and UMLDA algorithm.

F = concat (fcsp, fss) (11)

where F ∈ R
2m+P is the wNBFs.

As blackundant features cannot improve the training accu-
racy, we need a feature selection mechanism to find out the
most discriminative features [35]. After feature extraction,
we employed a Fisher score strategy for feature selection [36].
The Fisher score is defined as

SF = |μ1 − μ2|2
σ1 + σ2

(12)

where μi and σi denote the mean and standard deviation of
class i over an individual feature. We sort these features in
descending order by the value of SF , and then take the top k
features to train the SVM classifier. The optimal k is calculated
by 10-fold cross-validation.

F. Classifier Tools

To obtain reliable experimental conclusions, we selected
four mainstream classifiers for comparative experiments. They
are the support vector machine (SVM), the k-nearest neighbor
classifier (KNN), linear discriminator (LDA), and naive bayes
classifier (NB). We used the libsvm toolbox [37] to implement
the first one, and the parameters setting string was ‘-t 2’.
For the other three classifiers, we used the functions, which
are fitcknn(), fitcdiscr(), and fitcnb() [38] in Matlab2020a,
to implement them and used the default parameters.

TABLE II
STATISTICS OF THE TWO DATASETS

Fig. 2. Each subject needed to complete a motor imagery experiment
three times on different days. Each experiment included 10 blocks. Each
subject had 10-second preparation time before the start of each block.
There was a 60-second interval between blocks.

III. DATA ACQUISITION AND PRE-PROCESSING

A. Participants in Dataset 1

Seven subjects (aged 23-26: one female and six males)
participated in the experiments with written consent. Among
them, 6 subjects (S2-S7) were naive BCI users, and only one
(S1) had a previous BCI experiment. The overall design of
our experiment was shown in Fig.2. Each subject was asked
to conduct experiments in three successive days. Each day of
the experiment was divided into 10 blocks. And each block
included 40 trials, where 20 trials were for left-hand motor
imagery, and 20 trials were for right-hand motor imagery.
We obtained 400 (40 × 10) trials for one subject in one day.
Sx .y represented the experiment of the x th subject in the yth
day. This data set was collected using Neuroscan acquisition
system with SynAmps RT 64-channel Amplifier.

At the beginning of the experiment, the subjects were seated
comfortably in a chair with armrests 60 (±5) cm from a 20-in
LCD monitor (refresh rate: 60 Hz and resolution: 1600 ×
1200). During the experiment, participants were asked to relax
and minimized their eye’s and muscle’s movements.

B. Participants in Dataset 2

Dataset 2 was from BCI-Competition-IV-1 [39]. Dataset 2
was recorded from seven subjects (A, B, C, D, E, F, G),
including four real human subjects (named A, B, F, G), and
three artificially generated “participants” (named C, D, E).
Two motor imagery classes were selected for each subject
from the three classes: left hand, right hand, and foot. Here
we only used the calibration data because of the complete
marker information. There were 200 trials for each subject.
We randomly split these trials into ten blocks for 10-fold cross-
validation. The recording was made using BrainAmp MR plus
amplifiers and a Ag/AgCl electrode cap. The details of the
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Fig. 3. Location of electrodes.

competition, including ethical approval and the raw data, can
be downloaded from http://www.bbci.de/competition/iv/.

C. Pre-Processing
In each experiment, 59 EEG electrodes were used to

record the EEG signals, with a sample rate of 1000 Hz for
dataset 1 and 100 Hz for dataset 2. The EEG electrodes’
location configuration is shown in Fig.3. The EEG electrodes’
impedances were maintained below 20 k� during the entire
experiment and checked before the start of each experiment.
Each sample was segmented from [0, 4] s for dataset 1 and
[0, 2.5] s for dataset 2 by marks. To blackuce the high
computational burden from the sample rate of 1000 Hz for
dataset 1, we downsampled the sample rate into 200 Hz.
For the CSP algorithm, the recorded EEG signals were
band-passed with a 10-order Butterworth filter between 8 Hz
and 30 Hz. For the UMLDA algorithm, the recorded EEG sig-
nals were band-passed filteblack with a 10-order Butterworth
filter between 0.1 Hz and 40 Hz.

IV. RESULTS

A. Baselines and Comparison Criteria

In this work, the decoding accuracies of the different
methods were evaluated in Matlab2020a. Computer hardware
resources included 32 GB RAM and 2.21 GHz Intel Core
I7 CPU. Because each experiment included 10 blocks in
dataset 1, each experiment was divided into 10 folds according
to the 10 blocks, 9 folds were used as the training set
and 1 remaining fold was used as the testing set. We did not
use the random division method for cross-validation, instead,
we divided the block as the smallest unit to avoid randomness
on the experimental results as much as possible. For dataset 2,
we used 10-fold cross-validation to evaluate the performance
of each algorithm. Specifically, each time we selected one fold
as the testing set and all other folds as the training set and then
performed the machine learning process. Repeated this process
for ten times. The averaged decoding accuracy over all folds
was used as the final metric.

The following methods were chosen for performance com-
parison.

Algorithm 1 Tensor-Based Frequency Features Combination
(TFFC)
Input:

The training dataset {(X (i)
eeg, Y(i))}ntr

i=1;
The number of selected features, k;
The number of EMPs, P;

Output:
F�, Wcsp and {u(n)T

p , n = 1, · · · , N}P
p=1.

1: Use (3) and (4) to obtain the XF .

2: Obtain {u(n)T

p , n = 1, · · · , N}P
p=1. Use the same method

as [30] to train EMPs on the training set.
3: Extract the spatial-spectrum bilinear weighted features fss ,

using (10).
4: Use (8) and (9) to obtain Wcsp and fcsp.
5: Concatenate fcsp and fss to form F by (11).
6: Sort F in descending order with the Fisher-Score calculated

by (12).
7: Select the best k features from F to construct the F�.

1) CSP feature extraction. Because of the CSP algorithm’s
unshakable position in the field of MI-BCIs, we chose
it as the baseline algorithm for this research. In the
CSP algorithm process, each segmented EEG signal
was first filteblack by a pass-band filter with [8, 30]
Hz and projected by a spatial projection matrix. The
column number of the spatial projection matrix was set
to be 6 referring to [12].

2) FBCSP, an extended version of the CSP. In the FBCSP
algorithm, each segmented EEG signal was passed
through multiple narrowband filters, and the CSP algo-
rithm extracted features in each frequency band. These
features formed a feature set, and then k optimal features
were selected as the final feature set through a feature
selection method. In this article, we used the same
feature selection method to selected 4 pairs of CSP
features as [21] did. The source code can be downloaded
from https://github.com/stupiddogger/FBCSP.

3) UMLDA, a framework for the recognition of mul-
tidimensional objects, known as tensor objects [30].
We used this method to extract wNBFs and shown the
classifiers’ decoding performance when only wNBFs
were used.

4) Tensor-based Frequency Features Combination (TFFC)
method, which was a feature extraction and fusion
method that focused on wNBFs and BBFs, simul-
taneously. For wNBFs, this method constructed a
spatial-spectrum tensor and used UMLDA, a tensor
analysis method, to extract spatial-spectrum bilinear
weighted features. For BBFs, this method integrated
the features extracted by CSP. 10-fold cross-validation
was used to determined the optimal parameters for
each subject. The overall proposed algorithm was
shown in Algorithm 1. We have opened part of the
source code and template data to promote the devel-
opment of BCI field, which could be downloaded from
https://github.com/iuype/TFFC.
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TABLE III
SIGNIFICANCE TEST (α = 0.01) FOR TABLE IV. BOLDFACE HIGHLIGHTS SIGNIFICANT DIFFERENCES

TABLE IV
MEAN (%) AND STANTARD DEVIATION (%) OF TFFC METHOD AND BASELINES METHODS. BOLDFACE HIGHLIGHTS THE MAXIMUM

CLASSIFICATION ACCURACY AND MINIMUM STANTARD DEVIATION FOR INDIVIDUAL CLASSIFIERS

To obtain a more objective comparison, the dataset’s divi-
sion was consistent among different algorithms.

B. Classification Performance Comparison
All experimental results were shown in Table. IV. The first

column of Table. IV showed the information of the subject’s
name, and the second to fifth columns showed the performance
of the four feature sets when SVM, KNN, LDA, and NW were
used as classifiers.

The second column of Table. IV showed the individual
day’s accuracy for the four methods when the SVM was
used as the classifier. We observed that our TFFC method
outperformed the other three approaches. In dataset 1, CSP,
UMLDA, FBCSP, and TFFC achieved the classification perfor-
mance of 70.61%, 66.79%, 66.32% and 64.11% respectively.
In dataset 2, they achieved classification performances of
88.79%, 81.00%, 61.71%, and 82.00%. It had better accuracy
than FBCSP in 22 out of 28 subjects, UMLDA in 25 out
of 28 subjects, and CSP in 23 out of 28 subjects. Similar
results were obtained when using KNN, LDA, and NW as
shown in Table. IV. These experimental results showed that
classification accuracy is significantly enhanced by using the
proposed TFFC method compared with the baseline methods.

The sub-column of Table. IV could be represented as O-C,
where O is the feature set name and C is the classifier’s name,
e.g., TFFC-SVM.

TABLE V
THE COMPARISON WITH OTHER ARTICLES

To verify the reliability of our experimental results,
a paiblack t-test was used between the baseline algorithm and
our proposed algorithm. Specifically, the matlab fuction ttest
was used to test the Table. IV. All improvements were statisti-
cally significant ( p < 0.01). The paiblack t-test’s results were
shown in Table. III. These p-values are corrected by FDR [42].
Moreover, we compablack our method with Jin’s [13] and
Jiang’s [40] on dataset 2. As shown in Table. V, our results
are comparable with Jiang’s and much better than Jin’s. Note
that Jiang’s method consideblack a more time-domain feature
than Jin’s and ours.
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Fig. 4. Feature selection on training dataset. The dotted line represents
the experimental results of each subject on each day. The solid line is
the average of all experimental results.

Fig. 5. Feature selection on testing dataset. The dotted line represents
the experimental results of each subject on each day. The solid line is
the average of all experimental results.

C. Visualization of Feature Selection

Fig.4 showed the influence of the number of selected
features on the proposed method’s classification accuracy
on training set. Fig.5 showed the influence of the number
of selected features on the proposed method’s classification
accuracy on testing set. The dotted line represented the exper-
imental results of each subject on each day. The solid line was
the average accuracy of all experimental results. Noticed that
we selected the peak value on each dotted line as the final
metric for each experiment.

D. Visualization of Feature Fusion

After repeated experiments, the optimal parameters of fea-
ture selection were determined for each subject. The optimal
parameter of feature selection for subject A was 3, which
contained two BBFs and one wNBF obtained by (8), (9)
and (10). The selected two CSP projection vectors and EMP
were visualized in Fig.6. In Fig.6, the pictures in the upper row
were the selected CSP projection vectors, and the pictures in
the bottom row were the selected EMP. We observed that the
value of each element in the vector u(2)

2 was not equal, which
supported our viewpoint that better features can be obtained
by linearly weighting narrowband components.

Fig.7 shows the fusion percentage between wNBFs and
BBFs. The fusion percentage was calculated by

Ratio = n1

n1 + n2
∗ 100% (13)

Fig. 6. The selected CSP projection vectors and EMP for subject A
in dataset 2. The sub-pictures in the upper row are the selected CSP
projection vectors. The sub-pictures in bottom row are the selected EMP.

Fig. 7. The ratio between the number of selected wNBFs and the number
of selected BBFs.

where n1 was the number of selected wNBFs and n2 was the
number of selected BBFs. We observed that the average fusion
percentage was around 50%, which indicated that both types
of features were equally important.

E. Investigate the Performance Influenced by the Choice
of P and the Number of Channels

In [30], the correct recognition rate (CRR) was maintained
at a stable level when P = [30, 60]. Inspiblack by this,
we heuristically set P to be 50. Although under this setting,
our proposed method has achieved quite good results, it is still
very meaningful to study the influence of different values of P
on the classification performance of the TFFC. To strengthen
persuasiveness of our study, we added additional experiments
on dataset 1, where the P = [0, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50]
and SVM as the classifier. The experimental results were
shown in Fig. 8. When P = 0, the feature set degenerated
into a CSP feature set. We observed that as P increased,
the classification performance of SVM also steadily increased.
When P was greater than 5, the classification performance of
SVM reached a stable level.

In addition to the value of P , the number of chan-
nels was another important factor that affected the per-
formance of TFFC. We choose three different settings of
channels to explore the performance of the TFFC feature
set under different channel settings. The first one only
coveblack the motor cortices, which included C3, C4, and Cz.
The second one included 20 channels, which were FC-5/3/
1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6 [6]. The final
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Fig. 8. The performance influenced by P. The error bar is standard error
of mean (SEM).

Fig. 9. The performance influenced by the setting of channels. The
difference between each pair of the three settings of channels was
indicated by paiblack t-tests (∗p < 0.001).

one included 59 channels, which were plotted in Fig. 3.
We conducted experiments with different settings of channels
on dataset 1 and dataset 2, and the experimental results were
shown in Fig. 9. We observed that the first channel setting
achieved the worst performance, and the third channel setting
achieved the best performance. And the difference among the
three was statistically significant (p < 0.001).

V. DISCUSSION

Concerning MI-BCI systems, the frequency is one of the
essential feature dimensions apart from spatial distribution.
Optimization techniques [22], [26]–[28] for frequency bands
can often bring definite classification performance improve-
ments. However, the state-of-the-art methods have some short-
comings, which have been discussed in the section I. Focusing
on these problems, we constructed a new feature set, named
TFFC, based on CSP, FFT, and UMDAL. To verify the TFFC
method, we conducted many experiments on a public dataset
and a private dataset. Experimental results and corresponding
significance test were shown in Table.IV and Table.III.

The UMLDA is a method designed for tensor objects
published in TNN in 2009 [30]. This article gave a very
comprehensive description of the tensor calculation in the

UMLDA method. In mathematics, a tensor is an algebraic
object that describes a multilinear relationship between sets of
algebraic objects related to a vector space. Objects that tensors
may map between include vectors and scalars, and even other
tensors. There are many types of tensors, including scalars
and vectors, which are the simplest tensors. So, a matrix is
a particular case of a tensor, it is a second-order tensor, but
it cannot be said that it is not a tensor [43]. The operation
of projecting a second-order tensor into a scalar is the tensor
calculation. Moreover, in the original article of UMLDA and
other studies, the experiment of a second-order tensor is also
carried out [30], [44], [45]. Other studies that regard matrices
as tensors and have conducted some research using tensor
analysis methods [46]–[48]. Meanwhile, we consider that
our proposed method incorporates the features of BBFs and
wNBFs, so we named this method Tensor-Based Frequency
Features Combination (TFFC). What’s more, our method
has a certain potential for expansion. When more factors are
consideblack and the dimensionality of the tensor increases,
our method still has the potential to extract the features.
However, because the calculation of extracting high-order
tensors’ features is very time-consuming, how to speed up
this calculation has become a significant problem in tensor
calculations, and further research is needed.

A. Why TFFC Works
It is vital to explore the reasons for the success of TFFC

and we believe that there are two main reasons for it.
First, we solved the problem discussed in section I. In the

establishment of the feature set, we simultaneously extracted
features of two aspects, broadband features (BBFs), and
weighted narrowband features (wNBFs), and merged them
together. For BBFs, we followed the classic CSP algorithm
that needed to work in the frequency band of 8-30 Hz.
We selected 6 features as part of TFFC. Inspiblack by the
differential entropy matrix, mostly used in emotion clas-
sification [49], and the FBCSP algorithm, we calculated
the wNBFs using UMLDA. In pattern recognition tasks,
including MI-EEG signal recognition, features that were not
related to each other were desirable since they contained
minimum blackundancy and ensublack the independence of
features [30]. The UMLDA was an algorithm designed specif-
ically for tensor data for this purpose. The UMLDA method
was used to extract wNBFs from the 9-narrowband differential
entropy matrix. These wNBFs were extracted by supervised
linear projections on spatial and frequency directions, and
they were not related to each other theoretically [30]. The
linear combination of features among the narrow frequency
bands produced new features with more discriminative ability.
Fig. 10 and Fig. 11 plotted the highest rank score EMPs for
all subjects in dataset 1. We observed that most frequencies
weighted vectors’ elements were not equal, which showed that
the features calculated by EMPs did contain linear combina-
tion information among narrow frequency bands. However,
due to the differences of EEG across subjects, the critical
features may not be hidden in narrowbands for all subjects.
To build a robust feature set, we fused the wNBFs with
BBFs and named it TFFC. Experiments showed that the TFFC
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Fig. 10. Spatial weighted vectors learned by UMLDA for all subjects and
all days in dataset 1.

feature set had better classification performance, not unexpect-
edly, which indicated that it had a more vital discriminative
ability.

Second, CSP and FBCSP were corner cases of TFFC.
As discussed in the introduction section, CSP extracted BBFs
and FBCSP extracted NBFs. The core competence of TFFC

Fig. 11. Frequency weighted vectors learned by UMLDA for all subjects
and all days in dataset 1.

was that it contained the above-described two kinds of fea-
tures. When the elements in the learned frequency weighted
vectors were equal or approximately equal, we believed that
the information of the features is similar to the BBFs. For
instance, sub-picture S4.3 in Fig. 11 was just the case dis-
cussed above, where the elements in the frequency weighted
vectors were more consistent than those in other sub-pictures.
This showed that the information in the feature calculated
by this EMP was more similar to the information in the
feature calculated by CSP. When some elements in the learned
frequency weighted vectors were close to 0, we believed that
the information of the features was similar to the NBFs. There
were many instances in Fig. 11.

B. Performance With Different Classifier
The academia hoped to find a feature set with robustness

in the machine learning project for MI-BCI systems. This
could blackuce classifier selection for researchers and speed
up the development cycle of MI-BCI systems. We chose
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KNN as the representative of the classifier with a simple
structure and SVM as the representative of the classifier with
a more complicated structure. We observed that TFFC-SVM,
TFFC-KNN, TFFC-LDA, and TFFC-NW, respectively, had
a significantly higher than CSP/UMLDA/FBCSP-SVM’s,
CSP/UMLDA/FBCSP-KNN’s, CSP/UMLDA/FBCSP-LDA’s,
CSP/UMLDA/FBCSP-NW’s ( p < 0.05), which meant that
the proposed TFFC was robust and superior.

C. The Feature Interpretability and Biological Meaning

Like most MI feature extractors [15]–[17], our proposed
TFFC method included spatial filters. However, the difference
was that our method included frequency band filters. The
frequency band filter was a vector that performed linear fusion
among different frequency band components. The frequency
band filters trained by the supervised method can effectively
fuse the information hidden in the narrow frequency bands.
In Fig. 6, we visualized the spatial filters and frequency band
filters trained on the data of subject A. The spatial filters
were divided into two parts, one part came from the CSP
algorithm, and the other came from the UMLDA algorithm.
In Fig. 6, CSP2 was mainly responsible for collecting features
from the motor cortices, which was consideblack the main area
for MI signals [11]. Although CSP2 looked more regular than
UMDAL, the CSP2 spatial filter had no discriminant ability
for the frequency band and could only be improved by choos-
ing a specified bandpass filter based on expert knowledge.
However, the most efficient frequency band had noticeable
differences among subjects in the MI task, and the fixed
frequency band of 8-30 Hz could not be a good choice [28].
Fortunately, the UMLDA method could select and even fuse
the features among different frequency bands. Therefore, the
features calculated by TFFC include two aspects, BBFs and
wNBFs. In the lower right corner of Fig. 6, it can be observed
that frequency band 1 and frequency band 3 were more
concerned by the UMLDA algorithm. Since UMLDA was a
supervised feature extraction method, band 1 and band 3 were
more important for the classification task of MI in the case
of subject A. In Fig. 10 and Fig. 11, we performed many
visualizations of UMLDA’s spatial filters and frequency band
filters. We can observe that the spatial filters of UMLDA were
more inclined to capture the features of the motor cortices on
subject 4 of Fig. 10. For Subject 1 of Fig. 10, this tendency
can also be seen. In Fig. 11, we observed that the frequency
band filters of subjects 1 and 7 had a certain degree of stability
across the three days, while the other subjects did not have
this phenomenon. This indicated that there might be a small
number of people in the population with cross-day stability in
the frequency features of the MI task.

In the branch of calculating BBFs, we used a fixed setting of
a bandpass filter of 8-30 Hz. Previous studies have proved that
the 8-30 Hz frequency band features had certain cross-subject
stability in MI tasks [50], [51]. In the branch of calculating
wNBFs, TFFC used the UMLDA algorithm to adaptively let
the projection vector on the frequency band learn each indi-
vidual’s weighting coefficient. This idea is relatively common
in the machine learning community, that machine learning

models can learn more efficient and robust performance by
learning on coarse and fine features [52]. The coarse features
give the classifier the basic ability to classify, while the fine
features enable the classifier to learn the individual features of
each subject, which further increases the classification ability.

D. Limitations

In the MI-BCI system, cross-subject and cross-time is a
tough challenge, which requires algorithms to find stable and
unchanging patterns [53]. Unfortunately, our method cannot
do this either. In Fig. 7, Fig. 10 and Fig. 11, we can observe
that fusion percentage, space and frequency weighted vectors
are unstable across subjects and across days. In addition,
a low decoding accuracy (around 75%) is also a shortcoming
of our method. There is still much room for improvement
here.

VI. CONCLUSION

The CSP algorithm only extracts one single broadband
features, and the FBCSP extracts feature in multiple narrow
frequency bands, which is improved compablack to CSP.
However, each feature is either selected or discarded, which
may lead to the neglect of discriminative fusion information
between these features. To further explore the discriminative
information related to MI in the frequency bands, we used
FFT to construct a spatial-spectrum tensor and applied tensor
analysis to mine the discriminative information. We success-
fully extracted wNBFs and used feature cascade and feature
selection to fuse them with BBFs. The final feature set
was named TFFC. The TFFC method significantly improved
the classifiers’ classification performance for MI-EEG. Also,
Our experiment constructed a more robust feature set with
low dependence to classifiers. Moreover, the complementarity
between BBFs and wNBFs was verified. This article certifi-
cated the importance of frequency information in the MI-BCI
system and provided a new direction for designing a feature
set of MI-EEG.
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