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bUniversità Cattolica del Sacro Cuore di Milano, Largo Gemelli 1, 20123 Milano, Italy email:
gianpaolo.clemente@unicatt.it

Abstract

Big data and the use of advanced technologies are relevant topics in the financial

market. In this context, complex networks became extremely useful in describing

the structure of complex financial systems. In particular, the time evolution prop-

erty of the stock markets have been described by temporal networks. However, these

approaches fail to consider the interactions over time between assets. To overcome

this drawback, financial markets can be described by multiplex networks where the

different relations between nodes can be conveniently expressed structuring the net-

work through different layers. To catch this kind of interconnections we provide

new local clustering coefficients for multiplex networks, looking at the network from

different perspectives depending on the node position, as well as a global clustering

coefficient for the whole network. We also prove that all the well-known expressions

for clustering coefficients existing in the literature, suitably extended to the multi-

plex framework, may be unified into our proposal. By means of an application to the

multiplex temporal financial network, based on the returns of the S&P100 assets,

we show that the proposed measures prove to be effective in describing dependencies

between assets over time.
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1. Introduction

Nowadays, a huge amount of multidimensional heterogeneous data are collected

from economic, social, financial and technological fields. In particular, big data and

the use of advanced technologies are relevant topics in the financial market. The

digital transformation is pushing organizations to move towards more data-driven

business and innovation models. On the one hand, financial analysts use external

and alternative data to make investment decisions. On the other hand, financial

industries use big data through different predictive methods and monitor various

spending patterns to develop large decision-making models. Hence, big data is re-

ceiving more attention in the financial framework, where information affects success

and production factors, enhancing and consolidating our understanding of financial

markets. In this context, a useful tool to manage and analyse such large amount

of data is offered in the literature by complex networks (see, e.g., Boccaletti et al.

(2014); Hyland et al. (2021)). Indeed, the description and integration of the struc-

ture of financial complex systems can be efficiently encoded in a suitable network

mathematical model, providing a better comprehension of topological features of

these systems and the related dynamical processes (see, e.g., Dehmer et al. (2016);

Wang et al. (2021)).

Although the research related to big data and financial issues is extremely new

(Hasan et al. (2020)), complex networks have been usefully applied in finance for

several purposes (see, e.g., Chinazzi & Fagiolo (2013) and Nagurney (2008)). Promi-

nent examples are, for instance, the analysis of the interconnected nature of financial

systems (Battiston & Martinez-Jaramillo (2018), Barja et al. (2019)), the modelling

of the dynamics of financial contagion and systemic vulnerabilities within a system

(Caccioli et al. (2018)), the analysis of stock markets via temporal networks (see,

e.g., Zhao et al. (2018)). In particular, the correlation-based network has become

an effective tool to investigate the correlation between complex financial systems

(Mantegna (1999)) and to catch the dependence between underlying random vari-

ables (Peña, 2013). The typical approach is to study these data by means of a se-

quence of correlation-based monoplex networks, one for each time period (see, e.g.,

Onnela et al. (2003a) and Pozzi et al. (2013)). However, these approaches do not

consider the presence of autocorrelation in financial markets. The serial correlation

in stock returns is indeed a central issue in different financial areas (see, e.g., English

& Loretan (2000), Cont (2007)). Although contrasting results have been obtained

in this area showing different behaviours for short-term and long-term analyses (see
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Kadlec & Patterson (1999), Sias & Starks (1997), Lo & MacKinlay (1990), Fama

& F. (1988)), it is interesting to introduce the effect of correlation over time in a

network context.

To this reason and to catch the coexistence of multiple types of interactions within

interconnected systems, we focus on the study of the multilayer nature of real-world

networks. This kind of networks are currently classified in different ways, includ-

ing heterogeneous information networks (Chen et al. (2021)), multilayer networks

(De Domenico et al. (2013); Kivelä et al. (2014); Zhang et al. (2017); Scabini et al.

(2019)) and multidimensional networks (Berlingerio et al. (2013)). In this work we

will refer specifically to multiplex networks, that is networks in which the nodes in

every layer are exactly the same.

Beyond this classification, all these networks encode in the same complex struc-

ture relations of different nature and with different meaning. Indeed, it is worth

pointing out that networks usually have various features in different layers that can-

not be properly highlighted aggregating the layers by the overlay or the projection

operation (see, e.g., Battiston et al. (2014)). Additionally, the meaning of inter-

links connecting nodes in different layers goes over the simple formal representation.

These aspects motivate a study of the complex object represented by multiplex

networks preserving as much as possible the original structure, even using a more

sophisticated mathematical tool (Lv et al. (2021); Park et al. (2016)).

In this framework, special attention is paid to the clustering coefficient, an im-

portant measure of network topology. This indicator measures the degree to which

nodes in a graph tend to cluster together and it is widely used in the financial lit-

erature (see, e.g., Minoiu & Reyes (2013) and Tabak et al. (2014))

Alternative definitions of clustering coefficient in multidimensional networks have

been proposed (see, in particular, De Domenico et al. (2013); Cozzo et al. (2015))

and all of them revealed that a univocal extension is not possible in a multiplex con-

text. In order to gain a deeper insight into specific multiplex financial networks, we

propose new local clustering coefficients for weighted undirected multiplex networks

with non-diagonal couplings. In doing so, we look at the network from different

perspectives, depending on the node position. Indeed, a node can be well-clustered

into the level to which it belongs, or transversely across the levels, or even globally

in the whole system. Therefore, we provide alternative coefficients that catch the

various situations, capturing all these different features intrinsically related to the

complex topology of the multiplex network.

3



We formalize these definitions by using tensors. Indeed, from a mathematical point

of view, tensors offer an effective and elegant representation for generalizing rela-

tions between nodes in the multiplex network context (see De Domenico et al. (2013);

Wang et al. (2017, 2020)). We prove that the well-known formulas for the clustering

coefficients already existing in the literature for weighted monoplex networks (see

Barrat et al. (2004) and Onnela et al. (2005)), suitably extended to the multiplex

case, may be unified into our proposal, both in terms of tensors and supradjacency

matrices.

The proposed measures prove to be effective in catching the multiplex nature

of temporal financial networks. In particular, we focus on the returns of the 102

leading U.S. stocks constituents of the S&P 100 index for the time-period ranging

from January 2001 to June 2017. To this end, we build a multiplex network, where

each layer considers the correlations between assets at a specific time period, while

inter-layer links consider the correlation over time. This specific structure allows to

include in the analysis the possible presence of autocorrelation between stock returns

over time. Results show how the pattern of clustering coefficients is consistent with

main financial events that characterized the analysed period. Additionally, we show

how local coefficients allow to emphasize peculiar behaviours at both sector and

asset level.

The paper is organized as follows. In section 2 we introduce the mathematical

formalism needed for dealing with multiplex networks. In section 3 we define the

definition of triangles in a multidimensional framework. In section 4 we provide

the general formulation of the local clustering coefficients. Formulas are defined by

using both tensor and supradjacency matrices. Also, we show how the proposed co-

efficients are generalisations of the classical definitions provided in the literature for

monoplex networks. In section 5 the different meanings of the proposed coefficients

are emphasized by means of a simple example. In section 6 we apply our proposal

to a real multiplex network based on S&P 100 assets. Conclusions follow.

1.1. Related Literature on clustering coefficients

There is a wide literature about clustering coefficients in complex networks. A

first distinction regards global and local coefficients. In addition to this, a large

number of coefficients has been proposed for undirected and directed, unweighted

and weighted, monoplex and multiplex networks. For this reason, we shortly remind

here the main contributions in this field focusing on weighted, undirected monoplex,
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multilayer and multiplex networks.

Different definitions of clustering coefficient have been proposed for monoplex net-

works, at a global (see Newman (2003) and Wasserman & Faust (1994)) and at

a local level (Watts & Strogatz (1998)). Since then, alternative attempts of gen-

eralisation have been considered by several authors in different directions. Two

well-known local coefficients for weighted networks have been introduced in Barrat

et al. (2004); Onnela et al. (2005), which differ in the weight assigned to the triangles

involved. Other novel coefficients can be found in Zhang & Horvath (2005); Opsahl

& Panzarasa (2009). The authors in Saramäki et al. (2007) present a comparative

study of the various coefficients introduced in the literature, stressing advantages

and limitations.

Very few attempts refer to multilayer networks. A complete formal and systematic

approach can be found in De Domenico et al. (2013) where the authors propose

a tensorial representation of multilayer networks. Many topological indicators are

extended to this context and, among them, a global clustering coefficient is defined.

Several researchers focused on the extension of these coefficients to multiplex net-

works (Cozzo et al. (2015); Battiston et al. (2014); Criado et al. (2012)). In a general

context of structural measures, two clustering coefficients are proposed in Battiston

et al. (2014) for node-aligned multiplex networks. These coefficients depend on a

generalised definition of triads and triangles (Baxter et al. (2016)). In the same

vein, in Cozzo et al. (2015) the transitivity is explored in multiplex networks, gen-

eralising both triad relations and clustering coefficients. The two local clustering

coefficients proposed by Criado et al. (2012) are based on two alternative definitions

of the neighbourhood of a node.

However, to the best of our knowledge, definitions of local clustering coefficients for

multiplex networks with non-diagonal couplings are not available in the literature.

In the present paper, we propose a novel mathematical tool which is aimed

at describing a node-aligned multiplex network where a node can be connected

not only to its counterpart but also to different nodes in other layers. Unlike the

classical multiplex networks in the literature (as for instance in Nicosia & Latora

(2015)), there is a wide class of node-aligned networks where an “explicit cost”can

be associated with interlayer connections among replicas of the same node. Hence,

we refer to a definition of triangles in which the three sides have the same nature,

regardless of whether they connect counterparts of the same node on different levels

or different nodes.
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2. Mathematics of multiplex networks

Formally, a network is represented by a graph G = (V,E), where V is the set

of N nodes and E ⊆ V × V the set of edges (or links). Two nodes are adjacent

if there is an edge (i, j) connecting them. We consider simple graphs, i.e without

loops and multiple edges. An undirected graph is a graph in which if (i, j) ∈ E,

then (j, i) ∈ E. The adjacency relations between pairs of nodes can be conveniently

represented by a N -square symmetric matrix A (the adjacency matrix) with entries

aij = 1 if (i, j) ∈ E, 0 otherwise.

If any edge (i, j) ∈ E is associated with a positive real number wij , then both the

edges and the graph are weighted. We set that wij = 0 if and only if (i, j) /∈ E,

then the real N -square matrix W (the weighted adjacency matrix) with entries wij

completely describes G. In particular, if wij = 1 for all edges (i, j) ∈ E, then

W = A and G is called unweighted. Introducing weights, G is undirected if, when

(i, j) ∈ E, then wij = wji. This implies that the matrix W is symmetric.

In this paper we refer to multiplex networks that are node-aligned, with non-diagonal

couplings (see Kivelä et al. (2014)). Specifically, a multiplex network consists of a

family of networks Ga = (Va, Ea), a = 1, ..., L where each network Ga = (Va, Ea) is

located in a layer a and a node i ∈ Va is adjacent to j ∈ Vb, ∀a, b = 1, ..., L if there is

an edge connecting them. Note that, in node-aligned networks, all nodes are shared

between all layers, namely, Va = Vb = V, ∀a, b = 1, ..., L, and that Ea collects all

the edges connecting nodes on layer a to nodes within the same layer (intra-layer

connections) and to nodes on different layers (inter-layer connections). We assume

that the network is non-diagonal coupled, that is inter-layer edges may exist not

only between nodes and their counterparts, but links between a node i in a given

layer and a node j 6= i in a different layer are allowed. From now on, we will refer

to this kind of networks briefly as multiplex network.

We adopt the tensor formalism for general multilayer networks, described in

De Domenico et al. (2013). In order to facilitate the reader in associating indices to

the corresponding objects, we introduce the following notations. We use Latin letters

i, j, k, .. and a, b, c, ... for objects, namely nodes and levels respectively; and Greek

letters µ, ν, ρ, σ, . . . and α, β, γ, δ, . . . for components of vectors or tensors, again,

for nodes and levels, respectively. In particular, vν(i) represents the ν component

of a general covariant vector on node i and vµ(i) the µ component of a general

contravariant vector on the same node. In particular, eµ(i) are the components of

the standard basis in RN , equal to 1 if µ = i and 0 otherwise. We denote by:
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• Eµν (i, j) = eµ(i)eν(j) the second order tensor canonical basis in RN×N . This

tensor is represented by a N - square matrix where the (i, j)-entry is 1, 0

otherwise.

• Eαβ (a, b) = eα(a)eβ(b) the second order tensor canonical basis in RL×L. This

tensor is represented by a L- square matrix where the (a, b)-entry is 1, 0

otherwise.

• Eµα(i, a) = eµ(i)eα(a) the second-order tensor canonical basis in RN×L. This

tensor is represented by a N×L matrix where the (i, a)-entry is 1, 0 otherwise.

• Eµανβ (i, j; a, b) = eµ(i)eν(j)eα(a)eβ(b) the fourth-order tensor canonical basis

in RN×N×L×L, where the (i, j; a, b)-entry is 1, 0 otherwise.

We denote by Wµ
ν (a, b) the second order inter-layer adjacency tensor for nodes

on layers a and b. It can be expressed as Wµ
ν (a, b) =

∑N
i,j=1wij(a, b)E

µ
ν (i, j),

where wij(a, b) represents the weight of the link between node i on level a and

node j on level b. If we focus on the intra-layer connections, i.e. if a = b, we set

Wµ
ν (a, a) = Wµ

ν (a), which corresponds to the weighted adjacency matrix of order

N of a monoplex network. The multiplex adjacency tensor M , that belongs to

RN×N×L×L, is therefore expressed as Mµα
νβ =

∑L
a,b=1W

µ
ν (a, b)Eαβ (a, b).

Notice that Mµα
νβ is a fourth order tensor, encoding all the existing relations be-

tween nodes across all layers. Let Aµανβ be the binary adjacency tensor, obtained by

setting all non-zero weights in Mµα
νβ equal to 1. In view of the subsequent compu-

tation of the number and weight of potential triangles, we need a proper definition

of the complete multiplex network. A complete multiplex network is meant to be

described by the adjacency tensor Fµανβ = Uµανβ − I
µα
νβ , where Uµανβ is the fourth order

tensor whose elements are all equal to 1 and Iµανβ is the delta tensor whose elements

are equal to 1 if µ = ν and α = β, 0 otherwise. In the complete multiplex network

without self-loops, a node in one level is connected with all its counterparts and all

the other nodes in all levels except itself, so that a complete weighted undirected

multiplex network consists of edges whose weights will always be understood to be

1, except for self-loops whose weight is zero.

Degree and strength for a given node i on layer a will be denoted in general by

di,a and si,a, respectively, whereas the degree and strength of node i with respect

to the whole network by di and si. More precisely, we define strength centrality

matrix the N ×L matrix whose entries are the strengths of each node in each level:
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Sµα = Mµα
νβ u

βuν , where uβ and uν are the all 1’s L− and N−vectors, respectively.

The total strength of a specific node i on layer a is then given by si,a = SνβEνβ(i, a),

whereas the global strength of a specific node i is then given by si =
∑L

a=1 si,a. We

can finally define the total strength of a level as sa =
∑N

i=1 si,a. Similarly for the

degrees by replacing Mµα
νβ by Aµανβ . Notice that a node such that di,a = 1 is called a

pendant node.

Throughout the text, we will adopt the Einstein’s summation convention: the

summation symbol is omitted for sums over repeated indices. In particular, we will

use tensors contraction, by setting in a tensor a couple of indices equal, in order to

sum with respect to layers, nodes or both. This operation reduces the order of the

tensor by 2.

3. Triangles in multiplex networks

In the literature, the definition of local clustering coefficient is related to the

ratio between (weighted or unweighted) actual and potential triangles around a node

Watts & Strogatz (1998). Our aim is to propose coefficients for multiplex networks

preserving the same meaning. To formally define the clustering coefficients, we need

to define first what a triangle in a multiplex network is. In a multiplex network in

which non-diagonal couplings are allowed, a triangle is meant to be a closed triplet

i, j, k such that the three nodes can belong to up to three different levels and they

are connected by inter or intra-layer links. By this definition, we mean to include

all possible closed triplets, moving in all directions, along inter or intra-layer links.

This definition extends the one adopted in De Domenico et al. (2013) for a monoplex

unweighted network

Since two possible orientations are associated to each undirected triangle, start-

ing from and returning to the same node, we can consider each triangle equiv-

alent to two 3-cycles. In particular, in a monoplex unweighted network with-

out self-loops, the number of actual 3-cycles to which node i belongs is given by

t(i) = AµνAνρA
ρ
σeµ(i)eσ(i), where Aµν is the binary adjacency matrix. On the same

line, the number of triplets around i, i.e. of potential 3-cycles to which i belongs, is

given by the formula tp(i) = AµνF νρA
ρ
σeµ(i)eσ(i).

Keeping this in mind, in a multiplex unweighted network we define:

t(i, a) = AµανβA
νβ
ργA

ργ
σδEµα(i, a)Eσδ(i, a) (1)

8



where Aµανβ is the binary adjacency tensor. Formula (1) counts the number of actual

3-cycles to which node i on level a belongs, being the links in the triangles on the

same level a or not. Applying formula (1), we can compute the total number of

3-cycles to which nodes belong on all levels or similarly, the total number of 3-cycles

formed by all the nodes on a given level a.

In other words, formula (1) is flexible enough to allow us to choose in the mul-

tiplex network different scales of observations, simply by applying a suitable con-

traction over indices (by nodes or by layers). Indeed, by contracting over all the

levels on which node i lies, we obtain the total number tN(i) of 3-cycles to which i

belongs:

tN(i) = AµανβA
νβ
ργA

ργ
σαE

σ
µ(i) (2)

On the other hand, by contracting over all the nodes on the same layer a we get

the number tL(a) of 3-cycles to which all nodes on level a belong

tL(a) = AµανβA
νβ
ργA

ργ
µδE

δ
α(a) (3)

Finally, by contracting over all nodes and layers, we obtain the total number of

3-cycles in the multiplex network:

t = AµανβA
νβ
ργA

ργ
µα (4)

Let us consider, for example, the simple multiplex network with N = 4 nodes

and L = 2 layers in Figure 1. We highlight the fact that this toy example exhibits a

link between levels of a non-diagonal type, precisely between nodes 1 and 3 on the

first and second layer. For node 1 on layer 1, for instance, we obtain t(1, 1) = 6;

indeed, it belongs to one intra-layer triangle (with nodes 2 and 3 on layer 1) and

two inter-layer triangles (with nodes 1 and 3 on layer 2 and node 3 on layers 1 and

2). Similarly, t(1, 2) = 4 (for the node 1 on layer 2 we count one triangle on layer 2

and one inter-layer triangle).
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Figure 1: Example of a multiplex network with N = 4 nodes and L = 2 layers

The total number of 3-cycles to which node 1 in all layers belongs to is then tN(1) =

10 (2 intra-layer triangles and 3 inter-layer triangles). Notice that the inter-layer

triangle with two vertices in node 1 in layer 1 and node 1 in layer 2 counts twice.

This choice is consistent with the idea that the total 3−cycles to which a node

belongs must be counted and, although they are identifiable, the two nodes 1 on

the two levels represent a different characterization of the same object. Focusing on

each layer, we have tL(1) = 12. Again, following the same argument, the triangle

with vertices in nodes 1, 2, and 3 on layer 1 counts three times since we are counting

the total number of 3−cycles to which all nodes on such layer belong to. It can be

easily checked that also tL(2) = 12 so that, finally, t = 24 for the whole multiplex

network.

4. Clustering coefficients in multiplex networks

4.1. General formulation of clustering coefficients

In this section we introduce the general definitions for local and global clustering

coefficients on multiplex networks. Clustering coefficient is defined as the ratio

between the number (or the weight) of actual triangles to which a node belongs,

and the number (or the weight) of potential triangles to which it could belong. Of

course, in an undirected network, this is equivalent to consider the ratio between

the corresponding numbers of 3-cycles.1

1For a concise but comprehensive presentation of the clustering coefficients on monoplex net-
works, the reader can refer to section 1 in the Supplementary Material. In the present section, we
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Following the line of the previous section, in a multiplex network, we have at first

to decide where to take actual or potential triangles around a given node. Indeed,

being a multiplex network a complex object, we are interested in representing the

clustering structure from different scales of observation. This is the reason why, in

this framework, we define four different types of clustering coefficients, namely three

local coefficients, in dependence on which node and/or level is taken into account,

and a global one, for the whole network.

We start by providing a general expression for each of the four types of coef-

ficients. The rationale behind each of the definitions is always to take the ratio

between the number of real triangles and the number of potential triangles. The

difference between the four types lies in the choice of where to take triangles: around

a single node on a single level, around a node in all its levels, around all the nodes

on a single level or around all nodes in all levels. The computation of the number

of triangles therefore reflects the possibilities described in section 3 and summarized

by the formulas (1-4). From a mathematical point of view, these computations are

performed by contracting three different tensors, in the most appropriate way, de-

pending on the clustering structure we want to catch, in such a way to count the

desired 3−cycles. To do this, we initially propose very general expressions which will

subsequently be declined in concrete and applied expressions of the same coefficients.

Let H be any adjacency-like tensor with components Hµα
νβ . By adjacency-like

tensor we mean a general representation of the adjacency relations in a multiplex

network, standing for simple binary adjacency relations or weighted adjacency ones.

In particular, Hµα
νβ will be replaced by Aµανβ or (possibly normalised) Mµα

νβ and, as

we will see, the actual choice of Hµα
νβ will depend on the specific definition of the

clustering coefficient. In particular, we define:

1. Clustering coefficient of node i on level a:

C(i, a) =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
σδEµα(i, a)Eσδ(i, a)

[H4]
µα
νβ [F ]νβργ [H5]

ργ
σδEµα(i, a)Eσδ(i, a)

(5)

C(i, a) represents the local coefficient2 for a node i on a single layer a and it

deal directly with the extension, still not so much discussed in the literature, of those concepts to
the case of multiplex networks as defined in the text.

2It is worth to stress that the number of potential triangles in the multiplex network can be
obtained by suitable contractions of tensor H with F , being the latter the adjacency tensor of the
complete unweighted network introduced in section 2.
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takes into account all intra and inter-layer triangles that node forms with other

pairs of nodes in the network, according to formula (1). It gives a measure of

how much that node in that level is clustered in the whole multiplex network.

2. Clustering coefficient of node i (over all the levels to which it belongs):

CN(i) =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
σαEσµ(i)

[H4]
µα
νβ [F ]νβργ [H5]

ργ
σαEσµ(i)

(6)

CN(i) is the coefficient for a node i when the node itself is globally considered

on all levels. More precisely, it takes into account all triangles to which i

belongs in all levels in the whole multiplex network according to formula (2).

3. Clustering coefficient of level a (over all the nodes on the level):

CL(a) =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
µδE

δ
α(a)

[H4]
µα
νβ [F ]νβργ [H5]

ργ
µδE

δ
α(a)

(7)

CL(a) provides a global coefficient referring to a specific layer a. In this sense

it gives an idea of how much clustered the whole layer is. It is worth noting

that CL(a) could be different from the global clustering coefficient of the layer,

computed using the adjacency relations only between nodes belonging to the

same layer. Indeed, it considers all types of triangles described by formula (3),

whether they are lying on the layer or not.

4. Global clustering coefficient of the whole network:

C =
[H1]

µα
νβ [H2]

νβ
ργ [H3]

ργ
µα

[H4]
µα
νβ [F ]νβργ [H5]

ργ
µα

(8)

This coefficient considers all triangles of all nodes in all levels in line with

formula (4). Note that this global coefficient represents a generalization of the

well-known definition of transitivity present in the literature (see, for instance,

Newman (2010)) as the ratio between number of closed paths of length two and

number of paths of length two. See section 1 in the Supplementary Material

for further details.

These definitions allow to extend with a general formula in a unified approach all

the coefficients already existing in the literature for monoplex networks, by properly

setting the adjacency tensors [Hk]
µα
νβ , as we will show in the next subsection.
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4.2. Relations with clustering coefficients for monoplex networks

In a weighted multiplex network, both intra-layer links and inter-layer links are

weighted and all tensors are symmetric.3 Let us denote by

• M the weighted adjacency tensor;

• A the corresponding binary adjacency tensor;

• M̃ = 1
WM the normalised adjacency tensor, where W = maxµναβM

µα
νβ ;

• M̂ = M̃1/3 the classical entry-wise cubic root of M̃ .

For the sake of brevity, we refer here only to the local coefficient C(i, a), defined

by formula (5). However, other clustering coefficients defined by formulas (6), (7)

and (8) can be adapted in a similar manner. For monoplex undirected networks the

most important clustering coefficients in the literature are provided by De Domenico

et al. (2013); Barrat et al. (2004); Onnela et al. (2005). Their definitions and prop-

erties are summarized in section 1 of the Supplementary Material. Our coefficients

generalize them in the multiplex context as follows:

1. Clustering Coefficient C̃(i, a):

Setting Hk = M̃ , for each k = 1, . . . , 5, we obtain

C̃(i, a) =
M̃µα
νβ M̃

νβ
ργ M̃

ργ
σδEµα(i, a)Eσδ(i, a)

M̃µα
νβ F

νβ
ργ M̃

ργ
σδEµα(i, a)Eσδ(i, a)

(9)

The numerator considers the weighted actual triangles to which the node i be-

longs in the layer a, according to formula (1). The denominator considers the

triangles in a network for which the neighbours of i is completely connected,

identifying all the potential triangles around that node.4

Let us observe that, in formula (9), the weight attributed to each triangle is

obtained as the product of the weights of the three links, that is by the (nor-

malised) product of the corresponding components in the tensor M . Hence,

3Symmetries of 4th order tensors present a richer set of possibilities than the symmetry of 2nd

order tensors, since a number of symmetries can be defined by applying different ’symmetry rules’
on the four coefficient indices. Indeed, we may have major symmetry, minor symmetry and total
symmetry. We refer here to the major symmetry whose rule is Hµα

νβ = Hνβ
µα

4In the computation of weighted potential triangles, we close the open triplets by adding a new
link having weight equal to 1, which is the maximum possible weight in M̃ . This is in line with the
coefficient introduced by (9) for monoplex networks
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formula (9) generalizes the clustering coefficient introduced in De Domenico

et al. (2013).

2. Clustering Coefficient C(i, a):

Setting H1 = H4 = M and H2 = H3 = H5 = A, we have

C(i, a) =
Mµα
νβ A

νβ
ργA

ργ
σδEµα(i, a)Eσδ(i, a)

Mµα
νβ F

νβ
ργ A

ργ
σδEµα(i, a)Eσδ(i, a)

(10)

In this case, the weight attributed to each triangle is the sum of the weights of

the links between node i and its neighbours. In other words, it considers only

two of the three links involved in the closed triplet, namely those adjacent to

node i. Indeed, the tensor product in the numerator sums up these two weights

when the triangular path is travelled clockwise first and counter-clockwise after

and it requires the existence of the third link, not adjacent to node i, otherwise

it vanishes. Notice that, in this coefficient, the presence of the tensor M in the

denominator makes unnecessary to normalize the tensor M . Hence, formula

(10) extends to the multiplex case the clustering coefficient proposed in Barrat

et al. (2004) for monoplex networks.

3. Clustering Coefficient Ĉ(i, a):

Setting H1 = H2 = H3 = M̂ and H4 = H5 = A, we obtain

Ĉ(i, a) =
M̂µα
νβ M̂

νβ
ργ M̂

ργ
σδEµα(i, a)Eσδ(i, a)

AµανβF
νβ
ργ A

ργ
σδEµα(i, a)Eσδ(i, a)

(11)

In formula (11) weights are assigned to each triangle as the geometric mean

of the weights of the three links in the triangle itself. Indeed, the numera-

tor reports the geometric mean of the corresponding components of the nor-

malised tensor M , whereas the denominator reports the product of tensor A

that counts the number of potential triangles to which i belongs, ignoring the

weights. This fact makes our coefficient the immediate generalization to multi-

plex networks of the coefficient proposed in Onnela et al. (2005) for monoplex

network.

4.3. Clustering coefficients via supradjacency representation

It is worth providing here a rewriting of the same coefficients in terms of suprad-

jacency matrix. Indeed, we can use the well-known unfolding procedure, also called
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flattening or matricization, to represent the adjacency tensor as a block matrix. This

matrix, with L square blocks, each one of order N , is called supradjacency matrix :

W =



W1 W12 · · · W1L

W21 W2 · · · W2L

...
...

. . .
...

WL1 WL2 · · · WL


(12)

where the diagonal blocks represent the weighted adjacency matrix of each layer

Waa, a = 1, ..., L (denoted by Wa for short), whereas the out off diagonal blocks

Wab represent the weighted adjacency relations between nodes on layers a and nodes

on layer b. We denote its unweighted version by A.

First, it is noteworthy that the fourth order tensor generated by the tensor

product Mµα
νβM

νβ
ργM

ργ
σα can be represented, in a natural way, by the NL-square

block matrix W3. It is also straightforward to observe that the number of triangles

t(i, a) provided by formula (1) is the i-diagonal entry of the a-diagonal block, namely

[(A3)a]ii. Notice that the supradjacency matrix F, corresponding to the adjacency

tensor F νβργ of the complete multiplex network, is the NL-square matrix having 1 in

all positions but the diagonal entries, where we have 0.

In terms of supradjacency matrices, the representations of the coefficient C(i, a)

in (5) for the three different versions in (9), (10) and (11) are, respectively

C̃(i, a) =
[(W̃3)a]ii

[(W̃FW̃)a]ii
(13)

C(i, a) =
[(WA2)a]ii
[(WFA)a]ii

(14)

Ĉ(i, a) =
[(Ŵ3)a]ii

[(AFA)a]ii
(15)

Let us focus, for instance, on formula (14). [(WA2)a]ii is the i-diagonal entry

of the a-diagonal block of the matrix WA2, and similarly for [(WFA)a]ii. Observe

that the numerator in (14) counts the number of actual triangles to which the

node i on level a belongs. These triangles, weighted with the average weight of
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the links on i, can lie on level a or even be outside level a. Furthermore, we have

[(WFA)a]ii = si,a(di,a − 1), where di,a and si,a are degree and strength of i in the

layer a (see the proof in section 2 of the Supplementary Material). Formula (14) is

the natural extension of the classical representation, in matrix terms, of the local

clustering coefficient. But in the same way, we can represent clustering coefficient

of the node i in the whole network (formula (6)):

CN (i) =

∑L
a=1[(WA2)a]ii∑L
a=1[(WFA)a]ii

(16)

Similarly, the clustering coefficient of a level a over all its nodes (formula (7)) is:

CL(a) =

∑N
i=1[(WA2)a]ii∑N
i=1[(WFA)a]ii

(17)

Finally, the global clustering coefficient in formula (8) is

C =

∑L
a=1

∑N
i=1[(WA2)a]ii∑L

a=1

∑N
i=1[(WFA)a]ii

=
Tr(WA2)

Tr(WFA)
(18)

5. An illustrative example

To illustrate the meaning of the clustering coefficients discussed in the previous

sections we provide a simple example based on a small network with 4 nodes and 2

layers.

Figure 2: A simple weighted and undirected multiplex network, L = 2, N = 4

The network is weighted: both inter- and intra-layers links have weights equal
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to either 0.1 or 1. We argue that the different coefficients we propose take into

accounts in different ways both the effects of triangles and weights.

We collect the values of the local clustering coefficients C(i, a) for each node

in each level, according to the three different versions discussed in the previous

sections and we reported these values in Table 1. Notice that, being node 2 on level

2 a pendant node, its clustering coefficient cannot be computed.5 On the contrary,

node 2 at layer 1 is totally clustered with its adjacent neighbours, although with low

weights. Nodes 1 and 3 are well clustered in both layers, and all these aspects are

well captured by the coefficient C(i, a). On the contrary, the effect of low weights

of triangles is better reflected in the other coefficients C̃(i, a) and Ĉ(i, a).

Local Clustering Coefficients C(i, a)

Version
Level 1 Level 2

1 2 3 4 1 2 3 4

C̃(i, a) 0.064 0.100 0.033 0 0.367 − 0.013 0.033

C(i, a) 0.615 1.000 0.103 0 0.667 − 0.261 0.333

Ĉ(i, a) 0.088 0.100 0.053 0 0.105 − 0.053 0.033

Table 1: Local Clustering Coefficients for each node in each level

The different behaviour becomes even clearer if we look at the rankings of the

nodes produced by the different coefficients. C̃(i, a) and Ĉ(i, a) rankings are almost

completely overlapping, except on node 3 at layer 2, whereas C(i, a) produces a

different ranking pattern for the nodes. In particular, C(i, a) coefficient assigns the

maximum value to node 2 at layer 1 since it belongs to only one real and potential

triangle, while C̃(i, a) and Ĉ(i, a) are more affected by the weights of the edges in

the same triangle.

5It should be observed that a pendant node, like node 2 on layer 2, does not belong to any real
or potential triangle and therefore, for this reason, its clustering coefficient cannot be calculated.
Sometimes a conventional value of zero is assigned to it. When a node, although belonging to one
or more potential triangles, does not belong to any real triangle, the clustering coefficient is zero.
This is the case of node 4 on layer 1. However, it is appropriate to clearly distinguish the two cases.
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Clustering Coefficients

Version
CN(i) CL(a) C

1 2 3 4 Level 1 Level 2 Network

C̃ 0.089 0.100 0.016 0.008 0.043 0.020 0.027

C 0.622 1.000 0.214 0.118 0.330 0.288 0.308

Ĉ 0.094 0.100 0.053 0.025 0.068 0.059 0.063

Table 2: Clustering Coefficients for each node i, for each level a and for the whole network

It is worth looking at the behaviour of the global coefficients (by nodes, and

by layers for the whole network). Table 2 reports the global clustering coefficients

for each node CN(i), i = 1, 2, 3, 4, for each level CL(a), a = 1, 2 and for the whole

network C. On one hand, the three coefficients offer different interpretations of the

nodes position in the whole network, through CN, in dependence of the number of

actual triangles they belong to in each level. On the other hand, CL provides a

view of the clustered structure level by level. In both cases, the proposed approach

offers a more detailed picture of the structure than those that can be obtained by

the global coefficient or by considering the overlay network. Table 3 reports the

clustering coefficients for the overlay network, represented in figure 3.

Figure 3: Overlay Network
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Clustering Coefficients (overlay network)

Version
C(i) C

1 2 3 4 Network

C̃O 0.800 0.181 0.024 0.181 0.063

CO 0.170 0.255 0.170 0.255 0.191

ĈO 0.750 1.000 0.542 1.000 0.700

Table 3: Clustering Coefficients for the overlay network

6. Empirical application

6.1. Data description and network construction

In this section, we perform some empirical studies in order to assess the effec-

tiveness of the proposed approaches. To this aim, we collected daily returns of a

dataset referred to the time-period ranging from January 2001 to June 2017, that

includes 102 leading U.S. stocks constituents of the S&P 100 index at June 2017.

Data have been downloaded from Bloomberg. Returns have been split by using

monthly windows. The typical approach proposed in the literature about complex

networks (see, e.g., Onnela et al. (2003a), Pozzi et al. (2013), Mantegna (1999)) is

to study this kind of data using time-varying networks. In other words, the common

methodology is to build in each period (for instance, a month) a correlation network.

Hence, for each window, we have a network Gt = (Vt, Et) (with t = 1, ..., T , where

T = 198 for our dataset), where assets are nodes and links are weighted considering

the correlation matrix Pt = [tρi,j ]i,j∈Vt , where tρi,j is the correlation coefficient be-

tween the empirical returns of a couple of assets i and j at time t (with i 6= j). In

order to assure that the weights range in the interval [0, 1], a meaningful solution

has been proposed in Mantegna (1999) (and adapted in Giudici et al. (2020)) based

on distances tdi,j : tdi,j = 1− 1
2

√
2(1− tρi,j). The distance matrix Dt = [tdi,j ]i,j∈Vt ,

with elements 0 ≤ tdi,j ≤ 1, is then used as the weighted adjacency matrix of the

graph Gt.

We propose here a different approach based on a multiplex network in order to

catch also dependencies between assets that are observed over time. This specific
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structure also allows to include in the analysis the possible presence of autocorre-

lation between stock returns over time (see, e.g., English & Loretan (2000), Cont

(2007)).

To this end, we compute the correlation matrix Pt described before and the inter-

temporal correlation matrices Pt,t+1 = [t,t+1ρi,j ] where t,t+1ρi,j is the correlation

between the returns of asset i at time t and the returns of asset j at time t+ 1. The

coefficient t,t+1ρi,j is also computed for the case i = j and it then represents the

correlation between returns of the same asset in two subsequent time periods. As

described above, it is possible to transform the correlation matrices in the distance

matrices Dt and Dt,t+1 and, hence, we construct a supradjacency matrix W of order

(N · T )2. This matrix can be partitioned into T 2 blocks, which are represented by

N -square matrices of order N . The blocks that belong to the main diagonal are

represented by the matrices Dt, while the off-diagonal blocks consider distances be-

tween couple of times Dt,τ with t = 1, ..., T , τ = 1, ..., T and τ 6= t). It is noteworthy

that we considered only correlations between subsequent time intervals (i.e. Dt,t+1).

Hence the elements of the matrices Dt,τ with τ 6= t + 1 are equal to zero. This is

motivated by the fact that we want to highlight, via inter-layer connections, the ef-

fects of dependencies between returns of subsequent periods. Obviously, this choice

has the advantage of simplifying the structure of the multiplex network reducing

the computational times.

Therefore, we build a multiplex network, where each layer considers the corre-

lation between assets at time t while inter-layer links consider the correlation over

time. To give a first representation of the data, we report in Figures 4 and 5 the

distributions of the elements of the matrices Pt and Pt,t+1. Values depend on as-

sets’ correlations in the same time period t and in two subsequent periods (t, t+ 1),

respectively.

In Figure 4, we observe on average a positive correlation between assets but, at

the same time, a large number of assets that allow for diversification being negative

correlated. Results confirm the compelling empirical evidence that the correlation

structure among returns of the assets cannot be assumed to be constant over time

(see, e.g., Forbes & Rigobon (2002), Kasa & Bhattacharyya (2021), Wied et al.

(2012)). In particular, in periods of financial crisis, correlations among stock returns

increase, a phenomenon which is sometimes referred to as diversification meltdown

(see, for instance, 2007-2008 and 2010-2011).

It is also noteworthy that on average we have a lower level of correlation over time

20



Figure 4: Distributions of elements of the correlation matrix Pt for each time period.

Figure 5: Distributions of elements of the correlation matrix Pt,t+1 for each couple of subsequent
months.

(see Figure 5). This result appears in line with papers in the literature (see, e.g.

Cont (2007)). However, despite this average pattern, a larger variability between

assets is observed as well as some specific behaviours in specific time periods (see,
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for instance, 2007 and 2011).

To provide a visual inspection of the complexity and the structure of the network,

we display in Figure 6 an excerpt of the whole multiplex network. In particular, for

the sake of simplicity, first fifteen assets and four layers are reported. Furthermore,

we plot edge weights using the linear correlation in order to emphasize positive

and negative coefficients. However, as described above, the edge weights are then

obtained by means of the distances to assure values in the interval [0, 1]. It could be

observed a prevalence of positive correlations in each layer as well as the presence

of negative coefficients over time (see for instance the connections between layer 2,

February 2001, and layer 3, March 2001).

Figure 6: Excerpt of multiplex network. We report only fifteen assets and four layers (i.e. related
to the period January-April 2001). Only for plotting purposes, we distinguish between positive and
negative correlations.

6.2. Main Results: a comparison between alternative clustering coefficients

Alternative coefficients described in section 4.3 have been tested on the whole

multiplex network. We start by comparing the local coefficients provided in formu-

las (13), (14) and (15). Specific patterns with respect to each asset and time period
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are reported in Figure 7.

It is noteworthy how the clustering coefficients evolve consistently with the underly-

ing financial events. This result is in line with the literature on monoplex networks

(see, e.g., Minoiu & Reyes (2013), Tabak et al. (2014), Clemente & Grassi (2018),

Clemente et al. (2020)). We observe that clustering coefficients tend to be lower in

quiet periods and rise during crises. Sharper spikes occur around highly popular

events that caused severe stress in the global financial system. The 2008 episode

stands out as a large perturbation to the network, with higher coefficients in the sec-

ond half of 2008 (the period that covers the Lehman Brothers failure and the rescue

from bankruptcy of AIG). Then, a decline is observed until 2010, when a greater

focus emerged on sovereign debt in the Eurozone. A second peak is observed at the

end of 2011 with the highest levels of clustering. This is also reflected in the higher

volatility of clustering distribution, which is justified by the different behaviour of

the assets in the sample.

Comparing the three coefficients, it is noticeable that coefficients C̃(i, a) and Ĉ(i, a)

provide similar average levels of interconnection, while C(i, a), given by formula

(14), shows values that are closer to one. These differences can be easily explained

looking at the structure of the coefficients. C̃(i, a) and Ĉ(i, a) are strongly affected

by the weights’ values involved in the observed triangles. In particular, the low av-

erage and the high skewness of weight link distribution lead to lower local clustering

coefficients. On the other hand, C(i, a) tend to be more affected by the number of

triangles than by the weights. Therefore, since monoplex networks on each layer are

almost complete, higher clustering coefficients are obtained in this case.

To better emphasize the differences between the alternative clustering coeffi-

cients, we display in Figure 8 the year-based ranking computed on the three coef-

ficients Ĉ(i, a) C(i, a), and C̃(i, a). To obtain these rankings, we consider the local

coefficients of the single node i and layer a (for instance, Ĉ(i, a)) and we average

them with respect to all the nodes and to the layers that refer to that year (for

instance a = 1, ..., 12 for the year 2001). The comparison is also extended to the

application of the local clustering coefficient Ci,t provided in Onnela et al. (2005)

to each monoplex network Gt with weights given by the matrices Dt. In this case,

correlations between two different periods are not considered.

Focusing on Figure 8, a darker bar is associated to a higher clustering coefficient

in that year. We notice that, although different values are observed at local level,

the three multiplex coefficients provide a very similar behaviour. Ranking based
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Figure 7: Local clustering coefficients for each node and layer based on formulas (13), (14) and (15)

on Ĉ(i, a) and C̃(i, a) show indeed a correlation of 0.95, easily justified by the high

similarity of the two formulations. The coefficients C(i, a), characterized by higher

values in Figure 7, have however a closer behaviour in terms of ranking with a cor-

relation around 0.85-0.90 with the other two coefficients.

Additionally, it is noticeable that both the multiplex and the monolayer solutions

lead to the highest clustering coefficients in 2008 and 2011. Main differences be-

tween Ci,t and the other coefficients are observed in the other periods. We have

indeed that intermediate levels of interconnections are observed before than 2007

when the monolayer coefficient is adopted, while the multiplex versions provide a

higher ranking to periods after 2011. Indeed, it is interesting to note that the inclu-

sion of inter-layer dependencies provides differences in the ranking. The coefficient

based on monoplex networks shows indeed a rank correlation, with the results based

on multiplex formulas, that falls in the range (0.4, 0.5).
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Figure 8: Ranking of average clustering coefficients for each year. The ranking has been computed
separately for the coefficients Ĉ(i, a), C(i, a), C̃(i, a) and Ci,t, averaged with respect to nodes and
time periods. With Ci,t we denote the coefficient provided in Onnela et al. (2005) applied sepa-
rately to each monoplex network Gt. Darker bars indicate years characterized by higher clustering
coefficients.

6.3. An analysis at sectors levels

Attention has been also paid to the behaviour of assets that belong to the same

sector. In particular, assets have been classified in ten sectors, according to the

standard sector classification defined by the Global Industry Classification Standard

(GICS) developed by Morgan Stanley Capital International and Standard & Poor’s.

Unlike other existing industry classifications (the Standard Industrial Classification

System and the North American Industry Classification System), the GICS is based

on the company’s principal business activity (i.e. its major sources of revenues or

earnings).

The ten sectors are the following: communication services (TC), consumer discre-

tionary (CD), consumer staple (CS), energy (EN), financials (FI), health care (HC),

industrials (IN), information technology (IT), materials (MA) and utilities (UT).

For a detailed description of sectors see, for instance, Appendix 1 in Beber et al.

(2010).

Therefore, we compute the clustering coefficient for a specific time period of each

group as the simple average of the clustering coefficient of the individual nodes be-

longing to a given cluster (for a similar approach on monoplex networks, see, for

instance, Onnela et al. (2003b)). Sectors are then ordered in each year in a decreas-

ing order on the basis of the clustering coefficients. The procedure has been applied
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separately considering the three different versions of multiplex coefficients and the

monolayer coefficient provided in Onnela et al. (2005). Main results are reported in

Figure 9.

Figure 9: Ranking of local clustering coefficients of each sector. In clockwise order, plots are based
respectively on coefficients Ĉ(i, a), C(i, a), C̃(i, a) and Ci,t. Darker blue bars indicate sectors with
higher clustering coefficients in that year.

The analysis of sector dispersion and correlation is indeed a crucial point in

financial markets. For instance, over the years, sector rotation investment strategies

have been able to take advantage of environments with wider dispersions and lower

correlations (see, e.g., Solnik & Roulet (2000)). As well known, investing in asset

classes that demonstrate little or no correlation to one another may help to enhance

diversification and reduce portfolio volatility. To this end, by means of the clustering

coefficient, we catch in Figure 9 which sectors are characterized by a higher level

of interconnection in each time period. It is noticeable that all coefficients show on

average that the UT sector is least related to the other sectors, while the FI and IN

sectors are most related to the other sectors across all sample periods. Therefore,
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the results suggest that the UT sector has relatively weak dependence with the other

sectors and offers relatively great diversification benefits. This is in line with the

results found in Sukcharoen & Leatham (2016) on a different time period. High

relevance of IN and FI sectors can be explained by the fact that the IN sector

is also fundamentally linked with the FI sector as companies in the IN sectors

typically finance their capital projects through a financial institution. This finding

is consistent with the result in Kim, J.W. and Bessler, D.A. (2007).

While previous comments were based on ranking sectors separately for each cal-

endar year, we focus now on the distribution of the average clustering coefficients

for each sector considering the observation of the whole period. The distribution is

then divided into ten deciles. Therefore, a darker bar in Figure 10 means that the

average clustering of a sector in a specific year is characterized by a higher value with

respect to the clustering coefficients observed in the whole time period considered.

In this way, we take into account also the different financial conditions observed over

time.

Although in Figure 9 important differences have been noticed between sectors in

terms of interconnections with a prevalence of IN and FI sectors, important co-

movements across stock markets can be emphasized. It is indeed noticeable that in

period of crisis all sectors are characterized by a significant increase of clustering

and by a reduction of diversification benefits.

6.4. The effect of alternative estimations of the correlation matrices

We developed numerical analysis in previous subsections considering correlation

matrices estimated via sample approach. However, as shown in Michaud (1989),

the sample correlation matrix can work poorly in large dimensions for out-of-sample

purposes. Although the topic of this paper is not strictly related to the identification

of an optimal portfolio, we tested the effect of various estimation methods on the

clustering coefficients.

In particular, we focus on three alternative approaches to account for the statistical

noise. Following Engle et al. (2019), we obtained the covariance matrix by applying

alternatively the linear shrinkage approach proposed in Ledoit & Wolf (2004) and

the non-linear shrinkage approach based on Ledoit & Wolf (2012), Ledoit & Wolf

(2015) and Ledoit & Wolf (2016). Additionally, we used the sample estimation and

we considered only correlation coefficients that are significantly different from zero
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Figure 10: The whole distribution of average clustering coefficient of each sector (based on Ĉ(i, a))
has been divided into ten deciles. The colour indicates the decile of the distribution to which the
clustering belongs. In particular, darker bars indicate sectors with higher clustering coefficients in
that year with respect to the whole period.

at a significance level of 5%.

To this end, we compare in Figures 11 and 12 the average correlation coefficients,

in each layer and between layers (i.e., the average value of the elements of matrices

Pt and Pt,t+1, respectively), obtained by considering alternative approaches for the

estimation of the covariance matrix.

We notice a similar behaviour over time with a greater volatility of the average

correlation when a linear shrinkage estimator is applied. Also the distributions of

coefficients over time are very close to those of Figures 4 and 5.

We repeated the approach proposed in Section 4 in order to evaluate the effect

of the different correlation matrices on the multiplex network and, therefore, on the

clustering coefficients.

In particular, Figures 13, 14 and 15 display the year-based ranking of the al-

ternative clustering coefficients. For the multiplex case, the coefficients have been

obtained using networks based on the distance matrices Dt and Dt,t+1. These ma-

trices are related to the correlation coefficients estimated through a linear shrinkage,

a non-linear shrinkage or considering only significant coefficients of the sample cor-
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Figure 11: Distributions of elements of the correlation matrix Pt for each time period.

Figure 12: Distributions of elements of the correlation matrix Pt,t+1 for each couple of subsequent
months.

relation matrix. The high level of similarity in the correlation coefficients derived by

the alternative approaches induces that all Figures show a pattern similar to Figure

8. In particular, in all cases, it is confirmed a high level of interconnection during
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periods of financial crises (2007-2008 and 2010-2011).

The effect of non-significant correlations is limited. Indeed, Figure 8, based on sam-

ple estimation, provide the same insights of Figure 15 that considers only coefficients

significantly different from zero.

Focusing on shrinkage methods, strong ties are observed also in 2002 due to the high

level of dependence detected by these approaches in that year.

Finally, a sector-level analysis has been also developed. Although few differences

are noticed, main results observed in Figures 9 and 10 are confirmed in all cases.

Figure 13: Ranking of average clustering coefficients for each year obtained using correlation ma-
trices estimated via linear shrinkage. Darker bars indicate years characterized by higher clustering
coefficients.
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Figure 14: Ranking of average clustering coefficients for each year obtained using correlation matri-
ces estimated via non-linear shrinkage. Darker bars indicate years characterized by higher clustering
coefficients.

Figure 15: Ranking of average clustering coefficients for each year obtained considering only signifi-
cant correlation coefficients estimated via sample approach. Darker bars indicate years characterized
by higher clustering coefficients.

7. Conclusions

Complex networks have long gained attention in describing the structure of finan-

cial markets. In this paper, we focus on the clustering coefficient, a suitable indicator

for catching the level of interconnections in the financial networks. Although sev-

eral proposals have been provided for the case of monoplex networks, the problem

of measuring and assessing local clustering for weighted multiplex network deserves

specific attention. We provide alternative clustering coefficients able to catch the
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degree of interconnection at both node and layer level, as well as a global version

of the clustering coefficient for the whole multiplex network. We highlight how the

proposed coefficients are able to catch the effects of both intra and inter-layer con-

nections. Additionally, the proposed coefficients represent a generalization of the

coefficients already provided in the literature for weighted monolayer networks. The

approach has been tested on a large financial temporal multiplex network based

on correlation coefficients between returns of assets constituents S&P 100 index.

Results provide additional insights in terms of behaviours of the whole network,

specific assets and sectors over time.
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