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Clustering analysis is a basic and essential method for mining heterogeneous information networks, which consist of multiple
types of objects and rich semantic relations among di	erent object types. Heterogeneous information networks are ubiquitous in
the real-world applications, such as bibliographic networks and social media networks. Unfortunately, most existing approaches,
such as spectral clustering, are designed to analyze homogeneous information networks, which are composed of only one type
of objects and links. Some recent studies focused on heterogeneous information networks and yielded some research fruits, such
as RankClus and NetClus. However, they o
en assumed that the heterogeneous information networks usually follow some simple
schemas, such as bityped network schema or star network schema. To overcome the above limitations, wemodel the heterogeneous
information network as a tensor without the restriction of network schema. �en, a tensor CP decomposition method is adapted
to formulate the clustering problem in heterogeneous information networks. Further, we develop two stochastic gradient descent
algorithms, namely, SGDClus and SOSClus, which lead to e	ective clustering multityped objects simultaneously.�e experimental
results on both synthetic datasets and real-world dataset have demonstrated that our proposed clustering framework can model
heterogeneous information networks e�ciently and outperform state-of-the-art clustering methods.

1. Introduction

Heterogeneous information networks are ubiquitous in the
real-world applications. Generally, heterogeneous informa-
tion networks consist of multiple types of objects and
rich semantic relations among di	erent object types. �e
bibliographic network extracted from the DBLP database
(http://www.informatik.uni-trier.de/∼ley/db/) is a typical
heterogeneous information network, as shown in Figure 1.
�e DBLP database is an open resource that contains most
bibliographic information on computer science. �e biblio-
graphic network contains four types of objects: author (A),
paper (P), venue (i.e., conference or journal) (V), and term
(T). �e edges are labeled by “write” or “written by” between
author and paper or labeled by “publish” or “published
by” between paper and venue or labeled by “contain” or
“contained in” between paper and term.

Clustering analysis is a basic and essential method for
mining such networks, which can help us better understand

the semantic information and interpretable structure in the
network. Unfortunately, most existing approaches, such as
spectral clustering, are designed to analyze homogeneous
information networks [1] that consist of only a single type of
objects and links, while the real-world situations are o
en
heterogeneous information networks [2] in nature with more
than one type of objects and links. �e mission of clustering
such a heterogeneous information network is more di�cult
than that in a homogeneous information network, as we
cannot directly measure the similarity among the di	erent
types of objects and relations.

�ough some recent studies have focused on clustering
heterogeneous information networks, such as RankClus [1]
and NetClus [2], they can only be applied to some speci�c
simple network schemas. RankClus can only be used to
model bityped networks, where only two di	erent types of
objects exist in the network. NetClus was developed for the
star network schema, where the links only appear between
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Figure 1: An example of heterogeneous information network: a
bibliographic network extracted from the DBLP database.

target objects and attribute objects. �e network schema
is a metatemplate of a heterogeneous information network,
which shows how many types of objects and links are there
in the network [3]. Figure 1 shows a typical star network
schema, where the paper (P) is the target object and others
are attribute objects.

A tensor is a generalization of the matrix in the high-
dimensional space. It is a natural expression of complicated
and interpretable structures in high-mode data. In this paper,
we model a heterogeneous information network as a tensor
without the restriction of network schema. Each type of
objects maps onto one mode of the tensor, and the semantic
relations among di	erent object types map onto the elements
in the tensor. �en, a tensor CP decomposition method is
adapted to formulate the clustering problem in heteroge-
neous information networks. And two stochastic gradient
descent algorithms are developed, which lead to e	ective
clustering multityped objects simultaneously. �e experi-
mental results on both synthetic datasets and real-world
dataset show that the proposed clustering framework can
model the heterogeneous information networks e�ciently
and outperform the state-of-the-art clustering methods.

�e rest of this paper is organized as follows. In Section 2,
we discuss the related work on clustering for heterogeneous
information networks and the tensor factorization. Section 3
gives some notations and de�nitions used in this paper. In
Section 4, we formulate the clustering problem and describe
two stochastic gradient descent algorithms.�e experimental
results on both synthetic datasets and real-world dataset are
presented in Section 5. Finally, the conclusions are drawn in
Section 6.

2. Related Work

Our work mainly focuses on the clustering heterogeneous
information networks and the tensor factorization.

2.1. Clustering Heterogeneous Information Networks. Cluster-
ing is an unsupervised learning method to recognize the
distribution and hidden structures in the data, which is a
basic and signi�cant mission for pattern recognition and
machine learning. Since MacQueen �rst proposed K-means
[4] in 1967, many subtle algorithms have been developed
for clustering in the past decades. However, most existing
algorithms, such as hierarchical clustering algorithm [5],
density-based clustering [6], mesh-based clustering [7], fuzzy
clustering algorithm [8], and spectral clustering [9], are
designed to analyze point sets or homogeneous information
networks, which are composed of only one type of objects and
links.

In real-world applications, the datasets are o
en orga-
nized as heterogeneous information networks, where objects
and the relations between them are of more than one type. In
recent years, researchers have made a signi�cant progress on
clustering for heterogeneous information networks [10, 11],
which largely focused on four main directions: the �rst is to
use a ranking based clustering algorithm [1]; it developed the
RankClus algorithm that integrated clustering with ranking
for clustering bityped networks. Its extension, NetClus [2],
was developed for the star network schema.�ey have proven
that ranking and clustering can mutually enhance each other.
GPNRankClus [12] assumed that edges in heterogeneous
information networks follow a Poisson distribution. �is
method can simultaneously achieve both clustering and
ranking in a heterogeneous informationnetwork. In addition,
FctClus [13] achieved a higher computational speed and
had a greater clustering accuracy when applied to heteroge-
neous information networks. But, same as NetClus, FctClus
algorithm can only handle the star network schema. For a
general network schema, HeProjI [14] projected the network
into a number of bityped or star schema subnetworks and
performed the ranking based clustering in each subnetwork.

�e second direction involves metapath based clustering
algorithms [15, 16]. Ametapath is a connected path de�ned on
the network schema of a heterogeneous information network,
which represents a composite semantic relation between two
objects. PathSim (metapath based top-k similarity search) [3]
measured the similarity between the same types of objects
based on metapath in heterogeneous information networks.
However, it has a limitation: themetapathmust be symmetric;
that is, PathSim could not work on di	erent types of objects.
�e PathSelClus algorithm in [15–17] integrated metapath
selection with user guidance to cluster objects in networks,
where user provided seeds for each cluster acted as guidance.

�e third direction is structural-based clustering. Sun et
al. proposed a probabilistic clustering method [18] to deal
with heterogeneous information networks with incomplete
attributes, which integrated the incomplete attribute infor-
mation and the network structure information. NetSim [19]
is a structural-based similarity measurement between objects
for x-star network. Xu proposed a Bayesian probabilistic
model based onnetwork structural information for clustering
heterogeneous information networks.

�e �nal direction is a clustering algorithm based on
social network features. Zhou and Liu designed the SI-Cluster
algorithm [20], which adopted the heat di	usion procedure
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to model the social in�uence and thenmeasure the similarity
between objects.

2.2. Tensor Factorization. A tensor is a multidimensional
array, in which the elements are addressed by more than
two indices. Tensor factorization has been studied since the
early 20th century [21–25]. Two of the most popular tensor
factorization methods are Tucker decomposition [21, 24] and
canonical decomposition using parallel factors (CANDE-
COMP/PARAFAC) [23, 24]. �e CANDECOMP/PARAFAC
is also named CP decomposition. It is worth noting that CP
decomposition is a special case of Tucker decomposition.

�e clustering issues based on tensor factorization are
o
en modeled as the optimization problems [26]. But it has
been proven in [27] that tensor clustering formulations are
NP-hard. In the past years, many approximation algorithms
for tensor clustering are proposed [28–30]. �ese theories
provide a new perspective for us as to clustering heteroge-
neous information networks. Tensor factorization based clus-
tering has also been used in some speci�c applications. Exam-
ples include link prediction in higher-order network struc-
tures [31, 32], collaborative �ltering in recommendation sys-
tems [33], community detection in multigraphs [34], graph
clustering [35], and modeling multisource datasets [36].

�e Alternating Least Squares (ALS) algorithm [22, 37,
38] is one of themost famous and commonly used algorithms
to solve the tensor factorization, which updates one compo-
nent iteratively at each round, while holding the others con-
stant. However, ALS su	ers from some limitations; for exam-
ple, ALS may converge to a local minimum and the memory
consumption may explode when the scale of tensor is large.
Nonlinear optimization approach is another option to obtain
the tensor factorization, such as nonlinear conjugate gradient
method [39], Newton based optimization [40], randomized
block sampling method [41], and stochastic gradient descent
[42]. In this paper, we adopt a stochastic gradient descent
algorithmwith Tikhonov regularization item loss function to
process the tensor CP decomposition based clustering.

3. Preliminaries

First, we introduce some related concepts and notations of
tensors used in this paper. More details about tensor algebra
can be found in [24, 43]. �e order of a tensor is the number
of dimensions, also known as ways or modes. We will follow
the convention used in [23] to denote scalars by lowercase
letters, for example, �, �, �, vectors (one mode) by boldface
lowercase letters, for example, a, b, c, matrices (two modes)
by boldface capital letters, for example, A,B,C, and tensors
(three modes or more) by boldface calligraphic letters, for
example, X,Y,Z. Elements of a matrix or a tensor are
denoted by lowercase letters with subscripts; that is, the(�1, �2, . . . , ��)th element of an�th-order tensorX is denoted
by ��1 ,�2 ,...,�� . �e notations about tensor algebra used in this
paper are summarized in Notations.

If an�th-order tensorX ∈ R
�1×�2×⋅⋅⋅×�� can be written as

the outer product of� vectors, that is,X = a(1) ∘a(2) ∘⋅ ⋅ ⋅∘a(�)
and a(�) ∈ R

�� ; � = 1, 2, . . . , �, tensor X is named rank-one
tensor. �e CP decomposition represents a tensor as a sum

of 
 rank-one tensors; that is, the CP decomposition ofX is

X = ∑��=1 a(1)� ∘ a(2)� ∘ ⋅ ⋅ ⋅ ∘ a(�)� , where 
 is a positive integer

and a(�)� ∈ R
�� ; � = 1, 2, . . . , 
; � = 1, 2, . . . , �. �e rank of a

tensor is de�ned as the smallest number of rank-one tensors
for which the equality holds in the CP decomposition and
denoted as rank(X) = min
. In fact, the problem of tensor
rank determination is NP-hard [27].

Let factor matrices A(�) = [a(�)1 , a(�)2 , . . . , a(�)� ] ∈ R
��×�,

for � = 1, 2, . . . , �. We denote ⟦A(1),A(2), . . . ,A(�)⟧ ≡∑��=1 a(1)� ∘ a(2)� ∘ ⋅ ⋅ ⋅ ∘ a(�)� . By minimizing the Frobenius
norm of the di	erence betweenX and its CP approximation,
the CP decomposition can be formulated as an optimization
problem:

min
12 �����X − ⟦A(1),A(2), . . . ,A(�)⟧�����2	 . (1)

�en, we give the de�nitions for the information network
and the network schema, which are based on the work by Sun
et al. [3].

De�nition 1 (information network [3]). An information net-
work is a graph � = (�, �) de�ned on a set of objects � and a

set of links �, where� belongs to � objects types V = {V
}�
=1
and � belongs to � links types E = {R�}
�=1.

Speci�cally, when � > 1 or � > 1, the information net-
work is called heterogeneous information network; otherwise,
it is called homogeneous information network.

We denote the object set of type V
 as {V
�}���=1, where �

is the number of objects in type V
; that is, �
 = |V
| and� = 1, 2, . . . , �. �e total number of objects in the network is

given by� = ∑�
=1�
.
De�nition 2 (network schema [3]). �e network schema is a
metatemplate for a heterogeneous information network � =(�, �), which is a graph de�ned over object types V and links
types E, denoted by �� = {V ,E}.

A network schema �� = {V ,E} shows how many types of
objects are there in the network� = (�, �) andwhich type the
links between di	erent object types belong to. Figure 1 shows
the network schema of DBLP, which follows a star network
schema.

4. Tensor CP Decomposition Based
Clustering Framework

4.1. Tensor Construction. According to De�nition 2, we know
that the network schema �� = {V ,E} is a metatemplate for
the given heterogeneous information network � = (�, �). In
other words, � = (�, �) is an instance of �� = {V ,E}. So we
can �nd at least one subnetwork of � = (�, �), which follows
the schema �� = {V ,E}.
De�nition 3 (gene-network). A gene-network, denoted by�� = (��, ��), is the minimum subnetwork of � = (�, �),
which follows the schema �� = {V ,E}.

It is easy to see that a gene-network is one of the
smallest instances of �� = {V ,E} in the set of subnet-
works of � = (�, �). For example, a gene-network in
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Figure 2: An illustration of tensor CP decomposition method for clustering heterogeneous information network.

DBLP network (in Figure 1, which contains four types of

objects, {�, �, �, �}), denoted by �� = ({V�� , V�� , V��, V�� },{⟨V�� , V�� ⟩, ⟨V�� , V��⟩⟨V�� , V�� ⟩}), represents a semantic relation of

“an Author V�� writes a Paper V�� published in the Venue V��
and containing the Term V

�
� .” For simplicity, we can use the

subscript of each object in �� to mark the corresponding
gene-network. In the example, the gene-network �� can be
marked by ���,�,�,�.

LetX be a�th-order tensor of size�1×�2×⋅ ⋅ ⋅×��; each
mode of X represents one type of objects in the network �.
An arbitrary element, ��1�2⋅⋅⋅�� ∈ {0, 1}, for �
 = 1, 2, . . . , �
,
is an indicator of whether the corresponding gene-network���1 ,�2 ,...,�� exists; that is,

��1�2⋅⋅⋅�� = {{{
1 if ∃���1 ,�2,...,�� ;0 otherwise.

(2)

�en, the heterogeneous information network� = (�, �)
can be represented by the form of tensor asX.

4.2. Problem Formulation. Using the tensor representation
X of � = (�, �), we can partition the multityped objects
into di	erent clusters by the CP decomposition. We assume

that there are % clusters in � = (�, �) and denote U(
) ∈
R
��×�; � = 1, 2, . . . , � as the cluster indication matrix of the�th type of objects. �en, the CP decomposition ofX is

min
�����X − ⟦U(1),U(2), . . . ,U(�)⟧�����2	 . (3)

Each row u(
)� = [&(
)�,1, &(
)�,2, . . . , &(
)�,��]⊤ of the factor matrix

U(
) is the probability vector for each object from �th type
belonging to the 'th cluster. In other words, the 'th cluster
is composed of the 'th rank-one tensor in the CP decompo-

sition; that is, u(1)� ∘ u(2)� ∘ ⋅ ⋅ ⋅ ∘ u(�)� .
Figure 2 gives an example of tensor CP decomposition

method for clustering heterogeneous information network.
�e le
 one is the original networkwith three types of objects,
themiddle cube is a 3-mode tensor, and the right one is theCP
decomposition of the 3-mode tensor and also is the partition
of the original network. In addition, the three types of objects
are the yellow round, the blue square, and the red triangle,

respectively. �e number within each object is the identi�er
of the object. Each element (black dot in the middle cube) in
the tensor represents a gene-network in the network (black
dashed circle in the le
). Each component (black dashed
circle in the right) in the CP decomposition shows one cluster
of the original network.

�e problem in (3) is an NP-hard nonconvex optimiza-
tion problem, which has a continuous manifold of equivalent
solutions [39]. In other words, the global minimum is
drowned in many local minima, which makes it di�cult to
be found. In real-world scenarios, the objects in the het-
erogeneous information networks may belong to more than
one cluster; that is, the clusters are overlapping. However,
the number of clusters that the vast majority of objects may
belong to is much smaller than the total number of clusters.

�at is, most of the elements in U(
) should be zero; that is,
U(
) should be sparse. To overcome the two challenges, we
can introduce a Tikhonov regularization term, proposed by
Paatero in [44, 45], in the objective function and replace the
objective function by the following loss function:

L (X,U(1),U(2), . . . ,U(�))
= 12 �����X − ⟦U(1),U(2), . . . ,U(�)⟧�����2	 + /2 �∑


=1

�����U(
)�����2	 , (4)

where / > 0 is a regularization parameter. Let

4 (X,U(1),U(2), . . . ,U(�))
= 12 �����X − ⟦U(1),U(2), . . . ,U(�)⟧�����2	 (5)

be the �rst squared loss function component inL and let

5 (U(1),U(2), . . . ,U(�)) = /2 �∑

=1

�����U(
)�����2	 (6)

be the Tikhonov regularization term inL, respectively.�en

L = 4 + 5. (7)

�e Tikhonov regularization term 5 in the loss function
L has an encouraging property, which makes the Frobenius
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norms of all factor matrices in the optimization be equal; that
is, �����U(1)�����	 = �����U(2)�����	 = ⋅ ⋅ ⋅ = �����U(�)�����	 . (8)

�erefore, the local minima of loss function L become
isolated, and any replacement and scaling of the satisfactory
solutions will escape from the optimization. �e details
of proof can be found in [39]. Meanwhile, the Tikhonov
regularization term can ensure the sparsity of the factor
matrices by penalizing the number of nonzero elements.

�erefore, the tensor CP decomposition method for
clustering heterogeneous information networks can be for-
malized as

min
U(1) ,U(2) ,...,U(�)

L (X,U(1),U(2), . . . ,U(�))
s.t. �∑

�=1
&(
)�,� = 1, ∀�, ∀�,

&(
)�,� ∈ [0, 1] , ∀�, ∀�, ∀',
��∑
�=1

&(
)�,� > 0, ∀�, ∀',
(9)

where � = 1, 2, . . . , �
; � = 1, 2, . . . , �; ' = 1, 2, . . . , %,
and % < min {�1, �2, . . . , ��} is the total number of
clusters. In (9), we divide X into % clusters and obtain the
structure of each cluster, which includes the distribution of
each object.�e �rst constraint in (9) guarantees that the sum
of probabilities for each object belonging to all clusters is 1.
�e second constraint in (9) represents that each probability
should be in the range of [0, 1]. �e last constraint in (9)
makes sure that there is no empty cluster for any mode.

4.3. �e Stochastic Gradient Descent Algorithms. Stochastic
gradient descent is a mature and widely used tool for
optimizing various models in machine learning, such as arti-
�cial neural networks, support vector machines, and logistic
regression. In this section, the regularized clustering problem
in (9) will be addressed by the stochastic gradient descent
algorithms. �e details of tensor algebra and properties used
in this section can be found in [43].

First, we review the stochastic gradient descent algorithm.
To solve an optimization problem, min�7(�), where 7(�) is
a di	erentiable object function to be minimized and � is a
variable, the stochastic gradient descent method to update �
can be described as

� ←9 � − :∇7 (�) , (10)

where : is a positive number, named learning rate or step
size. �e convergence speed of stochastic gradient descent
algorithm depends on the choice of learning rate : and initial
solution.

�ough the stochastic gradient descent algorithm may
converge to a local minimum at a linear speed, the e�ciency
of the algorithmnear the optimal point is not all roses [46]. To

speed up the �nal optimization phase, an extension method
named second-order stochastic algorithm is designed in [46],
which replaces the learning rate : by the inverse of second-
order derivative of the object function; that is,

� ←9 � − : (∇27 (�))−1 ∇7 (�) . (11)

Now, we apply the stochastic gradient descent and the
second-order stochastic algorithm to the clustering prob-
lem in (9) and propose two algorithms, named SGDClus
(Stochastic Gradient Descent for Clustering) and SOSClus
(Second-Order Stochastic for Clustering), respectively.

4.3.1. SGDClus. In SGDClus, we apply the stochastic gradient
descent algorithm to the clustering problem in (9). According

to (10), each factor matrix U(
), for � = 1, 2, . . . , �, is updated
by the rule

U
(
) ←9 U

(
) − : @L@U(
) = U
(
) − :( @4@U(
) + @5@U(
)) . (12)

Actually, @5/@U(
) is easy to be obtained according to (6);
that is, @5@U(
) = /U(
). (13)

To compute @4/@U(
), 4(X,U(1),U(2), . . . ,U(�)) can be
rewritten by matricization ofX along the �th mode as

4(
) = 12 ������X(
) − U
(
) (⊙(/
)U)⊤������2	 , (14)

where ⊙(/
)U = U(�) ⊙ ⋅ ⋅ ⋅ ⊙ U(
+1) ⊙ U(
−1) ⊙ ⋅ ⋅ ⋅ ⊙ U(1). �en,
we have@4(
)@U(
)

= @�� ((X(
) − U(
) (⊙(/
)U)⊤) (X(
) − U(
) (⊙(/
)U)⊤)⊤)2@U(
)
= @�� (X(
)X

⊤
(
))2@U(
) − @�� (2X(
) (⊙(/
)U) (U(
))⊤)2@U(
)

+ @�� ((U(
) (⊙(/
)U)⊤) (U(
) (⊙(/
)U)⊤)⊤)2@U(
)
= −X(
) (⊙(/
)U) + U

(
) (⊙(/
)U)⊤ (⊙(/
)U) .

(15)

Another way to compute @4(
)/@U(
) is given in [39], which
has the same result as (15). Following the works in [39], we
denote

Γ(
) = (⊙(/
)U)⊤ (⊙(/
)U)
= ((U(1))⊤U(1)) ∗ ⋅ ⋅ ⋅ ∗ ((U(
−1))⊤U(
−1))

∗ ((U(
+1))⊤U(
+1)) ∗ ⋅ ⋅ ⋅ ∗ ((U(�))⊤U(�)) .
(16)
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Input: X, %, /.
Output: {U(
)}�
=1.(1) Initialize {U(
)}�
=1;(2) Set iter ← 1;(3) repeat(4) for � ← 1 to� do(5) Set :;(6) Update U(
) according to (18);(7) Normalize U(
) according to (19);(8) end for(9) Set iter ← iter + 1;(10) until L(X,U(1),U(2), . . . ,U(�)) unchanged or iter

reaches the maximum iterations

Algorithm 1: �e SGDClus algorithm.

�erefore, the partial derivative ofL is given by

@L@U(
) = −X(
) (⊙(/
)U) + U
(
)Γ(
) + /U(
). (17)

And (12) can be rewritten as

U
(
) ←9 U

(
) − : @L@U(
)= U
(
) (I − : (Γ(
) + /I)) + :X(
) (⊙(/
)U) , (18)

where I is an identity matrix. Note that {U(
)}�
=1 derived by
(18) do not satisfy the �rst and second constraints in (9). To
satisfy these two constraints, we can normalize each row of{U(
)}�
=1 by

&(
)�,� ←9 &(
)�,�∑��=1 &(
)�,� . (19)

Furthermore, the pseudocode of SGDClus is given in
Algorithm 1.

4.3.2. SOSClus. In SOSClus, we apply the second-order
stochastic algorithm to the clustering problem in (9). Accord-

ing to (11), each factor matrix U(
), for � = 1, 2, . . . , �, is
updated by the rule

U
(
) ←9 U

(
) − :( @2L@2U(
))
−1 @L@U(
) . (20)

According to (17), we can obtain the second-order partial

derivative ofL with respect to U(
); that is,

@2L@2U(
) = Γ(
) + /I. (21)

By substituting (17) and (21) into (20), we have

U
(
) ←9 (1 − :)U(
) + :X(
) (⊙(/
)U) (Γ(
) + /I)−1 . (22)

Input: X, %, /.
Output: {U(
)}�
=1.(1) Initialize {U(
)}�
=1;(2) Set iter ← 1;(3) repeat(4) for � ← 1 to � do(5) Set :;(6) Compute U(
)opt according to (23)(7) Update U(
) according to (24);(8) Normalize U(
) according to (19);(9) end for(10) Set iter ← iter + 1;(11) until L(X,U(1),U(2), . . . ,U(�)) unchanged or iter

reaches the maximum iterations

Algorithm 2: �e SOSClus algorithm.

Note thatX(
)(⊙(/
)U)(Γ(
)+/I)−1 is theGeneralGradient-
based Optimization (OPT) [39] solution for updating U(
) in
the regularized CP decomposition by making (17) equal to
zero. See the details of proof in [39]. Let

U
(
)
opt = X(
) (⊙(/
)U) (Γ(
) + /I)−1 . (23)

�erefore, the updating rule of U(
) in SOSClus is a weighted
average of the current solution and the OPT solution intu-
itively; that is,

U
(
) ←9 (1 − :)U(
) + :U(
)opt. (24)

Actually, SOSClus is a general extension of General
Gradient-based Optimization (OPT) [39] and the ALS with
step size restriction in randomized block sampling method
[41]. In (24), when the learning rate : = 1, we get the OPT
solution. When the regularization parameter / = 0, SOSClus
becomes the ALS with step size restriction in randomized
block sampling method.

Similar to SGDClus, {U(
)}�
=1 derived by (24) in SOSClus
also do not satisfy the �rst and second constraints in (9). We

should normalize each row of {U(
)}�
=1 according to (19). �e
pseudocode of SOSClus is given in Algorithm 2.

4.4. Feasibility Analysis

�eorem 4. �eCP decomposition ofX obtains the clustering
ofmultityped objects in the heterogeneous information network� = (�, �) simultaneously.

Proof. Since the proofs for di	erent types of objects in the
heterogeneous information network � = (�, �) are similar,
wewill simply describe the process for a single type of objects.
Without loss of generality, we detail the proof on the �th type
of objects.

Given a heterogeneous information network � = (�, �)
and its tensor representation X, the nonzero elements in
X represent the input gene-networks in � = (�, �), which
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we want to partition into % clusters {C1,C2, . . . ,C�}. �e
centre of the cluster C� is denoted by c�. By using the
coordinate format [47] as the sparse representation ofX, the

gene-networks can be denoted as a matrix M ∈ R
���(X)×�,

where ��V(X) is the number of nonzero elements inX. Each
row m� ∈ M, � = 1, 2, . . . , ��V(X) gives the subscripts of
corresponding nonzero element in X. In other words, m�
represents a gene-network and the entries W�,
 ∈ m�, � =1, 2, . . . , � are the subscripts of the objects contained in the
gene-network.

�e traditional clustering approach, such as K-means,
minimizes the sum of di	erences between individual gene-
network in each cluster and the corresponding cluster centres;
that is,

min
��,�,c�

���(X)∑
�=1

����������m� − �∑
�=1

X�,�c�����������
2

	
, (25)

where X�,� is the probability of gene-network m� belonging
to the 'th cluster. Also we can rewrite the problem by a
new perspective of clustering individual object in the gene-
network as follows:

min
���,�,��,�

���(X)∑
�=1

�∑

=1

����������W�,
 −
�∑
�=1

X�� ,���,
����������
2

	
, (26)

where X�� ,� is the probability of object V
� belonging to the 'th
cluster.

In the matrix form, K-means can be formalized as

min
P,C

‖M − PC‖2	 , (27)

where P is the cluster indication matrix and C is the cluster
centres.

By matricization of X along the �th mode, the CP
decomposition ofX in (3) can be rewritten as

min
U(1) ,U(2) ,...,U(�)

������X(
) − U
(
) (⊙(/
)U)⊤������2	 (28)

X(
) is thematricization ofX along the �thmode andM is the

sparse representation ofX. LetU(
) = P and let (⊙(/
)U)⊤ = C.

�at is, U(
) is the cluster indication matrix for the �th type

of objects and (⊙(/
)U)⊤ is the cluster centres. So, the CP
decomposition in (3) is equivalent to the K-means clustering
for the �th type of objects in heterogeneous information
network � = (�, �).

By matricization of X in (3) along di	erent modes, we
can prove that the CP decomposition is equivalent to the
K-means clustering for other types of objects. So, the CP
decomposition of X obtains the clustering of multityped
objects in the heterogeneous information network� = (�, �)
simultaneously.

It is worth noting that the CP decomposition based
clustering is a so
 clustering method; the factor matrices
indicate the probability of objects belonging to corresponding
clusters. �e so
 clustering is more in line with reality,

because many objects in the heterogeneous information
networks may belong to several clusters. In other words,
the clusters are overlapping. In some cases, the overlapping
clusters need to be translated into nonoverlapping clusters,
which can be achieved by using di	erent approaches, such as
K-means, to cluster the rows of factor matrices. Usually, the
nonoverlapping clusters can be obtained by simply assigning
each object to the cluster which has the largest entry in the
corresponding row of factor matrix.

4.5. Time Complexity Analysis. �emain time consumption

of updating each factor matrix U(
) in SGDClus is com-

puting @L/@U(
). According to (17), we need to calculate

X(
)(⊙(/
)U) and U(
)Γ(
), respectively. Since U(
) ∈ R
��×�

and X(
) ∈ R

��×∏��=1
� ̸=

��
, we have X(
)(⊙(/
)U) ∈ R

��×�,Γ(
) ∈ R
�×�, and U(
)Γ(
)∈R��×� .

Firstly, if we successively calculate the Khatri-Rao prod-
uct of � − 1 matrices and a matrix-matrix multiplication

when computing X(
)(⊙(/
)U), the intermediate results will
be of very large size and the computational cost will be
very expensive. In practice, we can reduce the complexity
by ignoring the unnecessary calculation. Let us observe the

element ofX(
)(⊙(/
)U); that is,
(X(
) (⊙(/
)U))�� ,� = ∑

{��}��=1
� ̸=


(��� ,∏��=1
� ̸=

��

�∏
�=1
� ̸=


&(�)�� ,�); (29)

��� ,∏��=1
� ̸=

�� is an element in the matricization ofX, which rep-

resents a corresponding gene-network in the heterogeneous
information network.When ��� ,∏��=1

� ̸=

�� = 0, we can ignore the

following Khatri-Rao product. Hence, only nonzero elements
inX need to be computed.�erefore, the time complexity for

computingX(
)(⊙(/
)U) is _(��V(X)�
%).
Secondly, the element of U(
)Γ(
) is given by

(U(
)Γ(
))�� ,� = �∑
�=1

(&(
)�� ,� �∏
�=1
� ̸=


��∑
��=1

&(�)�� ,�&(�)�� ,�). (30)

So, the time complexity of computing U(
)Γ(
) is _((� −�
)%2), where � = ∑�
=1�
 is the total number of objects
in the networks.

Above all, the time complexity of each iteration in

SGDClus is _(��V(X)�% + (� − 1)�%2). Note that, in the
real-world heterogeneous information networks, the number
of clusters% and the number of object types � are usually far
less than�; that is,% ≪ � and � ≪ �.

According to (22), the time complexity of updating

each factor matrix U(
) in SOSClus is composed of three

components: X(
)(⊙(/
)U), (Γ(
) + /I)−1, and the product of
them. Compared to SGDClus, only the time consumption of

computing an inverse matrix for (Γ(
) + /I) is additional in
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SOSClus. Since (Γ(
)+/I) is a%×% squarematrix, computing

the inverse of such matrix costs _(%3). Nevertheless, _(%3)
is usually negligible because% ≪ �.

5. Experiments and Results

In this section, we present several experiments on synthetic
and real-world datasets for heterogeneous information net-
works and compare the performance with a number of state-
of-the-art clustering methods.

5.1. Evaluation Metrics and Experimental Setting

5.1.1. Evaluation Metrics. In the experiments, we adopt the
Normalized Mutual Information (NMI) [48] and Accuracy
(AC) as our performance measurements.

NMI is used to measure the mutual dependence infor-
mation between the clustering result and the ground truth.
Given � objects, % clusters, one clustering result, and
the ground truth classes for the objects, let �(�, a), �, a =1, 2, . . . , %, be the number of objects that labeled � in clus-
tering result but labeled a in the ground truth. �e joint
distribution can be de�ned asX(�, a) = �(�, a)/�, themarginal

distribution of rows can be calculated as X1(a) = ∑��=1 X(�, a),
and themarginal distribution of columns can be calculated asX2(�) = ∑��=1 X(�, a). �en, the NMI is de�ned as

NMI = ∑��=1∑��=1 X (�, a) log (X (�, a) /X1 (a) X2 (�))√∑��=1 X1 (a) logX1 (a)∑��=1 X2 (�) logX2 (�) . (31)

�e NMI ranges from 0 to 1: the larger value of NMI, the
better the clustering result.

AC is used to compute the clustering accuracy that
measures the percent of the correct clustering result. AC is
de�ned as

AC = ∑�
=1∑���=1 c (map (d
�) , label (d
�))∑�
=1�
 , (32)

where map(d
�) is the cluster label of the object d
� and the

label(d
�) is the ground truth class of the object d
�. And c(⋅)
is an indicator function:

c (⋅) = {{{
1 if map (d
�) = label (d
�) ,0 if map (d
�) ̸= label (d
�) . (33)

Since both ofNMI andACare used tomeasure the perfor-
mance of clustering one type of object, the weighted average
NMI and AC are also used to measure the performance of
STFClus and other state-of-the-art methods:

NMI = ∑�
=1�
 (NMI)
∑�
=1�
 ,
AC = ∑�
=1�
 (AC)
∑�
=1�
 . (34)

Table 1: �e synthetic datasets.

Synthetic
datasets

� % � f
Syn1 2 2 1g = 1000 × 1000 0.1%

Syn2 2 4 10g = 1000 × 10000 0.01%

Syn3 4 2 100g = 100 × 100 × 100 × 100 0.1%

Syn4 4 4 1000g = 100 × 100 × 100 × 1000 0.01%

� is the number of object types in the heterogeneous information network
and also the number of modes in the tensor.� is the number of clusters. � is
the network scale, and � = �1 ×�2 × ⋅ ⋅ ⋅ ×��. is the density of the tensor,
that is, the percentage of nonzero elements in the tensor, and = ���(X)/�.

5.1.2. Experimental Setting. In order to compare the perfor-
mance of our proposed SGDClus and SOSClus with others
impartially, all methods share a common stopping condition,
that is, hhhhLiter −Liter−1

hhhh
Liter−1

≤ 10−6, (35)

or iter reaches the maximum iterations. Liter and Liter−1
are the values of function L at the current, that is, (iter)th,
iteration, and the previous, that is, (iter − 1)th, iteration,
respectively. And we set the maximum iterations to be 1000.
�roughout the experiments, the regularization parameter /
in SGDClus and SOSClus is �xed as / = 0.001.

All experiments are implemented in theMATLABR2015a
(version 8.5.0), 64-bit. And the MATLAB Tensor Toolbox
(version 2.6, http://www.sandia.gov/∼tgkolda/TensorTool-
box/) is used in our experiments. Since the heterogeneous
information networks are o
en sparse in real-world scenar-
ios, that is, most elements in the tensor X are zeros, we use
the sparse format of X as proposed in [47], which has been
supported by MATLAB Tensor Toolbox. �e experimental
results are the average values obtained by running the
algorithms ten times on corresponding datasets.

5.2. Experiments on Synthetic Datasets

5.2.1. �e Synthetic Datasets Description. �e purpose
of using synthetic datasets is to examine whether the
proposed tensor CP decomposition clustering framework
can work well, since the detailed cluster structures of the
synthetic datasets are known. In order to make the synthetic
datasets similar to a realistic situation, we assume that
the distribution for di	erent types of objects that appear
in a gene-network follows Zipf ’s law (see details online:
https://en.wikipedia.org/wiki/Zipf ’s_law). Zipf ’s law is

de�ned by4(�; j,�) = �−!/∑��=1 �−!, where� is the number
of objects, � is the object index, and j is the parameter charac-
terizing the distribution. Zipf ’s law denotes the frequency of
the �th object appearing in the gene-network.We set j = 0.95
and generate 4 synthetic datasets with di	erent parameters.
�e details of these synthetic datasets are shown in Table 1.

5.2.2. Experimental Results. In the beginning of the experi-
ments, we set a common learning rate, : = 1/(iter + 1), for

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
https://en.wikipedia.org/wiki/Zipf’s_law
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Figure 3: Convergence speed of SGDClus and SOSClus on the 4 synthetic datasets with a common learning rate, that is, : = 1/(iter + 1).
SGDClus and SOSClus. We �nd that SOSClus has a faster
convergence speed and better robustness with respect to the
learning rate, which is clearly shown in Figure 3. Although
SGDClus may eventually converge to a local minimum, the
e�ciency of the optimization near a local minimum is not all
roses. As shown in Figure 3, the solutions of SGDClus swing
around a local minimum. �is phenomenon proves that the
convergence speed of SGDClus is sensitive to the choice of
learning rate :.

�en, we modify the learning rate to : = 1/(iter +�) for SGDClus, where � is a constant optimized in the
experiments. In practice, � = 27855 for SGDClus running
on Syn3 and � = 430245 for SGDClus running on Syn4.
�e performance comparison of SGDClus with learning rate: = 1/(iter + �) and SOSClus with learning rate : = 1/(iter +1) on Syn3 and Syn4 is shown in Figure 4. By employing
the optimized learning rate, SGDClus converges to a local
minimumquickly.However, compared to SOSClus, SGDClus
still has no advantage.�e hand drawing blue circles over the
curve of SOSClus in Figure 4 shows that SOSClus can escape
from a local minimum and �nd the global minimum, while
SGDClus just obtains the �rst reaching local minimum.

According to (23) and (24), we accessorily obtain the solu-
tions of OPT by running SOSClus. So, we compare the AC
and NMI of OPT, SGDClus, and SOSClus on the 4 synthetic
datasets, which are shown in Figure 5. With the increase of
object types in the heterogeneous information networks, the
AC and NMI of SOSClus and OPT increase distinctly, while
performance of SGDClus almost does not change.When � =2, AC and NMI of these three methods on Syn1 and Syn2
are almost equal and low. However, AC and NMI of SOSClus
increase to 1 when � = 4. Since the histograms of OPT, SGD-
Clus, and SOSClus on Syn1 and Syn2 are almost the same and
on Syn3 and Syn4 are also similar, we know that the param-
eters % and � have no signi�cant e	ect on the performance.
Generally, the larger densityf and the number of object types� in the network result in higher AC and NMI of SOSClus.

Obviously, in the experiments on the 4 synthetic datasets,
SOSClus shows an excellent performance. SOSClus has a
faster convergence speed and better robustness with respect
to the learning rate. Meanwhile, SOSClus performs better on
AC and NMI, because it can escape from a local minimum
and �nd the global minimum.

5.3. Performance Comparison on Real-World Dataset

5.3.1. Real-World Dataset Description. �e experiments on
the real-world dataset are used to compare the performance
of the tensor CP decomposition clustering framework with
other state-of-the-art methods.

�e real-world dataset extracted from the DBLP database
is the DBLP-four-area dataset, which can be downloaded
from http://web.cs.ucla.edu/∼yzsun/data/DBLP_four_area
.zip. It is a four research-area subset of DBLP and is used
in [2, 3, 12, 13, 15, 16, 18]. �e four research areas in DBLP-
four-area dataset are database (DB), data mining (DM),
machine learning (ML), and information retrieval (IR),
respectively. �ere are �ve representative conferences in
each area. And all related authors, papers published in these
conferences, and terms contained in these papers’ titles
are included. �e DBLP-four-area dataset contains 14,376
papers with 100 labeled, 14,475 authors with 4,057 labeled,
20 labeled conferences, and 8,920 terms. �e density of the

DBLP-four-area dataset is 9.01935 × 10−9, so we construct a
4-mode tensor with size of 14,376 × 14,475 × 20 × 8,920 and
334832 nonzero elements. We compare the performance of
tensor CP decomposition clustering framework with several
other methods on the labeled record in this dataset.

5.3.2. Comparative Methods

(i) NetClus (see [2]). An extended version of RankClus [1],
which can deal with the network, follows the star network
schema. �e time complexity of NetClus for clustering each

http://web.cs.ucla.edu/~yzsun/data/DBLP_four_area.zip
http://web.cs.ucla.edu/~yzsun/data/DBLP_four_area.zip
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Figure 4: Convergence speed of SGDClus and SOSClus on Syn3 and Syn4 with di	erent learning rate. �e learning rate for SOSClus is: = 1/(iter + 1), while that for SGDClus is : = 1/(iter + �), where � is a constant optimized in the experiments.
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Figure 5: �e AC and NMI of OPT, SGDClus, and SOSClus on the 4 synthetic datasets.

object type in each iteration is _(%|�| + (%2 + %)�), where% is the number of clusters, |�| is the number of edges in the
network, and� is the total number of objects in the network.

(ii) PathSelClus (see [15, 16]). A clustering method based on
the prede�ned metapath requires a user guide. In PathSel-
Clus, the distance between the same type objects is measured
by PathSim [3], and themethod starts with the given seeds by
user. �e time complexity of PathSelClus for clustering each
object type in each iteration is _((% + 1)|P| + %�), where|P| is the number of metapath instances in the network.
And, the time complexity of PathSim used by PathSelClus for
clustering each object type is _(�k), where k is the average
degree of objects.

(iii) FctClus (see [13]). It is a recently proposed clustering
method for heterogeneous information networks. As with
NetClus, the FctClus method can deal with networks follow-
ing the star network schema. �e time complexity of FctClus
for clustering each object type in each iteration is _(%|�| +�%�).
5.3.3. Experimental Results. As the baseline methods can
only deal with speci�c schema heterogeneous information
networks, here we must construct di	erent subnetworks for
them. For NetClus and FctClus, the network is organized as a
star network schema like in [2, 13], where the paper (P) is the
centre type, and author (A), conference (C), and term (T) are
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Table 2: AC of experiments on DBLP-four-area dataset.

AC OPT SGDClus SOSClus NetClus PathSelClus FctClus

Paper 0.5882 0.8476 0.9007 0.7154 0.7551 0.7887

Author 0.5872 0.8486 0.9486 0.7177 0.7951 0.8008

Conference 1 0.99 1 0.9172 0.9950 0.9031

avg (AC) 0.5892 0.8493 0.9477 0.7186 0.7951 0.8010

Table 3: NMI of experiments on DBLP-four-area dataset.

NMI OPT SGDClus SOSClus NetClus PathSelClus FctClus

Paper 0.6557 0.6720 0.8812 0.5402 0.6142 0.7152

Author 0.6539 0.8872 0.8822 0.5488 0.6770 0.6012

Conference 1 0.8497 1 0.8858 0.9906 0.8248

avg (NMI) 0.6556 0.8778 0.8827 0.5503 0.6770 0.6050

Table 4: Running time of experiments on DBLP-four-area dataset.

Running time (s) OPT SGDClus SOSClus NetClus PathSelClus FctClus

Paper — — — 802.6 542.3 808.4

Author — — — 743.7 681.1 774.9

Conference — — — 658.4 629.3 669.8

Total time 672.6 432.4 818.4 2204.7 1852.7 2253.1

the attribute types. For PathSelClus, we select the metapath
of P-T-P, A-P-C-P-A, and C-P-T-P-C to cluster the papers,
authors, and conferences, respectively. And in PathSelClus,
we give each cluster one seed to start.

Wemodel theDBLP-four-area dataset as a 4-mode tensor,
where each mode represents one object type. �e 4 modes
are author (A), paper (P), conference (C), and term (T),
respectively. Actually, the sequence of the object types is
insigni�cant. And each element of the tensor represents a
gene-network in the heterogeneous information network. In
the experiments, we set the learning rate for SOSClus to be: = 1/(iter+1) and an optimized learning rate : = 1/(iter+�)
with � = 1000125 for SGDClus. By running SOSClus, we
accessorily obtain the solutions of OPT. So, we compare the
experimental results of OPT, SGDClus, and SOSClus on the
DBLP-four-area dataset with the three baseline methods. See
the details in Tables 2, 3, and 4.

In Tables 2 and 3, SOSClus performs best on average AC
and NMI, and SGDClus takes the second place. All methods
achieve satisfactory AC and NMI on the conference, since
there are only 20 conferences in the network. SGDClus takes
the shortest running time, and OPT and SOSClus have an
obvious advantage on running time compared with other
baselines.�e time complexity of SGDClus is_(��V(X)�%+(� − 1)%2�), and the time complexity of SOSClus is_(��V(X)�%+(�−1)%2�+%3), where ��V(X) is the num-
ber of nonzero elements in X, that is, the number of gene-
networks in the heterogeneous information network. We
have ��z(X) < |P| ≪ |�|, % ≪ �, and � ≪ �. Compared
with the time complexity of the three baselines, SGDClus and
SOSClus have a little disadvantage. However, it is worth not-
ing that the three baselines can only cluster one type of objects
in the network in each running, while OPT, SGDClus, and

SOSClus can obtain the clusters of all types of objects simulta-
neously by running once.�is is the reasonwhy only the total
time is shown for OPT, SGDClus, and SOSClus in Table 4.
Moreover, the total time of OPT, SGDClus, and SOSClus
is on the same order of magnitude as the running time of
other baselines for clustering each type of objects, which is
consistent with the comparison of the time complexity.

6. Conclusion

In this paper, a tensor CP decomposition method for clus-
tering heterogeneous information networks is presented. In
tensor CP decomposition clustering framework, each type of
objects in heterogeneous information network is modeled as
one mode of tensor, and the gene-networks in the network
are modeled as the elements in tensor. In other words,
tensor CP decomposition clustering framework can model
di	erent types of objects and semantic relations in the het-
erogeneous information network without the restriction of
network schema. In addition, two stochastic gradient descent
algorithms, named SGDClus and SOSClus, are designed.
SGDClus and SOSClus can cluster all types of objects and
the gene-networks simultaneously by running once. �e
proposed algorithms outperformed other state-of-the-art
clustering methods in terms of AC, NMI, and running time.

Notations�: A scalar (lowercase letter)
a: A vector (boldface lowercase letter)
A: A matrix (boldface capital letter)
X: A tensor (calligraphic letter)
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��1 ,�2,...,�� : �e (�1, �2, . . . , ��)th element of an �th-
order tensorX

X(�): Matricization ofX along the �th mode∗: Hadamard product (element-wise prod-
uct) of two tensors (or matrices or vectors)
with the same dimension⊙: Khatri-Rao product of two matrices‖ ⋅ ‖	: Frobenius norm of a tensor (or matrices or
vectors)

a ∘ b: Outer product of two vectors.
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