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ABSTRACT

In this paper we propose an approach to the segmentation
of video objects based on motion cues. Motion analysis
is performed by estimating local orientations in the spatio-
temporal domain using the three-dimensional structure ten-
sor.

These estimates are integrated as an external force into
an active contour model, thus stopping the evolving curve
when it reaches the moving object’s boundary. To enable si-
multaneous detection of several objects, we reformulate the
tensor-based active contour model using the level-set tech-
nique. In addition, a contour refinement technique has been
developed to better approximate the real boundary of the
moving object.

We provide promising experimental results calculated
on real-world video sequences widely used within the com-
puter vision community.

1. INTRODUCTION

Algorithms for automatic segmentation of objects from a
video sequence are required for a variety of applications
ranging from video compression to object recognition. For
instance, the MPEG-4 video coding standard [1] provides
functionality for content-based access. Video information
can be encoded in a number of arbitrarily shaped video ob-
ject planes representing instances of video objects. In ad-
dition, algorithms for high-level vision tasks such as shape-
based object recognition [2] depend on information with re-
gard to object outlines.

Motion cues available in video sequences facilitate the
segregation of moving objects from the background. Vari-
ous approaches have been proposed in this field. However,
many of them determine basic motion parameters on the ba-
sis of only two consecutive frames. Hence, these techniques
are sensitive to noise and require appropriate compensation
methods. In [3] an edge map is calculated from the dif-
ference image of two frames. Mech and Wollborn [4] and
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Paragios and Deriche [5] employ a statistical framework,
while Meier and Ngan [6] perform a connected component
analysis on the observed inter-frame differences.

In our approach, we analyze motion by estimating local
orientations in the spatio-temporal domain using the three-
dimensional structure tensor, thus exploiting motion infor-
mation from a space-time continuum. The estimates gained
from the structure tensor are integrated as an external force
into a level-set based active contour model. This model al-
lows the simultaneous detection of several objects and also
enables closure of holes and gaps in the motion detection
result.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the tensor-based motion detection algo-
rithm. Sections 3 and 4 describe the integration of the struc-
ture tensor into the active contour model and a contour re-
finement technique. Section 5 presents experimental results.
Finally, Section 6 offers concluding remarks.

2. TENSOR-BASED MOTION DETECTION

Within consecutive frames stacked on top of each other, a
video sequence can be represented as a three-dimensional
volume with two spatial (z,y) and one temporal (z) co-
ordinates. From this perspective, motion can be estimated
by analyzing orientations of local gray-value structures [7].
Under the assumption of a non-varying illumination, gray
values remain constant in the direction of motion. Thus,
stationary parts of a scene result in lines of equal gray val-
ues in parallel to the time axis. Moving objects, however,
cause iso-gray-value lines of different orientations. Figure
1 illustrates this observation.

Consequently, moving and static parts on the image plane
can be determined from the direction of minimal gray value
change in the spatio-temporal volume. This direction can
be calculated as the direction n being as much perpendic-
ular to all gray-value gradients in a 3D local neighborhood
Q. Thus, we minimize

/ (VsI(z,y,2)n)’de dy dz Q)
Q
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Fig. 1. Local orientation of image structures. Left: Frame
169 (top) and frame 39 (bottom) of the “hall and moni-
tor” sequence. Right: Slice of the corresponding spatio-
temporal volume taken at the horizontal line marked by the
white lines in the single frames.

where I(z,y, z) denotes the three-dimensional volume and
V3 := (9,, 0y, 0.) the spatio-temporal gradient.

As described in [7, 8] minimizing Equation 1 is equiva-
lent to determining the eigenvector of the minimum eigen-
value of the 3D structure tensor
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where J,,.p,q € {z,y,z} are calculated within a local
neighborhood €2 from

Jpg(x,y,2) = / OpI(z',y', 20, 1(z",y', 2" )da" dy' dz'.
Q
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By analyzing the three eigenvalues A1 > Ao > A3 > 0
of the structure tensor, we can classify the local neighbor-
hood’s motion. All three eigenvalues equal to zero indicates
an area of constant gray values, therefore no motion can be
detected. If Ay > 0 and Ay = A3 = 0, gray values change
only in one direction. Consequently, due to the correspon-
dence problem we can calculate only normal velocity. Real
motion can be calculated if gray values remain constant in
only one direction, hence, Ay > 0,A2 > 0 and A3 = 0.
Finally, if all three eigenvalues are greater than zero, we
cannot determine the optical flow.

In real-world video sequences, however, it is impracti-
cal to compare the eigenvalues to zero since due to noise in
the sequence small gray-value changes always occur. Thus,
we introduce normalized coherence measures ¢; and ¢, that
quantify the certainty of the calculations. Note that our mea-
sures deviate from those defined in [8] and avoid the dis-
continuity problem [9]. The coherence measure ¢, indicates

Fig. 2. Tensor-based motion detection on frame 12 of the
Hamburg taxi sequence. Motion pixels are marked white.
From left to right: (a) original frame, (b) motion detection
with |Q| = 33, (c) motion detection with || = 7%. C =5
was used in all calculations.

whether a reliable motion calculation is possible and is de-
fined by

0 >\1 = A37 4
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where C' > 0 denotes a contrast parameter. Areas with
(IA\1 — A3]) < C are regarded as almost constant local
neighborhoods [9]. A value of ¢; near 1.0 indicates that
A1 > s, therefore a reliable motion calculation can be
performed. The opposite is true if the ¢, value approaches
zero.

The coherence measure ¢,

0 )\2 = >‘37 (5)
Cs = —C 5
exp (m) else

indicates whether normal or real motion can be determined.
Values near one allow the calculation of real motion. Oth-
erwise, only normal velocities can be specified.

Hence, our motion detection scheme works as follows.
At each position in the video sequence the structure tensor
and the coherence measures are calculated. If ¢; is near
1.0, the motion vector is determined in accordance with ¢ .
Then, under the assumption of a static camera, the position
is marked as a “motion pixel” if the 2D velocity v, i. e., the
norm of the motion vector, exceeds a certain threshold 7',
e.g. T, > 0.1 pixel/frame.

In the event of a moving camera, a global camera motion
estimation has to be performed first. It is then possible to
compare the motion vector determined from the structure
tensor to the vector resulting from the the global camera
parameters [6].

Figure 2 illustrates the perfomance of our motion de-
tection scheme on frame 12 of the Hamburg taxi sequence.
The sequence contains four moving objects: the taxi in the
middle, a car on the left, a van on the right, and a pedestrian
in the upper left corner of the image. Note that an increase
of the neighborhood’s size significantly reduces the amount
of noise in the image without changing the parameter C.



Fig. 3. Tensor-driven geodesic active contour. From top
left to bottom right: contour after 3000, 6000, 9000, 12000,
15000, 17392 iterations. Constant force ¢ = 0.02, € = 0.25.

The tensor approach is able to detect motion areas reli-
ably, though some parts of the van are left out due to low
contrast. However, we observe two shortcomings that are
inherent to this approach. First, due to areas of constant gray
values within the moving objects, we do not receive dense
motion vector fields . Second, the tensor fails to provide
the true object boundaries accurately since the calculations
within the neighborhood 2 blurs motion information across
spatial edges.

3. TENSOR-DRIVEN ACTIVE CONTOUR MODEL

Tensor-based motion detection identifies regions of motion.
However, these regions need neither be connected nor form
semantically meaningful objects. Consequently, we need a
grouping step that integrates neighboring regions into ob-
jects while closing gaps and holes.

Widely used within this context are active contour mod-
els. Basically, a planar parametric curve C(s) placed around
image parts of interest evolves under smoothness control
(internal energy) and the influence of an image force (ex-
ternal energy).

In the classical explicit snake model [10] the following
functional is minimized

yg | (@lCE +5CT P = VICE)P) ds - ©)

where the first two terms control the smoothness of the pla-
nar curve, while the third attracts the contour to high gradi-
ents of the image.

To obtain topological flexibility that allows the simul-
taneous detection of multiple objects, we employ geodesic
active contours [11, 12]. The basic idea is to embed the ini-
tial curve as a zero level set into a function u : R? — IR,
i.e., C is represented by the set of points x; with u(x;) = 0,
and to evolve this function under a partial differential equa-
tion.

Fig. 4. Contour refinement. Left: motion-based segmenta-
tion, right: motion-based segmentation with contour refine-

ment (445 iterations, C' = 1.5).

Using a modified energy term this results in the image
evolution equation [11, 12]

% =g(I)(c+ K)|Vu| + Vu- Vg 7
where x denotes the curvature of a level set, V := (9z, 0y)
is the spatial gradient, ¢ adds a constant force for faster
convergence, and g represents the external image-dependent
force or stopping function.

By defining an appropriate stopping function g we can
integrate the tensor-based motion detection into the model.
Choosing g(I) = §(I) where § is a smoothed version of

1 ez, y,t) <1-—k¢,

S(I(I,y,t)) = 1 Ct($7y=t) > 1- 6/\7)(%31775) < Tv:
0 c(z,y,t)>1—env(z,y,t)>T,
(8)

stops the curve evolution (¢ = 0) upon reaching positions
that coincide with “motion pixels”. Remember that v de-
notes the 2D velocity and 7', the velocity threshold.

Figure 3 depicts the evolution of the tensor-driven geo-
desic active contour. The contour succeeds in splitting up
and detecting the four different moving objects.

4. CONTOUR REFINEMENT

In order to improve the segmentation results, we employ a
refinement procedure based not on motion information but
on the gradient values within a single frame. As can be seen
in Figure 4 (left), the motion-based segmentation detects re-
gions that are slightly larger than the moving objects.

Thus, we restart the image evolution process using the
result from the motion-based segmentation as the zero level
set. However, this time a stopping function g based on the
spatial gradient is used:

1
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Here, C is a contrast parameter that diminishes the in-
fluence of small gradient values. Figure 4 depicts the per-
formance of the refinement procedure.

g(1) (9)



Fig. 5. Top: Examples from the “hall and monitor” se-
quence, bottom: examples from the “Hamburg taxi” se-
quence.

5. EXPERIMENTAL RESULTS

We applied the proposed motion detection scheme to the
real-world sequences “Hamburg taxi” and “hall and moni-
tor”. While the first includes mainly rigid objects, the lat-
ter contains non-rigid objects. In both cases, the structure
tensor calculations were carried out using the parameters
Q| =7 C=5,e=0.25and T, =0.1.

Figure 5 depicts examples from the selected sequences.
The moving objects are detected reliably and the active con-
tour approximates the real object boundaries during the re-
finement step quite well.

6. CONCLUSION AND OUTLOOK

We presented an approach to segmenting objects based on
motion cues. In particular, we employed the 3D structure
tensor to derive information from the spatio-temporal vol-
ume constructed by the sequence of frames. This improves
the motion detection results significantly compared to cal-
culations based on only two consecutive frames.

The integration of the 3D structure tensor as the exter-
nal force within the geodesic active contour model results
in a reliable scheme for the simultaneous detection of mul-
tiple moving objects. The subsequently employed contour
refinement enables the accurate segmentation of the objects
in question.

There are, however, several areas that require further de-
velopment. First, the contour refinement is based on rather
simple gradient calculations. The use of an enhanced edge
detection scheme should improve the results. Second, and

more relevant, the problem of large velocities should be ad-
dressed within a multi-resolution framework.
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