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Abstract

This thesis deals with filtering of multidimensional signals. A large part of the
thesis is devoted to a novel filtering method termed “Normalized convolution”.
The method performs local expansion of a signal in a chosen filter basis which
not necessarily has to be orthonormal. A key feature of the method is that it
can deal with uncertain data when additional certainty statements are available
for the data and/or the filters. It is shown how false operator responses due to
missing or uncertain data can be significantly reduced or eliminated using this
technique. Perhaps the most well-known of such effects are the various ‘edge
effects’ which invariably occur at the edges of the input data set. The method
is an example of the signal/certainty - philosophy, i.e. the separation of both
data and operator into a signal part and a certainty part. An estimate of the
certainty must accompany the data. Missing data are simply handled by setting
the certainty to zero. Localization or windowing of operators is done using an
applicability function, the operator equivalent to certainty, not by changing the
actual operator coefficients. Spatially or temporally limited operators are handled
by setting the applicability function to zero outside the window.

The use of tensors in estimation of local structure and orientation using spatio-
temporal quadrature filters is reviewed and related to dual tensor bases. The
tensor representation conveys the degree and type of local anisotropy. For image
sequences, the shape of the tensors describe the local structure of the spatio-
temporal neighbourhood and provides information about local velocity. The
tensor representation also conveys information for deciding if true flow or only
normal flow is present. It is shown how normal flow estimates can be combined
into a true flow using averaging of this tensor field description.

Important aspects of representation and techniques for grouping local orientation
estimates into global line information are discussed. The uniformity of some
standard parameter spaces for line segmentation is investigated. The analysis
shows that, to avoid discontinuities, great care should be taken when choosing
the parameter space for a particular problem. A new parameter mapping well
suited for line extraction, the Möbius strip parameterization, is defined. The
method has similarities to the Hough Transform.

Estimation of local frequency and bandwidth is also discussed. Local frequency
is an important concept which provides an indication of the appropriate range of
scales for subsequent analysis. One-dimensional and two-dimensional examples
of local frequency estimation are given. The local bandwidth estimate is used
for defining a certainty measure. The certainty measure enables the use of a
normalized averaging process increasing robustness and accuracy of the frequency
statements.
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PREFACE

The thesis consists of eight chapters. Chapter 1 gives a background to the work
and presents the goals and philosophy behind the approaches in this thesis. Chap-
ter 2 presents some basic notions from tensor analysis and functional analysis
which gives a useful background to the material presented later.

Although a number of details have been added while finalizing this thesis, the
basic ideas presented in the chapters 3 - 8 have been published earlier. A list of
references on which the chapters are based on is found below.

C-F Westin and H. Knutsson. Processing Incomplete and Uncertain Data us-
ing Subspace Methods. In Proceedings of 12th International Conference on
Pattern Recognition, Jerusalem, Israel, October 1994. IAPR.

C-F Westin, K. Nordberg, and H. Knutsson. On the equivalence of normal-
ized convolution and normalized differential convolution. In Proceedings of
IEEE International Conference on Acoustics, Speech, & Signal Processing,
Adelaide, Australia, April 1994. IEEE.

H. Knutsson, C-F Westin, and G.H. Granlund. Local Multiscale Frequency and
Bandwidth Estimation. In Proceedings of IEEE International Conference on
Image Processing, Austin, Texas, November 1994. IEEE.

C-F Westin and H. Knutsson. Estimation of Motion Vector Fields using Tensor
Field Filtering. In Proceedings of IEEE International Conference on Image
Processing, Austin, Texas, November 1994. IEEE.

C-F Westin. Line extraction using tensors. In H. I. Christensen and J.L. Crow-
ley, editors, Vision as Process, Kluwer Academic Publishers, 1994.

C-F Westin. Using non-orthogonal filter bases. In 2nd EC-Israel-US workshop,
The Hebrew University of Jerusalem, October 1994. ESPRIT ”SAM”.

C-F Westin. Vector and tensor field filtering. In G.H. Granlund and H. Knutsson,
principal authors, Signal Processing for Computer Vision, Kluwer Academic
Publishers, 1994.
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H. Knutsson and C-F Westin. Normalized and differential convolution: Meth-
ods for interpolation and filtering of incomplete and uncertain data. In
Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, New York City, USA, June 1993. IEEE.

C-F Westin and H. Knutsson. The Möbius strip parameterization for line extrac-
tion. In Proceedings of ECCV–92, LNCS–Series Vol. 588. Springer–Verlag,
1992. LiTH–ISY–R–1514, Linköping University, Sweden.

Related material to this work but not explicitly reviewed in the thesis are:

C-J Westelius, J. Wiklund, and C-F Westin. Prototyping, visualization and
simulation using the application visualization system. In H. I. Christensen
and J.L. Crowley, editors, Experimental Environments for Computer Vision
and Image Processing, volume 11 of Series on Machine Perception and Ar-
tificial Intelligence, pages 33–62. World Scientific Publishers, 1994. ISBN
981-02-1510-X.

C-F Westin. Representation and Averaging. In G.H. Granlund and H. Knutsson,
principal authors, Signal Processing for Computer Vision, Kluwer Academic
Publishers, 1994.

C-F Westin and C-J Westelius. ESPRIT Basic Research Action 7108, Vision
as Process, Integration of Low-level FOA & Control Mechanisms. Report,
Computer Vision Laboratory, S–581 83 Linköping, Sweden, 1993.

C-F Westin. ESPRIT Basic Research Action 3038, Vision as Process, Model
Support and Local FOA Control. Report, Computer Vision Laboratory,
S–581 83 Linköping, Sweden, 1992.

C-F Westin and H. Knutsson. Extraction of local symmetries using tensor field
filtering. In Proceedings of 2nd Singapore International Conference on Image
Processing. IEEE Singapore Section, September 1992. LiTH–ISY–R–1515,
Linköping University, Sweden.

C-F Westin. Feature extraction based on a tensor image description, September
1991. Thesis No. 288, ISBN 91–7870–815–X.

C-F Westin and C-J Westelius. Brain chaos. A feature or a bug? Report LiTH–
ISY–I–0990, Computer Vision Laboratory, Linköping University, Sweden,
1989.

C-J Westelius and C-F Westin. A colour representation for scale-spaces. In
The 6th Scandinavian Conference on Image Analysis, pages 890–893, Oulu,
Finland, June 1989.
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C-F Westin and C-J Westelius. A colour model for hierarchical image process-
ing. Master’s thesis, Linköping University, Sweden, August v1988. LiTH–
ISY–EX–0857.
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1
INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

A common problem in signal processing is erroneous operator responses because
of missing or uncertain data. Perhaps the best known of such effects are the vari-
ous ‘edge effects’ which invariably occur at the edges of the input data set. In the
standard scalar representation for grey level images, the value zero is commonly
used to represent both ‘black’ and ‘outside the image’. This is called black border
extension of the signal. This causes most operators to produce undesired edge
effects. Common approaches to reduce such effects are border extraction where
the edge values are used for extrapolation and wrap around where a strictly com-
pact signal is viewed as cyclic. Figure 1.1 shows three examples of extending a
signal outside its border. Extending the signal by mirroring the signal in different
ways can also be used to reduce edge effects. In all these cases, however, new
structures are added to the signal and most operators give unpredictable and
unwanted responses to these structures.

A representation having similar ambiguity to the standard scalar representation
for grey level images is the vector representation for velocity. Consider the fol-
lowing simple example. In an image motion field, velocity and its direction are
commonly represented by vectors. Only in regions of the image containing struc-
ture is it possible to measure the local image velocity. In a region having constant
grey-level value, it is impossible to find motion and thus impossible to measure
it. If the velocity vectors are set to zero in these regions, this will cause artifacts
such as discontinuities in the motion field. Thus, if velocity is estimated from an
image sequence, it cannot be fully described by vectors as a sole description. In
an example in chapter 5, it is shown that, using a vector as the sole represen-
tation for local velocity, borders between regions of missing data and good data
can induce strong erratic responses.

13



14 Chapter 1
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Figure 1.1 Examples of commonly used methods for defining the signal border
when filtering strictly compact signals.

In this thesis it is shown how unwanted effects due to missing or uncertain data
can be significantly reduced or eliminated. The theory is based on linear opera-
tions and is general in that it allows for both data and operators to be scalars,
vectors or tensors of higher order.

The information representation issue is complex and what is regarded as a good
information representation varies with the application. Nevertheless, we stress
that an important feature of a good representation is that it keeps “statement”
and “certainty of statement” separate. From a philosophical point of view, there
should be no argument that “knowing” and “not knowing” are different situations
regardless of what is to be known. Such thoughts are by no means new [Mac69,
Gra78, GK83, WK88, Knu89] and can, depending on point of view, be said
to be related to probability theory, fuzzy set theory, quantum mechanics and
evidence calculus. However, it is felt that the vision community would benefit
from an increased awareness of the importance of these ideas. The present thesis
is intended to be a contribution towards this end.
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A data representation which has certainty and statement separated avoids the
need to decide the grey-level value outside the image. In practice, estimation or
generation of additional certainty information is not unusual. As an example,
range data normally consists of two parts; a scalar value defining the distance
and an energy measure used to identify points, so called drop-outs, where the
range camera has failed to estimate the distance [LRS89].

1.2 OVERVIEW

In the next chapter, chapter 2, notations used in this thesis are described. A
short introduction to tensor theory and basic notions in functional analysis is
given is this chapter.

In chapter 3, non-orthogonal filter bases is discussed using the concepts of con-
travariant and covariant coordinates introduced in chapter 2. The concept of
frames is described in this context.

In chapter 4, we extend the discussion of chapter 3 and define normalized con-
volution. It is a general method for filtering of missing or uncertain data. It is
shown how such data can be modelled using an additional scalar certainty field.
In the missing parts of the signal, the certainty parts are set to zero. A similar
certainty field for the operator is denoted the applicability function. This field is
used for spatial localization of the operator. It is shown that this approach differs
from classical windowing where the operator itself is changed to a smoother and
more localized version. The chapter is concluded with examples illustrating these
theories.

In chapter 5, it is shown how a part of the parameter vector can be calculated.
Using this technique we define normalized differential convolution. Differentiating
sparse fields and model based generation of certainty fields for robot vision are
examples of application which are discussed.

Chapter 6 discusses the use of tensors in estimation of local structure and ori-
entation. The tensor representation is shown to be crucial to unambiguous and
continuous representation of local orientation in multiple dimensions. In addi-
tion to orientation, the tensor representation also conveys the degree and type
of local anisotropy. In section 6.4 presents a method for computation of two-
dimensional motion vector fields from an image sequence. The magnitudes from
a set of spatio-temporal quadrature filters are combined into a tensor description
as described in chapter 6. The shape of the tensors describes locally the struc-
ture of the spatio-temporal neighbourhood and provides information about local
velocity and if true flow or only normal flow is present . It is shown how normal
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flow estimates are combined into a true flow using averaging on this tensor field
description.

Chapter 7 focuses on various aspects of representation and grouping of informa-
tion. We begin with an investigation of the uniformity of some standard parame-
ter spaces (also termed parameter mappings). The analysis shows that, to avoid
discontinuities, great care should be taken when choosing the parameter space
for a particular problem. It is shown that the local strucure tensor introduced
in chapter 6 can be decomposed into projection operators which can be used for
grouping collinear/coplanar estimates . Based on these results, a new parameter
mapping well suited for line extraction, the Möbius strip parameterization , is
defined. The method has similarities to the Hough Transform.

Chapter 8 deals with estimation of local spatial frequency and bandwidth. Local
frequency is an important concept that provides an indication of the appropriate
range of scales for subsequent analysis. One-dimensional and two-dimensional
examples of local frequency estimation are given.



2
NOTATIONS AND PRELIMINARIES

Most people are familiar with orthonormal coordinate systems. How signals are
described in coordinates of such systems and how to recover a signal from the
coordinates is common knowledge. The procedures for handling non-orthonormal
coordinate systems are less familiar and it is the purpose of this chapter to describe
the basic tools for non-orthogonal theory.

Well-known concepts from tensor algebra and functional analysis are reviewed:
the Einstein summation convention, dual spaces, the metric tensor, Hilbert spaces,
Riez representation theorem, etc. Readers familiar with all these basic concepts
are recommended to, at least, glance through this chapter since most notations
used in this thesis are defined here as the concepts are described. The discus-
sion of non-orthogonal systems is continued in chapter 3, where it is extended to
redundant non-orthonormal discrete systems, so-called frames.

Functional and tensor analysis are branches of mathematics that use intuition and
the language of geometry in the study of functions. It can be useful to represent
a point in space by a triple of numbers, but it can also be advantageously, when
dealing with a triplets of numbers, to think of them as coordinates of a point in
space. This is called geometrization of algebra.

This chapter contains a brief review of the definitions, concepts and conventions
used in this thesis. The notations defined are based on notations commonly used
in functional analysis, tensor theory and signal analysis [You88, Sto89, Dau92,
Mey92]. In particular, this chapter contains a short introduction to tensor theory.
More complete introductions can be found in [Sto89, Kay88, You78, Ken77].
Tensor algebra is a multi-linear extension of traditional linear algebra, and tensor
analysis is a generalization of the notions from vector analysis. The need for
such a theory is motivated by the fact that there are many physical quantities of
complicated nature that cannot naturally be described or represented by scalars
or vectors. Examples are the stress at a point of a solid body due to internal

17



18 Chapter 2

forces, the deformation of an arbitrary element of volume of an elastic body,
and the moments of inertia. These quantities can be described and represented
adequately only by the more sophisticated mathematical entities called tensors.
As we will see, scalars and vectors also belong to this family of elements. Thus,
scalars and vectors are special cases of tensors. The name “tensor” originates
from the french word “tension” which happens to be the English word as well.

2.1 OBJECTS AND SCALARS

Scalars, typically vector or tensor coordinates, will be denoted using italics,

A = B + c

Vectors and tensors will be denoted using boldface. Generally, lower case letters
will be used for vectors and upper case letters used for tensors of order higher
than one,

A = b ⊗ c

When working with matrices and vectors in standard linear algebra notations the
difference between vectors, such as objects in a vector space, and its coordinates
is not very accentuated

uT A v = uT

(
a b
c d

)

v

When using linear algebra notation, vectors and matrices will be denoted in bold-
face letters indicating that they are regarded as objects although they effectively
are arrays of scalar numbers.

2.2 INDEX CONVENTIONS

2.2.1 Bases

Any set of n linearly independent vectors in an n-dimensional vector space is
called a basis. Let V denote a vector space of finite dimension and let {vi}
denote a basis for V:

V : {v1,v2, ........,vn} (2.1)
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Any vector x in V can be expressed as a unique linear combination of the basis
vectors

x =
∑

i

xivi (2.2)

where xi is the coordinates of x in the basis {vi}. In cases where the vector may
be described in more than one basis, an additional subscript inside a parenthesis
will be used for indicating which basis the coordinates correspond to:

x =
∑

i

(xv)ivi =
∑

i

(xb)
ibi (2.3)

2.2.2 Einstein summation convention

The set over which an index ranges is a subset of integers and is specified when
not obvious. For tensors it is convenient to use both subscripts and superscripts
for indexing the elements or coordinates. The summation convention introduced
by Einstien will be used:

x1v1 + x2v2 + ..... + xnvn =
n∑

i=1

xivi ≡ xivi (2.4)

The summation rule implies that a summation is performed in any expression
involving diagonally repeated indices.

Example 1 A double sum expressed using the Einstien summation convention
is written

2∑

i=1

3∑

j=1

Aijx
iyj ≡ Aijx

iyj (2.5)

where the indicies i and j range over the index sets {1, 2} and {1, 2, 3} respec-
tively. Note that the summation is applied over diagonally repeated indices.
✷
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2.3 SCALAR PRODUCT

An inner product or scalar product on a complex vector space, V, is denoted 〈 · , · 〉
where the dots indicate the entries for two vectors ∈ V. A scalar product on a
complex vector space V is thus a mapping

〈 · , · 〉 : V × V → C (2.6)

2.3.1 Scalar product axioms

The usual requirements for a scalar product are that it should be Hermitian and
a linear. In the real case, the scalar product is linear in both its arguments, it is a
bi-linear operator. A common requirement of the scalar product operator is that
it should be positive. In the finite dimensional complex case, this corresponds to a
conjugate symmetric operator having all eigenvalues positive. Let us summarize
the four scalar product axioms:

1. 〈u,v〉 = 〈v,u〉
2. 〈λu,v〉 = λ〈u,v〉
3. 〈u + w,v〉 = 〈u,v〉 + 〈w,v〉
4. 〈u,u〉 > 0 when u 6= 0

where u,v,w ∈ V and λ ∈ R . a denotes complex conjugate of a complex number
a. The fourth axiom is sometimes written “If 〈u,v〉 = 0 for arbitrary u,
then v = 0”. This definition incorporates so-called semidefinite scalar products
allowing for vectors to have negative length and for vectors to have zero length
without being the zero vector, as for example in the Riemann spaces commonly
used in theoretical physics. The requirement (4) above, however, makes the scalar
product positive definite and all equidistance surfaces form elipsoides.

2.3.2 Scalar product in terms of coordinates

Expanding the vectors u and v in the basis {bi} gives

u = uibi and v = vibi (2.7)

where the components ui and vi are coordinates of the vector u and v in the
basis bi. By the scalar product axioms (1) and (2)

〈u,v〉 = uivj〈bi,bj〉 (2.8)



NOTATIONS AND PRELIMINARIES 21

If the basis vectors, bi, are orthonormal, then

〈bi,bj〉 = δij (2.9)

where Kronecker’s symbol δ is used with the usual meaning

δij ≡







1 if i = j

0 if i 6= j

that is

δij =







1 0 . 0
0 1 . 0
. . . .
0 0 . 1







(2.10)

Inserting this in equation (2.8) gives the well-known formula

〈u,v〉 = uivjδij = uivi (2.11)

stating that the scalar product is the product sum of the coordinates (and a
conjugation). As shown here, this formula implicitly requires that the involved
basis vectors are orthonormal.

2.4 HILBERT SPACES

A complex vector space with an inner product is called an inner product space
or a pre-Hilbert space. A Hilbert space is an inner product space which is also
complete.

2.4.1 The norm of a vector

A common way of defining the norm of a vector is via the scalar product. The
reason for this is that calulations become easy with such a norm. We define the
norm of a vector by

‖f‖2 = 〈f , f〉 (2.12)
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2.4.2 The norm of an operator

A common operator norm is the max norm. The max norm of an operator A is
defined as the maximum amplification of a vector that the operator can achieve:

‖A‖ ≡
sup

v 6= 0

‖Av‖

‖v‖
= β (2.13)

In the finite-dimensional case, the value β is equal to the largest eigenvalue of
the operator. Similarly a lower bound of A is defined by

inf

v 6= 0

‖Av‖

‖v‖
= α (2.14)

where α in the finite-dimensional case corresponds to the magnitude of smallest
eigenvalue.

2.4.3 The Frobenius norm

In the finite dimensional case, operators can be represented by arrays of numbers
related to a chosen basis. Unfolding the array into a one-dimensional array
of numbers allows the operator to be associated with a vector and the use of
equation (2.12) for defining a norm of the operator. This matrix norm is called
the Frobenius norm and is denoted ‖ · ‖F . An alternative way of calculating the
Frobenius norm is to use the trace operator,

‖A‖F = trace(AA∗) (2.15)

2.4.4 A bounded positive operator

An operator A is said to be positive definite if there exists a positive constant k
such that

〈Ax,x〉 ≥ k〈x,x〉 for all x ∈ V (2.16)

which means that the constant α in equation (2.14) is strictly positive. If the
max norm is bounded, β < ∞, the operator is said to be a bounded operator. If a
positive definite operator is bounded it is denoted a bounded positive operator. In
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the finite-dimensional case this corresponds to all eigenvalues λi being bounded
and greater than zero,

0 < α ≤ λi ≤ β < ∞ (2.17)

A bounded positive operator A is invertible. If A has lower bound α, its inverse
A−1 is bounded by 1

α .

2.4.5 The adjoint operator

Let H1 and H2 be two Hilbert spaces and let A denote a bounded operator
H1 → H2 (which may be equal to the first one). The adjoint of A, denoted A∗,
is then uniquely defined by

〈v1,Av2〉 = 〈A⋆v1,v2〉 (2.18)

which should hold for all v1 ∈ H1 and v2 ∈ H2. The norms of these operators
are equal.

‖A‖ = ‖A⋆‖ (2.19)

In a finite-dimensional Hilbert space, a linear operator may be represented using
a n × m matrix and the adjoint operator is equal to the conjugate transpose of
this matrix. If A⋆ = A, then A is called self-adjoint or Hermitian.

2.4.6 Common Hilbert spaces

Commonly used Hilbert spaces in literature have special notations. The set of
all square integrable functions on R

N or Z

N respectively form Hilbert spaces and
are denoted

L2 = {f : R

N → C : ‖f‖ < ∞} (2.21)

ℓ2 = {f : Z

N → C : ‖f‖ < ∞} (2.22)

in the continuous and the discrete case respectively.
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2.5 THE DUAL SPACE AND COVECTORS

For a complex vector space V, the linear operators that map vectors to com-
plex numbers are important. These operators form a new vector space of the
same dimension as V, called the dual or the reciprocal space. The dual space
corresponding to V is denoted V∗.

In V, the elements are called contravariant vectors, and the elements in V∗ are
called covariant vectors or shorter, covectors.

vi : V → C (2.22)

In functional analysis these elements are called linear functionals. Covectors are
indexed by superscripts and contravariant vectors are indexed by subscripts. The
dual of the dual space is in the finite dimensional equal to the space we started
with, (V∗)∗ = V, i.e. every x ∈ V is a functional on V∗.

Given a basis, its dual basis is uniquely defined via the following relation:

vivj = δi
j (2.23)

In Hilbert spaces, Riesz representation theorem [You88] states that all elements
in V∗ are uniquely associated with elements in V.

Theorem 1 (Riesz) Let H be a Hilbert space and let bi ∈ H∗ be a continuous
linear functional on H. There exists a unique bi ∈ H such that

bi(x) = 〈bi,x〉

The conclusion is that every covector bi can be represented with a contravariant
vector which here also is denoted bi. Given a basis, its dual basis is uniquely
defined via the scalar product.

〈vi,vj〉 = δi
j (2.24)

Example 2 If {v1,v2,v3} is a basis for V, its dual basis is denoted by

{v1,v2,v3} (2.25)

✷
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Riesz proved this theorem for the infinite-dimensional case. In the simpler finite-
dimensional case, the theorem implies that if we have a representation of a vector
v = vibi, there exists another closely related representation given by

v = vibi = vib
i (2.26)

where the components vi are called the contravariant coordinates of v, and vi are
the covariant coordinates.

An example in two dimensions of a basis and its dual basis is shown in figure 2.1.

b
1

b1

b
2

b2

(0,1)

(1/3,1/3)

(3,0)

(−1,1)

Figure 2.1 A basis {b1,b2} and its dual basis {b1,b2}. Note that the vector
b1 is orthogonal to b2 and that b2 is orthogonal to b1 (equation (2.24)).

2.5.1 Contravariant and covariant coordinates

The contravariant coordinates of a vector x related to a basis bi are denoted (xb)
i

and may be expressed as the scalar product between x and the dual covariant
basis vectors bi,

〈x,bi〉 = 〈(xb)
jbj ,b

i〉 (2.28)

= (xb)
j〈bj ,b

i〉 (2.29)

= (xb)
jδ i

j (2.30)

= (xb)
i (2.31)

And, similarly, for the covariant coordinates of a vector x, (xb)
i, which may be

expressed as the scalar product between x and the contravariant basis vectors

〈x,bi〉 = (xb)i (2.31)
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This important observation can be used for expressing covariant coordinates in
terms of contravariant coordinates and vice versa:

(xb)i = 〈x,bi〉 = 〈(xb)
jbj ,bi〉 = (xb)

j〈bj ,bi〉 (2.33)

(xb)
j = 〈x,bj〉 = 〈(xb)ib

i,bj〉 = (xb)j〈bi,bj〉 (2.34)

An important observation here is that there exist matrices 〈bi,bj〉 and 〈bi,bj〉
that transform coordinates between the contravariant and the covariant versions
thereof.

2.6 TENSORS

Scalars and vectors are only simple examples from the class of quantities in the
field of applied mathematics. There are quantities of more complicated structure
than scalars or vectors, called tensors. The concept of a tensor, like that of a
vector, is an entity that does not depend on any frame of reference or coordinate
system. However, just as a vector can be represented by its components when
referred to a particular coordinate system, so can a tensor.

There are two avenues to tensors, and there is a general disagreement over which
is the better approach; the component approach or the object approach. In the
component approach the underlying coordinate system is only implicit. This has
the disadvantage that all the components describing the tensor change under
transformation, although the tensor still is the “same”. The other approach,
the object approach, is favoured by the mathematical community. Although this
way of treating tensors is necessary for many modern applications and may give a
more complete understanding for tensor theory, the component approach is easier
to begin with. The component approach also has the advantage of facilitating
interpretation of the calculations in terms of linear algebra.

Tensors are based on two forms. Depending on the transformation properties of a
tensor, it will be categorized as being a covariant tensor, a contravariant tensor or
a mixture of these two, i.e. a mixed tensor. In section 2.5 the distinction between
vectors and covectors was discussed; a vector is an example of a contravariant
tensor and a covector of a covariant tensor. An electrical field or the gradient
of a scalar field are examples of covectors. A vector is expressed in units of the
coordinate grid, while an electrical field is expressed in voltage per unit of the
coordinate grid.

Consider a change of coordinate system resulting in doubling the value of each
vector component, i.e. a rescaling of the axes. What does this bring about for
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the electrical field description? The electrical field expressed in its components
will in the new basis have half of the original component values. The general
rule is: contravariant vectors have the transformation property that a change
to shorter basis vectors gives larger coordinates, while the same change gives
smaller coordinates for covariant vectors. Another example of this is presented
in figure 2.2.

o
C

o
C

1

m

feetx=3

x =1

1

4

7

o

1

4

7

o

temperature gradient = 3  /m

temperature gradient = 1  /foot

 An iron rod

Temperature distribution in the iron rod in two coordinate systems

Figure 2.2 The position vector is a contravariant vector: Changing to a shorter
basis vector, from 1m to 1foot, increases the position coordinate from 1 to 3 (for
simplicity 1m=3feet). The gradient is a covariant vector: Changing to a shorter
basis vector, from 1m to 1foot, decreases the coordinate of the gradient from 3
to 1.

2.6.1 Definition of finite-dimensional tensors

The definition of higher order tensors proceeds by making use of the spaces V
and V∗ and defines multi-linear functions F(u,v, ...,w) in which the elements
u,v, ...,w are vectors that range independently over V or V∗. The term multi-
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linear means that a function is linear in each of its arguments. A tensor of order
(p, q) is a multi-linear mapping:

V∗ × V∗..... × V∗

︸ ︷︷ ︸

p

×V × V..... × V
︸ ︷︷ ︸

q

→ C (2.34)

The order of a tensor defines the number of subscripts and superscripts needed
in an element description. A tensor

Fi1..ip

j1..jq (2.35)

is of order (p, q). A tensor having both covariant and contravariant components
is said to be a mixed tensor.

From this definition we see that a vector is a tensor of order (1, 0) and a covector
is (0, 1). Tensors of order (2, 0), (0, 2) and (1, 1) can in the finite-dimensional
case be represented with matrices. Note that the order of a tensor has nothing
to do with the size of the array, i.e. if it is 2×2 or 3×3, etc. Third order tensors,
for example tensors of order (3, 0), have one more index and can therefore be
interpreted as a three-dimensional array of numbers (in the finite-dimensional
case).

Example 3 A second order tensor of type (2,0) ∈ V ⊗ V. This space, V ⊗ V,
consists of all multi-linear mappings: V∗ × V∗ → C ✷

Example 4 A second order tensor of type (1,1) ∈ V ⊗ V∗. This space, V ⊗ V∗,
consists of all multi-linear mappings: V∗ × V → C ✷

2.6.2 The metric tensor

We have earlier defined the scalar product. It takes two vectors and produces a
real number, i.e. it is a multilinear mapping V × V. This means that the scalar
product corresponds to a (0, 2)-tensor. This tensor is called the metric tensor or
the first fundamental tensor and is denoted G. Depending on in which basis it
is descibed, it has different coordinates:

G = (Gb)ijb
i ⊗ bj G = (Gb)

ijbi ⊗ bj

G = (Gb)
i
jbi ⊗ bj G = (Gb)i

j
bi ⊗ bj
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The coordinates are defined by

(Gb)ij = 〈bi,bj〉 (2.37)

(Gb)
ij = 〈bi,bj〉 (2.38)

(Gb)
j

i = 〈bi,b
j〉 = δj

i (2.39)

(Gb)
j
i = 〈bj ,bi〉 = δi

j (2.40)

Inserting these notations in equations (2.32) and (2.33) gives the two first equa-
tions below. The two last equations are given by symmetry.

(xb)i = (Gb)ij(xb)
i (2.41)

(xb)
i = (Gb)

ij(xb)i (2.42)

(xb)
j = (Gb)

i
j(xb)

i (2.43)

(xb)i = (Gb)
i

j (xb)j (2.44)

The coordinates (Gb)ij , (Gb)
ij , (Gb)

i
j = (Gb)

i
j = δi

j are covariant, contravariant
and mixed coordinates respectively of the metric tensor.

As in the vector case, when multiple bases are used to describe a tensor, a
subscript and a parenthesis are used for indicating in which basis the metric
tensor is described:

G = (Gv)ijv
i ⊗ vj = (Gb)ijb

i ⊗ bj (2.44)

The bracket notation and the metric tensor closely related.

〈 · , · 〉 ↔ G( · , · ) (2.45)

The bracket notation will sometimes be used in parallel since it may simplify the
interpretation for readers not familiar with tensor algebra.

The metric tensor is a tensor of order (0,2) which means that it is a bilinear
mapping from V × V → C . As indicated in section 2.5.1, this tensor can be used
to transform vectors to covectors. Inserting one basis vector gives

G(vi, · ) = ((Gv)kjv
k ⊗ vj)(vi, · )
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= (Gv)kj vk(vi)
︸ ︷︷ ︸

=δk
i

vj (2.47)

= (Gv)ijv
j (2.48)

and if the basis {vi} is orthonormal, then (Gv)ij = δij giving

G(vi, · ) = δijv
j = vi (2.48)

The coordinates of a metric tensor, corresponding to the covariant basis, are
obtained by having the metric act on all corresponding pairs of contravariant
basis vectors.

G(vi,vj) = ((Gv)klv
k ⊗ vl)(vi,vj)

= (Gv)klv
k(vi)v

l(vj)

= (Gv)kl δk
i δl

j

= (Gv)ij (2.50)

where vi ⊗ vj are the covariant basis elements in which the metric is described.
More explicitly,

(Gv)ij =







G(v1,v1) G(v1,v2) . G(v1,vi)
G(v2,v1) G(v2,v2) . G(v2,vi)

. . . .
G(vi,v1) G(vi,v2) . G(vi,vi)







(2.50)

If the basis vectors, vi, are orthogonal, the coordinates of the metric is defined
by

(Gv)ij =







G(v1,v1) 0 . 0
0 G(v2,v2) . 0
. . . .
0 0 . G(vi,vi)







(2.51)

and if the system is orthonormal, the coordinates of the metric are reduced to

(Gv)ij =







1 0 . 0
0 1 . 0
. . . .
0 0 . 1







= δij (2.52)
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Example 5 The standard metric in R

3 when using a Cartesian orthonormal
basis has the following components:

Gij =







1 0 0

0 1 0

0 0 1







(2.53)

and the scalar product between two vectors in R

3 in matrix notation is denoted:

Gija
ibi =

(

a1 a2 a3
)







1 0 0

0 1 0

0 0 1













b1

b2

b3







= a1b1 + a2b2 + a3b3(2.54)

✷

2.7 CHANGE OF BASIS

2.7.1 Transformation of vectors

Let {vi} be a basis for V. Any vector ∈ V can be described as a sum of coordinates
times the corresponding basis vectors, b = (bv)ivi. A set of vectors, bn, may be
described by adding a subscript n,

bn = (bv)i
nvi (2.55)

If the vectors in the set bn are linearly independent and span the same space as
{en}, they, too, constitute a basis for V. This illustrates that the coordinates of
the new basis functions expressed in the old basis define a linear transformation
matrix (bv)i

n. Expressing a vector in both systems

x = (xv)ivi (2.57)

= (xb)
nbn (2.58)

= (xb)
n(bv)i

nvi (2.59)
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gives ((xv)i − (xb)
n(bv)i

n)vi = 0. Since all the basis vectors are linearly inde-
pendent, the expression inside the parenthesis vanishes and we get

(xv)i = (bv)i
n(xb)

n (2.59)

2.7.2 Transformation of the metric tensor

Equation (2.49) gives an expression for the coordinates of the metric tensor in
the new basis bi ⊗ bj :

(Gb)nm = G(bn,bm) (2.61)

= ((Gb)klb
k ⊗ bl)(bn,bm)

= ((Gv)klv
k ⊗ vl)((bv)i

nvi, (bv)j
mvj)

= (Gv)kl (bv)i
n(bv)j

m vk(vi)v
l(vj)

= (Gv)kl (bv)i
n(bv)j

m δk
i δl

j

= (Gv)ij (bv)i
n(bv)j

m (2.62)

which gives the new coordinates of metric tensor expressed in the coordinates of
the old basis:

(Gb)nm = (bv)i
n(bv)j

m(Gv)ij (2.62)

2.8 PROJECTION OPERATORS

A Hermitian operator A with eigenvalues λi can be decomposed using the spectral
decomposition theorem [Str80],

A =
n∑

i=1

λiêiê
∗

i (2.63)

where the vectors êi are normalized eigenvectors of A.

Definition 1 A linear operator A is said to be a projection operator if is is both
Hermitian and idempotent, where the last property is defined by AA = A. ✷
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From the idempotent requirement it follows that a projection operator has eigen-
values {0, 1}. It is easy to verify that all the outer products of the normalized
eigenvectors are projection operators since

(êiê
T
i )T = êiê

T
i (2.64)

and the operator is idempotent:

P = êiê
T
i and PP = êiê

T
i êiê

T
i = êi (êT

i êi)
︸ ︷︷ ︸

=1

êT
i = P (2.65)

it follows from definition 2.1 that êiê
T
i is a projection operator. This class of

operators is commonly used in quantum mechanics [Jau68, Hug89].
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3
NON-ORTHOGONAL BASES AND

FRAMES

Non-orthonormal basis systems are rarely discussed in literature. Lately, how-
ever, the increasing interest in wavelet theory has brought some light to the the-
ory needed for non-orthogonal systems. However, wavelet discussions are often
reduced to concern only orthonormal systems. Rather than reviewing wavelet
theory in detail, this chapter describes filtering in terms of tensor theory. The
reason is that there are many attributes associated with wavelets. For example,
low order moments of the wavelet is zero, a wavelet basis is constructed as a
shifted and dilated version of a “mother-wavelet” and wavelet descriptions are
often considered to be redundant. In the following discussion, the basis functions
are neither required to be dilated and shifted versions of each other, nor having
zero low order moments. Further, no orthogonality requirements of the functions
are imposed. Note that non-orthogonality does not imply redundancy.

Without loss of generality, this discussion will be restricted to functions in L2(R

N ).
Most functions of interest belong to this class. In principle we are interested in
all functions in this Hilbert space, and any basis spanning it is infinite. However,
in practise the basis set is always finite.

3.1 THE BASIS OPERATOR

A set of basis filters can compactly be defined using an operator formalism.

Definition 2 Let {bi} be a basis for H, then the operator

B =





| | ... |
b1 b2 ... bm

| | ... |



 (3.1)

is denoted the basis operator. ✷

35
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The chosen basis functions span a subspace of L2(R

N ) and defines which part,
denoted B, that is of interest. Even if the basis is carefully chosen, functions
outside B will be present. A typical example when this occurs is in the presence
of noise. When dealing with a function outside the subspace, B, it is preferable to
describe it with the closest function inside B. Defining what close means is done
by choosing a suitable norm. One natural norm in L2(R

N ) is the one related
to the scalar product ‖ · ‖2

2 = 〈 · , · 〉. For the sake of simplicity we omit the
subscript below.

Let θ denote the coordinate vector describing the function in the basis {bi}. Find-
ing the best approximation by minimizing the difference between the function f
and B θ in this norm is done by differentiating the squared error norm,

ǫ = ‖f − B θ‖2 (3.3)

= ‖f‖2 − f∗B θ − θ∗B∗f + θ∗B∗Bθ (3.4)

The minimum value is given by solving

∂ǫ

∂θ
= −2B∗f + 2B∗Bθ = 0 (3.4)

giving

B∗f = B∗Bθ (3.5)

If B is a basis operator with m columns, the operator (B∗B) has the size m×m
and has been constructed using m linearly independent basis functions. This en-
sures that the matrix (B∗B) is invertible and a closed expression of the coordinate
vector can be calculated,

(B∗B)−1B∗f = θ (3.6)

The expression (B∗B)−1B∗ = B+ is known as More-Penrose inverse of B. Act-
ing with the basis operator on the coordinate vector gives the input signal, or
more correct, the part of the signal that can be described by the chosen basis.

f ′ = Bθ = B(B∗B)−1B∗f = BB+f (3.7)

where PB = B(B∗B)−1B∗ = BB+ is said to be a projection operator,

f ′ = PBf (3.8)
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This means that the orthogonal projection of a signal f onto the subspace B
gives an approximation f ′ which is as close as possible in least squares sense.
Expressing a signal in basis functions spanning a subspace of the total signal
space is visualized in figure 3.1.

f

B
’f = Bθ

Figure 3.1 Expressing a signal using a basis spanning a subspace if the total
signal space.

3.2 SAMPLED SYSTEMS

In the finite-dimensional case, where {bi} ∈ ℓ2(Z

N ), the filter functions can be
described by n-dimensional vectors, where n is the number of samples defining
a filter. Then, the basis operator can be represented by a n × m matrix having
these n-dimensional basis vectors as column vectors:

B =









. . ... .

. . ... .
b1 b2 ... bm

. . ... .

. . ... .









(3.9)

In the case of finite-dimensional basis operators, the number of rows have to be
equal or greater than the number of columns (= number of basis functions). In
other words, n ≥ m. If this requirement is not fulfilled, the number of basis
functions, m, is greater than the dimension of the space in which the filters are
described. This means that the basis set is linearly dependent and thus not
a basis. Such redundant discrete systems are called frames. In the frame case
(B∗B) is not invertible. This issue will be touched upon in section 3.4.

The original pixel description can be interpreted as defining a multidimensional
signal space. We denote this space E, and a basis spanning this space is denoted
{ei} This space is visualized in figure 3.2 (top). A coordinate set times the basis
functions corresponding to a linear grey-level ramp is also shown in this figure
(bottom).
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e
1

e
2

e
3

.

.

e
i

Figure 3.2 Top: The standard pixel base can be seen as a set of Dirac basis
vectors on a Cartesian grid. Bottom: The pixel base times coordinates describ-
ing a linear grey-level ramp.
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3.2.1 Subspace of orthogonal basis vectors

In this section an explicit example is given of how transformations between or-
thogonal bases affect the coordinates of the vectors and the metric tensor. The
purpose of this rather simple exercise is not only a way to make the reader famil-
iar to the notation, but the results from this section will be compared to a similar
derivation in the next section dealing with non-orthogonal basis vectors. In this
section a two-dimensional ramp function similar to the on in figure 3.2 will be
expressed in two different bases: one nine-dimensional (3× 3) orthonormal dirac
bases denoted {ei} and a two-dimensional orthonormal basis denoted {bi}.

Let V be a vector space and let {e1, e2, ..., e9} be a basis for V. Suppose a vector
f is defined by

f = (fe)
iei ↔ (fe)

i =





−3 0 3
−3 0 3
−3 0 3



 (3.10)

In a product sum, the location and the ordering of the elements is not of im-
portance and viewing the certainty function as a vector reduces the number of
indices.

(fe)
i = (−3 0 3 −3 0 3 −3 0 3 ) (3.11)

The nine signal coordinates (fe)
i are spatially arranged in a two-dimensional

array indicating that it represents a ramp to the left. A subspace of V containing
this ramp function is the one spanned by the two-dimensional orthonormal basis
bn = (be)

i
nei,

(b1,b2) ↔ (be)
i
1 =





−1 0 1
−1 0 1
−1 0 1



 , (be)
i
2 =





−1 −1 −1
0 0 0
1 1 1



 (3.12)

where b1 is a ramp function to the left and b2 is a ramp orthogonal to the first
one. Let the subspace spanned by {bi} be denoted B. It is easy to see that B
contains the signal vector f and thus can be described in this new basis since
f = 3b1 (figure 3.3).

What is the coordinates of f in the new basis bi? Expressing the vector in both
the bn and the ei bases gives

f = (fb)
nbn = (fe)

iei (3.13)
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b

b1

2

f

Figure 3.3 Visualization of the vector f (equation (3.10)) and the two basis
vectors, bi (equation (3.12)). The basis bi spans a two-dimensional subspace of
V. The signal can exactly be described in B.

From equation (2.59) we get how the old coordinates are expressed in the new
ones.

(fe)
i = (be)

i
n(fb)

n (3.14)

In order to describe the signal as coordinates in the new basis, the reverse co-
ordinate relation is needed. Unfortunately the coordinate matrix (be)

i
n is not a

square matrix, and thus not invertible. However, the matrix can be made square
by acting with coordinates of the dual basis vectors, (Ge)ij(be)

j
m, on the left and

the right hand of the expression:

(Ge)ij(be)
j
m(fe)

i = (Ge)ij(be)
j
m(be)

i
n(fb)

n (3.15)

Identifying (Ge)ij(be)
i
m(be)

i
n as the coordinates of the metric in the new basis

bn ⊗ bm gives

(Ge)ij(be)
j
m(fe)

i = (Gb)nm(fb)
n (3.16)

where (Gb)
nm are the coordinates of the inverse metric G−1 where (Gb)nm(Gb)

nm

= δn
k . Thus, the coordinates of the signal in the new basis are

(fb)
n = (Gb)

nm (Ge)ij(be)
j
m(fe)

i

︸ ︷︷ ︸

dual coordinates

= (Gb)
nm(fb)m (3.17)
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Now the coordinates of the metric tensor is needed explicitly. Choosing to view
the basis ei as orthonormal gives the following coordinates of the metric.

(Ge)ij = G(ei, ej) =

















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

















(3.18)

Equation (2.62) gives the coordinates of this metric expressed in the new basis,
bi ⊗ bj .

(Gb)nm = G(bn,bm) = (bv)i
n(bv)j

m(Gv)ij = (3.19)

=

















−1 −1
0 −1
1 −1
−1 0
0 0
1 0
−1 1
0 1
1 1

















T 















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

































−1 −1
0 −1
1 −1
−1 0
0 0
1 0
−1 1
0 1
1 1

















(3.20)

=

(
6 0
0 6

)

(3.21)

which gives the coordinates of the corresponding inverse metric (the conjugate
metric tensor)

(Gb)
nm =

(
1
6 0
0 1

6

)

(3.22)

Inserting numerical values in (Ge)ij(be)
j
m(fe)

i (equation (3.17)) gives the dual
coordinates of the signal. (This part corresponds to “standard filtering”.)

(fb)m = (Ge)ij(be)
j
m(fe)

i = ( 18 0 ) (3.23)
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By acting with the inverse metric the coordinates of the vector in the filter basis

(fb)
n = (Gb)

nm(fb)m = ( 18 0 )

(
1
6 0
0 1

6

)

=

(
3
0

)

(3.24)

which are the coordinates of the signal in the signal space defined by the basis
bi (figure 3.3).

3.2.2 Transformation to a subspace spanned

by non-orthogonal basis vectors

Consider the same signal vector as in the previous section. In this section we
will derive its coordinates corresponding to a non-orthogonal basis. Let the new
basis vectors be

h1 = b1 = (be)
i
1ei (3.26)

h2 = b1 + b2 = (be)
i
1ei + (be)

i
2ei (3.27)

The new basis {h1,h2} spans the same space as {b1,b2} but is non-orthogonal.
In this section it is shown that the coordinates of the metric tensor compensate
for this. A visualization of this basis is shown in figure 3.4

f

2h

1h

Figure 3.4 Visualization of the signal vector in the hi basis. Note that the
signal is fully described by a scaling of the h1 vector although it is not orthogonal
to h2.

The coordinates of the new basis functions are:

(he)
i
1 = (be)

i
1 =





−1 −1 −1
0 0 0
1 1 1



 (3.28)
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(he)
i
2 = (be)

i
1 + (be)

i
2 =





−2 −1 0
−1 0 1
0 1 2



 (3.29)

As in the previous section, the coordinates of the metric tensor are needed expli-
citly. The coordinates corresponding to the new basis, hi ⊗ hj , are

(Gh)nm = G(hn,hm) = (he)
i
n(he)

j
m(Ge)ij =

(
6 6
6 12

)

(3.29)

and the corresponding inverse metric (the conjugate metric tensor)

(Gh)nm =

(
1
3 − 1

6

− 1
6

1
6

)

(3.30)

Inserting numerical values gives the dual coordinates of the signal

(fh)m = (Ge)ij(he)
j
m(fe)

i = ( 18 18 ) (3.31)

This shows that the projection of the signal is equal on the two new basis func-
tions. Transforming the dual coordinates to standard coordinates using the in-
verse metric can be seen as an orthogonalization of the basis vectors.

(fh)n = (Gh)nm(fh)m = ( 18 18 )

(
1
3 − 1

6

− 1
6

1
6

)

=

(
3
0

)

(3.32)

which are the coordinates of the signal in the signal space defined by the basis
hi (figure 3.4).

3.3 CONVOLUTION

Convolution means filtering each neighbourhood of a signal with a sliding filter.
In each point, however, the operation performed can be seen as a scalar product.
Let a basis filter be denoted bk. Using scalar product notation, filtering a function
f with this basis is written

fk = 〈bk, f〉 (3.33)

where fk are the coordinates of the function in the dual basis (section 2.5.1).
For simplicity, this notation will in the following also be used for convolution.
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When the basic operation is understood, adding indices for denoting the spatial
variables serves no purpose.

In image analysis, the function f often is a two- or three-dimensional function
sampled on a Cartesian grid. The sample values are here thought of as coordinates
corresponding to Dirac basis functions that are positioned at the sample positions.
Let this “sample” basis be denoted by ei, where i indexes a specific spatial
position.

3.3.1 Averaging

Lowpass filtering increases the local correlation of the signal (figure 3.5). This
means that the notion of an orthonormal Dirac basis in, for example an image,
is correct only at the “highest” resolution.

2
e

e
3

e1

ei

e e e e e
1 2 3 4 5 1b bb2 b3 b4 5

1b

b2

b3

bi

Figure 3.5 Averaging can be seen as changing to a non-orthogonal basis.

In many practical cases the “highest” resolution does not exist. Images acquired
from an analogue video tape, for example, always have lower resolution than
expected. Further, all optical systems have point spread functions blurring the
images, in particular when the system is out of focus. In the cases where the
samples of input signal are locally correlated, the basis functions that describe the
signal should not be regarded as Dirac impulses but broader functions. (figure 3.5,
right). If this correlation is known, the dual basis and metric tensors can be
calculated, and the correlation can be compensated for using the inverse metric.
This means that filtering can be performed as if the “original” unblurred signal
was present. This procedure can be seen as an inverse filtering step followed by
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a “standard” filtering step. However, as in all inverse filtering, this only works
well if the noise level is low.

3.3.2 Gabor expansion

In 1946 Gabor [Gab46] proposed a combined representation of time and fre-
quency. He expanded the signal in modulated Gaussian basis functions

f(x) =
∑

i

αi gui,σ(x) (3.34)

where u is the frequency variable and

gui,σ(x) = eiuxe−
x2

σ2 (3.35)

These complex modulated Gaussian basis functions are today commonly referred
to as Gabor functions. Gabor’s motivation for choosing these functions was that
they are maximally compact in time and frequency simultaneously. The main
criticism of these basis functions is that the Gabor functions are non-orthogonal,
and although the functions are well localized they have infinite support, forcing
truncation in all practical implementations.

Since the functions are non-orthogonal, the coefficients αi in equation (3.34)
can not be obtained by convolving the signal with the Gabor basis functions
themselves. As mentioned earlier, the coefficients are obtained by convolving
the signal with the dual Gabor basis functions. Gabor proposed an iterative
method for finding the coefficients. Quite recently, methods for solving this
problem analytically have been proposed. Bastiaans [Bas80] derived an analytical
expression for a dual Gabor basis in one dimension. This dual basis is constructed
using a so-called auxiliary function (figure 3.6). This result was extended to two
dimensions by Porat and Zeevi [PZ88].

Figure 3.6 shows two centered Gabor functions, one with zero modulation, i.e.
a Gaussian function, and one function modulated by ∆ω. A Gaussian function
shifted ∆x is also shown in this figure. The product between the shift and the
modulation is chosen so that ∆ω∆x = 2π. This corresponds to critical sampling
when having infinitely many shifts and modulations. A shift-modulation product
gives a redundant system, a frame. Multiplication of the centered Gaussian
function with the auxiliary function produces a square wave with exponentially
decreasing amplitude.
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Figure 3.6 Auxiliary function used for generation of the dual filter base cor-
responding to a critically sampled Gabor filter basis. Three different Gabor
functions are shown (dashed).

3.4 FRAMES

The frame concept refers to an extension of the basis concept allowing for redun-
dant basis vectors. So, contrary to bases, these linearly dependent basis systems
contain more “basis” vectors than dimensions of the space described.

The frame concept related to redundant basis systems was introduced by Duffin
and Schaeffer in 1952 in the context of expanding a function in complex expo-
nentials eiλnx where λn 6= 2πn. Note that frames do not necessarily need to
be redundant or non-orthogonal. The concept includes the special cases of non-
orthogonal and orthonormal bases. The following definition of a frame is adopted
from Daubechies [Dau92]:

Definition 3 A family of functions bi in a Hilbert space H is called a frame if
there exist constants 0 < α, β < ∞ such that for all f ∈ H,

α‖f‖2 ≤
∑

i

|〈f ,bi〉|2 ≤ β‖f‖2 (3.36)
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BB∗ (BB∗)−1 BB∗(BB∗)−1 = I

Figure 3.7 Left: Geometric interpretation of BB∗. The dimension of the hy-
per ellipsoid is equal to the dimension of the basis vectors, m = dim(bi). Mid-

dle: Geometric interpretation of (BB∗)−1. Right: Geometric interpretation of
BB∗(BB∗)−1.

The α and β are called frame bounds. If α = β the frame is called a tight frame.
✷

The definition ensures that the basis functions bi span the space since no signals
f are allowed to have zero projection on every basis function. Note also that the
definition does not require the basis vectors to be linearly independent.

3.4.1 The frame operator

Expanding the sum in equation (3.36)

∑

i

|〈f ,bi〉|2 =
∑

i

〈f ,bi〉〈b∗

i , f〉 (3.37)

which in the finite-dimensional case can be written in matrix form. Let bi ∈ R

m,

=
∑

i

f∗bib
∗

i f = f∗BB∗f (3.38)
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where

BB∗ = b1b
∗

1 + b2b
∗

2 + ... + bmb∗

m

and B is a n × m matrix,

B =





| | ... |
b1 b2 ... bn

| | ... |



 (3.39)

This operator is denoted the frame operator.

A visualization of the operator BB∗ is shown in figure 3.7 (left). In general, the
shown ellipsoid is an n-dimensional hyper-ellipsoid where n is the dimension of
the column vectors in B. This mental imagery may help the understanding of the
properties of a frame. The inverse of BB∗ is obtained by inverting the radius of
the principal axes. This is only possible if the minimum radius is greater than zero
and the maximum radius bounded. The minimum value and the maximum value
correspond to the frame bounds. If the radius of the hyper-ellipsoid collapses to
zero in some of its dimensions, this sets the lower frame bound to zero and B
is not a frame anymore. In mathematical terms this is equal to: since B is a
frame, the symmetric operator BB∗ is a positive bounded operator which makes
it invertible (section 2.4.4).

3.4.2 The dual frame operator

Using the identity BB∗(BB∗)−1 = I we can write

B = IB = BB∗(BB∗)−1B = BI (3.40)

where the right identity operator is equal to B∗(BB∗)−1B. The dual frame is
defined by the dual frame operator :

b̃i = (BB∗)−1bi (3.41)

It can be shown that the dual basis vectors form a frame as well. We denote this
frame the dual frame. It can be shown that the dual frame bounds are Ã = 1

B

and B̃ = 1
A .
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BB∗ (BB∗)−1 BB∗(BB∗)−1 = I

Figure 3.8 Left: Geometric interpretation of BB∗ in the case where B is a
tight frame. Middle: Geometric interpretation of (BB∗)−1. Right: Geometric
interpretation of BB∗(BB∗)−1.

3.4.3 Describing a signal in a frame

In section 3.1, an expression for the coordinates of the signal corresponding to
the filters basis was derived. This expression required that B∗B was invertible.
However, if B corresponds to the frame, B∗B is not invertible and the solution
in equation (3.6) does not exist. Rewriting equation (3.5) gives

BB∗f = BB∗Bθ (3.42)

Although B∗B is not invertible, the frame condition (equation (3.36)) gives that
BB∗ is invertible.

(BB∗)−1BB∗f = Bθ (3.43)

This gives the description of f ′ = Bθ using the frame B

f ′ = (BB∗)−1BB∗f (3.44)

Compare the expression with equation (3.7), where the signal f is expanded in a
basis, f ′ = B(B∗B)−1B∗f
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Using scalar product notation, equation (3.44) converts to

f ′ = b̃i 〈f ,bi〉 (3.45)

where 〈f ,bi〉 are the coordinates of the signal corresponding to the dual frame.
By symmetry, we also have

f = bi 〈f , b̃i〉 (3.46)

where 〈f , b̃i〉 are the coordinates of the signal in the space spanned by the filter
basis.

In a tight frame the relation between the frame and the dual frame is

b̃i =
bi

α
(3.47)

where α is the frame bound.

Example 6 (Two orthogonal basis vectors in 2D)
The frame bounds for the orthonormal basis in figure 3.9 (upper left) are A =
B = 1 since for any vector f = f ibi ∈ H,

2∑

i=1

|〈f ,bi〉|2 = |f1|2 + |f2|2 = ‖f‖2 (3.48)

According to Parseval:
∑

i |〈f ,bi〉|2 = ‖f‖2, all orthonormal bases are tight
frames with frame bounds A = B = 1. ✷

Example 7 (Three equally spread basis vectors in 2D)
For a frame with three equally spread basis vectors (figure 3.9 (upper right)).
The frame bounds are A = B = 3

2 since

3∑

i=1

|〈f ,bi〉|2 = |f1|2 +

∣
∣
∣
∣
∣

√
3

2
f2 − 1

2
f1

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣
−
√

3

2
f2 − 1

2
f1

∣
∣
∣
∣
∣

2

(3.50)

=
3

2

(
|f1|2 + |f2|2

)
=

3

2
‖f‖2 (3.51)

✷
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Example 8 (Four equally spread basis vectors in 2D)
A frame consisting of four pairwise heavily dependent basis vectors is shown in
figure 3.9 (lower left). It turns out that this frame is tight as well, with bounds
A = B = 2

4∑

i=1

|〈f,bi〉|2 = |f1|2 + |f2|2 + |f1|2 + |f2|2 = 2‖f‖2 (3.51)

✷

Finally a frame with five equally spread basis vectors and the corresponding dual
frame is shown in figure 3.9 (lower right).

A = B = 1

A = B = 2

A = B = 3/2

A = B = 5/2
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Figure 3.9 Examples of tight frames with corresponding dual frames and frame
bounds, bi = 1

A
bi.
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4
NORMALIZED CONVOLUTION

One of the most important operations in image processing is convolution. The
fundamental assumption underlying this fact is that the original representation
of a particular neighbourhood, i.e. the values of the signal for each pixel, is not a
good one and that the neighbourhood can be better understood when expressed
in terms of a set of carefully chosen basis functions. The original basis, i.e. the
set of impulses located at pixel positions, is considered to have a shift invariant
metric, and thus the change of basis becomes trivial. However, the assumption
of a shift invariant metric is often false, and neglecting this fact can introduce
severe errors.

In this chapter a new method termed Normalized convolution is presented [KW93].
The method is an example of the power of the signal/certainty philosophy, i.e.
the separation of data and operator into a signal part and a certainty part
[Gra78, GK83, WK88, Knu89]. Missing data is simply handled by setting the
certainty to zero. Localization or ‘windowing’ of operators is done using an appli-
cability function, the operator equivalent to certainty, not by changing the actual
operator coefficients. Spatially or temporally limited operators are handled by
setting the applicability function to zero outside the window.

In this chapter many applications of normalized convolution are presented. Some
of the examples can be comparably solved using standard techniques based on,
for example, linear interpolation. The examples presented are not intended as
a comparison with existing methods but are intended for increasing the under-
standing and to indicate the range of problems to which the normalized con-
volution technique can be applied. Although special purpose algorithms may
outperform general purpose techniques, in the situations they are designed to
handle, such algorithms are seldom extendable to solving new problems. In this
chapter examples of normalized convolution, including interpolation of multidi-
mensional signals and applications to spectrum analysis, are discussed. Further
applications are found in chapter 5.

53
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4.1 OPERATOR LOCALIZATION

In the previous chapter non-orthonormal bases were discussed. In this chapter the
discussion is extended to deal uncertain data and operator locality. As described
in chapter 2, filtering a signal, f , with basis set, bi, gives the coordinates of
the dual filter basis fi. If the basis is orthonormal, the contravariant and the
covariant coordinates are equal. Thus, the coordinates f i of the signal in this
basis, f = f ibi is given directly. If the basis is not orthonormal, we know from
equation (2.30) how to compensate for this. Acting on the filter results with the
coordinates of the metric tensor viewing the basis set as orthonormal, 〈bi,bj〉−1,
yields the coordinates f j

f j = 〈bi,bj〉−1〈bi, f〉 (4.1)

If the used filters are not spatially localized as, for example, in the case of the
spatially infinite basis functions of the discrete Fourier transform, the filters are
not realizable. Classically, filters are made localized through multiplication by
a window function. Such an operation changes the filter properties as well as
the relation between filters in a filter basis set. For example, the Fourier basis
just mentioned, is orthogonal on an infinite grid. Multiplication by a Gaussian
window destroys that property and makes the system non-orthogonal.

4.1.1 Avoiding signal windowing

A much preferable way of obtaining local signal analysis is to let the basis func-
tions be accompanied by a value stating how important the function, at each
given point, is for the analysis. In this way, the operator can be left unchanged
and locality is introduced by letting the importance of the signal decrease with
the distance from the centre according to a window function. How this is done
is shown in this section.

If the signal can be fully described by the basis functions used, there exist coor-
dinates such that

f = fkbk (4.2)

Inserting this in equation (4.1) gives

f j = 〈bi,bj〉−1〈bi, f
kbk 〉 (4.4)

= fk 〈bi,bj〉−1〈bi,bk〉
︸ ︷︷ ︸

δj

k

(4.5)
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Figure 4.1 Top: A sinusoidal basis function, b, and spatial localization win-
dow (dashed), a. Bottom: The product of the basis filter and the localization
window, ab.

which shows that the estimated coordinate vector is equal to the signal coordinate
vector f j . The shape of any window not making the basis function linearly
dependent can be compensated for since

〈abi,bj〉−1〈abi,bk〉 = δj
k (4.5)

where a denotes a scalar localization window. This shows that for all windows
where the matrix 〈abi,bj〉 is invertible, the correct coordinate vector is estimated.
The requirement on the window is not particularly restrictive and is not a problem
in practise.

The formula in equation (4.5) can be interpreted as calculating the coordinates
of metric tensor interpreting the windowed basis function set as orthonormal.
The effect of this is that the window is used as a certainty mask making the filter
localized without actually changing it. This certainty mask is denoted the appli-
cability function . Note that if the coordinates of the metric tensor are calculated
using the windowed filter functions 〈abi, abj〉 = 〈wi,wj〉 the coordinates, (fw)i,
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corresponding to the windowed wi = abi basis are obtained, not the coordinates,
(fb)

i, corresponding the original filter basis bi

The above discussion shows how to make the basis, in which the signal is ex-
pressed in, invariant to the localizing operator.

Example 9 Let the basis set of the discrete Fourier transform be denoted {bi}.
This set is orthonormal,

〈bi,bj〉 = δij (4.6)

Assuming sufficient resolution in the Fourier domain, the transform of a sinusoidal
input signal produces an impulse function. In other words, only one of the basis
functions matches the signal and the signal is equal to a scaled version of that
basis function, f = αbk.

〈bi, f〉 =

{
α i = k
0 otherwise

(4.7)

In a practical implementation, a windowing function with compact support has
to be used. This corresponds to a smearing in the Fourier domain making all
basis functions correlated. In general this leads to all filters responding to the
single frequency input signal, although normally not as strong as the response
from the basis filter bk.

〈abi, f〉 6= 0 ∀ i (4.8)

As described in equation (4.5), a solution that removes the unwanted cross talk
between the filters, is to use the metric tensor defined by the basis used:

f j = 〈abi,bj〉−1〈abi, f〉 (4.9)

✷

It has been shown how non-orthogonality introduced by windowing can be com-
pensated for by measuring using the appropriate metric. This is true also if the
original basis is non-orthonormal. The metric tensor compensates for both the
window and the intrinsic non-orthogonality.
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4.2 SIGNALS AND CERTAINTIES

The applicability function, a, introduced in the previous section is a certainty
function for the basis functions. By symmetry, we may define a certainty function
for the data, too. This scalar function is denoted by c, for certainty.

f = 〈bi, cbj〉−1〈bi, cf〉bj (4.10)

Note that c is not a scalar value but a scalar function. This formulation allows
for the data to be uncertain. The uncertain basis functions become weaker when
the certainty becomes small. Dimensions that are uncertain are compressed and
finally vanish when the certainty approaches zero.

4.2.1 Missing samples

An example of uncertain data is the missing data case. The certainty function c
is then a binary function being zero where data is missing. Data may be missing
of various reasons. It may be because of drop outs, or more common, outside a
signal border, as in figure 1.1 in the introductory chapter. The same signal is
shown in figure 4.2 demonstrating how borders are handled. The certainty is set
to zero outside the signal border.

A signal may be expressed in different bases. Spatially limited signals call for
a description using spatially localized functions which in the extreme case take
the form of Dirac functions. When working with sampled signals, the samples
themselves can be seen as such Dirac basis functions. A missing sample means
that the impulse basis function is missing. In a changing basis situation, proper
signal analysis is possible only if the representation of the signal is complete, i.e.
the representation includes not only the coordinates of the signal but also the
basis in which the coordinates are given. For images, a general representation of
one basis impulse function would consist of its spatial position and of its strength.
In the following, spatial positions are assumed to be quantized in a regular fashion
so that positions can be identified simply by enumeration. The impulse strength,
however, will be explicitly represented and denoted by c. In the following c will
be referred to as being the certainty of the signal.

Missing data should be interpreted as the basis vector defining the data is missing
and not that the coordinate of this vector is zero. In the eyes of the data, this
distinction is only philosophical since the basis vector disappears when multiply-
ing it with a coordinate having zero value. However, for a filter basis function
this view is critical. Since the filter coordinate of the basis function in general is
not zero, the filter has to know that the basis vector is missing and therefore not
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Figure 4.2 Unwanted border effects can be reduced by setting the certainty of
the signal to zero outside the border.

use it for description. Otherwise, the filter function would be changed to a new
different filter having zero value in this position. For this purpose a certainty
value associated with each basis function has been inserted in the formulas.

4.2.2 Non-orthonormal basis and uncertain

data

The calculations in section 3.2.2 will now be carried out for the missing data
case. Consider the same signal vector as before, but multiplied by a certainty
field. In this example most of the data is lost. The certainty function is set to:

(ce)
i =





0 0 1
0.1 0 0
0 0 0



 (4.11)
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As mentioned earlier, in a product sum, the location and the ordering of the
elements is not of importance and viewing the certainty function as a vector
reduces the number of indices

(ce)
i = ( 0 0 1 0.1 0 0 0 0 0 ) (4.12)

which generates the new metric coordinates

(Gc)ij =

















0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

















(4.13)

The coordinates of this metric expressed in the new basis, bi ⊗ bj are

(Gc)nm = G(cn, cm) =

(
1 −1
−1 1.001

)

(4.14)

and the corresponding inverse metric (the conjugate metric tensor )

(Gc)
nm =

(
1001 1000
1000 1000

)

(4.15)

From equation (3.17) we get:

(fb)
n = (Gb)

nm (Gc)ij(bc)
j
m(fc)

i

︸ ︷︷ ︸

dual coordinates

= (Gb)
nm(fb)m (4.16)

Inserting numerical values gives the dual coordinates of the signal

(fb)m = (Gc)ij(bc)
j
m(fc)

i = ( 3 −3 ) (4.17)

and

(fb)
n = (Gb)

nm(fb)m = ( 3 −3 )

(
1001 1000
1000 1000

)

=

(
3
0

)

(4.18)
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which are the coordinates of the signal in the signal space defined by the basis
bi (figure 3.4).

4.3 NORMALIZED CONVOLUTION

As mentioned in chapter 1, the philosophy of normalized convolution is that data
as well as operators are accompanied by a scalar function field representing the
appropriate ‘weight’ assigned to data or operator values. Combining the approach
in sections 4.1 and 4.2 gives

f = 〈abi, cbj〉−1〈abi, cf〉bj (4.19)

In a practical case, we need to work with localized basis functions, the term cbj

is inappropriate. One way of solving this problem was shown in example 4.1.
Here, we have a data dependent weighting implying that the window needed
varies spatially. It is not an appealing solution since it would require new filters
at every spatial position. A solution is to rearrange the terms

〈abi, cbj〉bj = 〈abib
∗

j , c〉bj (4.20)

which shows that position invariant outer product filters, bib
∗
j , applied on the

scalar certainty field give the same result. We are now ready to define a method
for performing general convolution operations on data of signal/certainty type -
normalized convolution:

Definition 4 Normalized convloution is defined by

f = 〈abib
∗

j , c〉−1〈abi, cf〉bj (4.21)

✷

4.3.1 Applicability functions

The applicability function can be said to define the localization of the convo-
lution operator. The appropriate choice of this function depends of course on
the application. The family of applicability functions used in our experiments is
given by:

a =

{
r−α cosβ( π r

2 rmax
) r < rmax

0 otherwise
(4.22)
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where r denotes the distance from the neighbourhood center, α and β are positive.
In figure 4.3, α = 0, β = 2 and rmax = 8 yielding a fairly smooth applicability
function.
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Figure 4.3 Example of an applicability function with α = 0, β = 2 and rmax =
8.

A shaper filter is shown in figure 4.4, where the parameters are set to α = 3,
β = 0 and rmax = 8. This type of applicability function is useful when, for
example, interpolating missing data. Convolving a signal with such a narrow
filter will not change the existing data much since the filter can be considered
all-pass (the filter is very broad in the Fourier domain). However, in areas where
data is missing, neighbouring values will be used for recovering the signal.

4.4 APPLICATIONS OF NORMALIZED

CONVOLUTION

4.4.1 Interpolation by normalized averaging

To illustrate the above method, we consider an example using normalized convo-
lution to obtain an efficient interpolation algorithm in a missing sample situation.
In the simplest possible case, the operator filter basis consists of only one position
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Figure 4.4 An applicability function having α = 3, β = 0 and rmax = 8.

invariant basis function, i.e. b = 1. In this special case, equation (4.21) reduces
to

f = 〈ab, c〉−1〈ab, cf〉b = 〈a, c〉−1〈a, cf〉b (4.23)

Since b now is a constant, it is evident that all components of f will be subject to
the same transformation, and it is consequently enough to study the case where
f is a scalar.

Figure 4.5 (top left) shows a sparsely and irregularly sampled test-image, con-
structed by using gated white noise, with a threshold chosen so that only 10% of
the data remains. Any attempt to reconstruct this image by simple smoothing
will fail because of the variation of the sample density. Figure 4.5 (top right)
shows the result of smoothing done using the filter of figure 4.3. Figure 4.5
(bottom left) shows the result using the same filter as applicability function in
normalized averaging: the local normalization performed compensates effectively
for the sample density variations. Although the result is satisfactory, an even
better result can be obtained using a more localized applicability function. The
parameter values for the applicability function used to produce the result shown
in figure 4.5 (bottom right) are α = 3 and β = 2. Using such a filter results in
an adaptive smoothing of the reconstructed image. The more samples missing,
the greater the smoothing performed.
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Figure 4.5 Top left: The famous Lena-image degraded to a grey-level test
image containing only 10% of the original information. Top right: Interpolation
using standard convolution with a normalized smoothing filter (see figure 4.3).
Bottom left: Interpolation using normalized averaging with the same filter used
as applicability function. Bottom right: Normalized averaging using a more
local applicability function (see figure 4.4).
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The second example is interpolation of a densely sampled image having large
missing regions, see figure 4.6. The result shows that the algorithm is capable of
filling in the ‘holes’ with ‘plausible’ data. The test also shows that the algorithm
performs well close to the image border since this region of an image also belongs
to the case densely samples/large missing regions.

Figure 4.6 Left: Test image. Right: Interpolation using normalized convo-
lution.

4.4.2 Higher order interpolation

In section 4.4.1, interpolation using one basis function was discussed. In this
section, it is shown that even better interpolation results can be achieved using
a larger set of basis functions. Signal reconstruction always implies the use of a
signal model. In the case of normalized convolution, the model is given by the
chosen basis functions {bi}. The signal reconstruction, performed by normalized
convolution, is a weighted least squares solution using the available basis func-
tions, where the weights are adaptive and given by the data certainties and the
applicability function [KW93]. Note, however, that a good reconstruction can be
achieved only if the chosen basis functions are likely to be good descriptors for a
large part of the signal.

In the two examples below, seven basis functions were used; one constant func-
tion and three sin/cos pairs having one, two and three cycles per graph width.
Although the signal was chosen not to fit any of the individual basis functions,
the reconstruction of the signal is good. Each part of the signal is reconstructed
locally.
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Figure 4.7 shows higher order interpolation of a “random walk” signal. The
expectation value of the spectrum of such a signal decreasing as one over the
frequency variable (as the spectrum in many images). Although more than half
the samples were removed at random, the reconstruction is good.

f cf

a Normalized convolution

Figure 4.7 Interpolation example using normalized convolution. The figure
shows the signal (top left), the signal certainty product (top right), the used
applicability function (bottom left) and the reconstructed signal (bottom right).

Figure 4.8 shows higher order interpolation of a smoothly varying signal. In this
case, where the used basis functions describe the signal well, the signal is almost
completely restored although large parts are missing.

Figure 4.9 shows higher order interpolation of a signal containing the signal pre-
sented in figure 4.8 plus a term with fast variation. In areas where the certainty
is high, the reconstruction is very good. In areas where large parts are miss-
ing, a “low-pass” version of the signal is reconstructed: the signal is adaptively
smoothed.

4.4.3 Spectrum analysis

All spectrum analysis methods, explicitly or implicitly, involve some kind of win-
dowing operation. In image processing the windows are typically small and the
standard windowing operation is multiplication, i.e. the signal is simply multi-
plied by the window function prior to the analysis. The effect is that what is
being analyzed is not the signal but a corrupted version thereof, the implications
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f cf

a Normalized convolution

Figure 4.8 Interpolation example using normalized convolution. The figure
shows the signal (top left), the signal certainty product (top right), the used
applicability function (bottom left) and the reconstructed signal (bottom right).

f cf

a Normalized convolution

Figure 4.9 Interpolation example using normalized convolution. The figure
shows the signal (top left), the signal certainty product (top right), the used
applicability function (bottom left) and the reconstructed signal (bottom right).

of which are well-known and unwanted [Tho82]. This way of solving the locality
problem is a clear violation of the signal/certainty principle.

A missing sample situation can equivalently be seen as the signal being irregularly
sampled. Standard spectrum analysis has no way of coping with irregularly
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sampled signals. The signal is given in an inappropriate basis and the coordinates
of the appropriate metric tensor is not the identity matrix.

Figure 4.10 shows a spectrum analysis experiment. The top left shows the signal
which is a sum of a constant term plus two different sinusoids. The top right
shows the function that is used both as window and as applicability function. The
bottom of figure 4.10 shows the result of standard windowed DFT analysis (left)
and of spectrum analysis using normalized convolution (right). The advantage
of using normalized convolution is evident - the frequency domain resolution is
significantly improved and the two frequency components of the sinusoids are
clearly separated.

f a

DFT nDFT

Figure 4.10 A spectrum analysis experiment. The top left shows the signal.
The top right shows the function that was used both as window and as applica-
bility function. At the bottom, the result of standard windowed DFT analysis
(left) and of spectrum analysis using normalized convolution (right) is shown.

Figure 4.11 shows the result of an experiment using the same signal as in fig-
ure 4.10, the difference being that 50% of the samples were removed at random.
Unsurprisingly the removal of the samples has a dramatic effect on the standard
DFT of the signal. The spectrum analysis performed by normalized convolution
is, however, remarkably robust and only minor changes can be seen.
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cf a

DFT nDFT

Figure 4.11 The result of an experiment using the same signal as in figure 4.10,
the difference being that 50% of the samples were removed at random. The
removal of the samples has a dramatic effect on the standard DFT of the signal,
the spectrum analysis performed by normalized convolution is, however, robust.



5
NORMALIZED DIFFERENTIAL

CONVOLUTION

This chapter presents a particular version of normalized convolution. The chap-
ter begins with presenting a consistency algorithm introduced in a patent [KG86].
This alghorithm is a predecessor to an algorithm here termed normalized differen-
tial convolution [KW93]. As the name indicates, the method is based on analysis
of signal differences. In [WNK94] it was shown that normalized differential con-
volution is invariant to any constant term in the signal but otherwise produces
the same estimates as normalized convolution. It is shown that a generalization
of normalized differential convolution is possible and that operations can be made
invariant to any subspace of the space spanned by the filter functions.

5.1 A CONSISTENCY ALGORITHM

In this section a consistency algorithm detecting rotational symmetries will be
reviewed [KG86]. The vectors in this section are two-dimensional, i.e. they can
be described by pairs of scalar numbers. It is sometimes convenient to regard
these vectors as complex numbers. In this section, we shall limit ourselves to
the study of polar separable functions whose angular variation is defined by the
circular harmonic functions eikϕ. The angular modulation speed, k, determines
the family of symmetries to which the filter is sensitive. Two important families
are first order symmetries (k = 1), also termed parabolic symmetries, and second
order symmetries (k = 2), also termed circular symmetries. The algorithm is
applied on vector data produced by the two-dimensional orientation algorithm
described in chapter 6. The names of the symmetry families refer to the grey-level
patterns corresponding to these symmetries.

69
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5.1.1 Circular symmetries

The simplest circular symmetry objects are circles with centres at the origin.
Figure 5.1 (top left) shows such a grey-level neighbourhood. The correspond-
ing double angle orientation representation (section 6.2.3) is shown below in
figure 5.1.

f = f(r)eiϕf = f(r)ei2ϕ (5.1)

where f(r) is a radial magnitude function.

A filter function tuned to the signal f is a filter having the same angular variation,
with a suitable lowpass magnitude function limiting the spatial extent of the filter,

b2 = a(r)ei2ϕ (5.2)

where the subscript indicates the order of the symmetry. Filtering a signal f =
f(r)eiϕf with this filter function can in each point be expressed in terms of the
scalar product between the signal and the filter,

s = 〈f ,b2〉 (5.3)

Assuming some suitable discretization of the pattern and the filter, this scalar
product may be expressed by a product sum,

s = 〈f ,b2〉 =
∑

k

fkb
∗

2 =
∑

k

fkakei((ϕf )k−(ϕb)k) (5.4)

where ϕb denotes the phase of the filter b2. If the signal has the same angular
variation speed as the filter function but differs by a phase shift of α,

ϕf = 2ϕ + α (5.6)

ϕb = 2ϕ (5.7)

then the filter output from equation (5.4) gives

s =
∑

fkakei(2ϕk+α−2ϕk) = eiα
∑

fkak = seiα (5.7)

This shows that the filter proposed, b2, can be used to discriminate between a
whole class of different second order symmetries:
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Figure 5.1 Top: Two circular symmetries and the corresponding local orien-
tation representation. Note that the right vector field is −1 times the left one,
i.e. every vector differs maximally between the two fields. Bottom: Vector
representation of circular symmetries.
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f = cei(2ϕ+α), α ∈ [0, 2π[ (5.8)

The argument of the complex filter output describes the type of pattern. α = π
2

corresponds to a star pattern (figure 5.1, top right). In addition to circular and
radial patterns, a discrimination between left-handedness and right-handedness
can be done. The resulting vector representation describing circular symmetries
is shown in figure 5.1 (bottom).

5.1.2 Parabolic symmetries

For first order symmetries or parabolic symmetries we will simply assume that we
have patterns that, in the vectorial representation given earlier, can be written
as

f = f(r)eiϕ+α (5.9)

Grey-level patterns producing this type of local orientation description are found
in figure 5.2 (top) with α = π (left) and α = 3π

2 . A description of the local
orientation algorithm is found in chapter 6.

The difference between equation (5.9) and the corresponding equation in the
preceding section, equation (5.1), is the fact that the vector rotates with a rate
of ϕ, rather than 2ϕ. As in the preceding case, the detection of these and
intermediary classes of patterns can be achieved by filtering with a complex filter
that matches the signal in equation (5.9),

b1 = a(r)eiϕ, (5.10)

where the subscript indicates the order of the symmetry. This filter is sensitive
to curvature, more specifically convexity and concavity , and the direction out-
ward from the centre of convexity. The resulting vector representation describing
parabolic symmetries is shown in figure 5.2 (bottom).

5.1.3 Increasing operator selectivity

The issue addressed in this section is the possibility to increase operator feature
selectivity. The standard windowing approach for convolution operators neces-
sarily makes such operators sensitive to a broad spectrum of signals, often much
broader than that for which the operator was originally intended.

Consider for example the following example based on figure 5.3. First, note that
the star pattern and the line are non-orthogonal in the signal space, i.e. the line is
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Figure 5.2 Top: Two different parabolic symmetries and the corresponding
local orientation representations. Bottom: Vector representation of parabolic
symmetries.
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a b

Figure 5.3 The left region, a, can be seen as a part of the more complex right
region, b. The b-region can be seen as a linear combination of different oriented
a-regions. This observation leads to the conclusion that, in general, any linear

operation designed to detect patterns like a will give some response on patterns
like b and vice versa!

a part of the star pattern. It follows that, in general, any linear operator designed
to detect the line will have an expected response greater than zero for the star
pattern and vice versa. In many situations a more specific operator would be
preferable, e.g. when a single line is not considered to be the evidence of a star
pattern.

The symmetry operators described in the previous section are sensitive to changes
in vector fields. In the discussion above, however, only the change caused by
angular variation is of interest. The magnitude of the vectors in the input field
reflects the certainty of the local orientation estimated. If this variation is not
compensated for when estimating local symmetries, the operators respond to
many structures they were not designed for. A straightforward normalization of
the input orientation field,

f̂ =
f

‖f‖ =
f(r)eiϕ

f(r)
(5.11)

gives a field that is undefined in positions where f is zero. Inserting the value
zero, or any other value in order to make the signal well-defined, introduces
artifacts. Experimental results have shown that operators in general give strong
erroneous responses to these new structures, unfortunately often much stronger
than the responses to the structures of interest.

This problem was addressed by Knutsson et al in a patent [KHG86] describing
an apparatus for detecting circular symmetries. The star pattern in figure 5.3
belongs to this class of symmetries. The patent describes a method termed a



NORMALIZED DIFFERENTIAL CONVOLUTION 75

consistency operation. The name refers to that the operator should only respond
to signals that are consistent with the signal model. The unwanted responses on
locally one-dimensional areas of a linear symmetry operator were removed by a
combination of a set of convolutions. The following four filter results are needed:

s1 = 〈f ,b〉 (5.13)

s2 = 〈‖f‖,b〉 (5.14)

s3 = 〈f , ‖b‖〉 (5.15)

s4 = 〈‖f‖, ‖b‖〉 (5.16)

where ‖ · ‖ denotes the magnitude of the filter or the data.

The four filter results are combined into

s =
s4s1 − s2s3

sγ
4

(5.16)

where γ is a constant controlling the energy dependence of the algorithm. The
value is normally set to one. The denominator is an energy normalization con-
trolling the model versus energy dependence of the algorithm. With γ = 1, the
output magnitude varies linearly with the magnitude of the input signal.

Figure 5.4 (left) shows a grey-level test image of size 128 × 128 and the corre-
sponding estimates of local orientation using quadrature filters of size 15 × 15.
The result of applying a filter corresponding to parabolic symmetries is shown
in figure 5.5. The size of the parabolic filter is 15 × 15. Note that the filter is
sensitive to the corners of the boxes where the orientation vector field is rotating,
as well as to the edges, because of the variation in the magnitude of the vec-
tors. The fact that the filters respond to lines and edges is not surprising. The
filters above have been used for detecting linear structures in grey-level images
[Dan80]. The other three images in figure 5.5 show that this can effectively be
compensated for by applying the consistency scheme described above.
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Figure 5.4 A grey-level test image containing two boxes is shown to the left.
To the right, the local orientation is estimated. The brightness corresponds to
the norm of the eigenvectors corresponding to the largest eigenvalue.
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Figure 5.5 Top: Result after filtering the orientation vector field above with
a parabolic symmetry filter (left). Note that the filters not only respond to the
vector patterns they were designed for, but to many other structures as well,
γ = 2 (right). Bottom: Same as the top right figure but with γ = 1 (left) and
γ = 0 (right).
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5.2 NORMALIZED DIFFERENTIAL

CONVOLUTION

In the previous section a consistency algorithm for detecting symmetries was
reviewed. This algorithm is the predecessor to a procedure termed normalized
differential convolution. The method is intimately related to normalized convo-
lution which was presented in chapter 4 [WNK94].

We will first discuss an operation termed differential convolution. This opera-
tion can be shown to be equivalent to locally weighted sums over all operator
differences acting on the corresponding data differences - hence the name. This
description may, to begin with, not give a full understanding of the operation.
The key words are, however, operator differences and data differences. Since dif-
ferences is measured, the operation insensitive to any constant term in the input
signal.

Definition 5 Let differential convolution between abi and cf be defined and
denoted by:

di = 〈a, c〉〈abi, cf〉 − 〈abi, c〉〈a, cf〉 (5.17)

✷

Differential convolution is based on a nonlinear combination of different standard
convolutions. The term, 〈a c〉, can be regarded as the local certainty energy and
the second term, 〈abi, cf〉, is the term that corresponds to standard convolution.
When it comes to the third and fourth term the interpretation is somewhat
harder. Each operator in the filter is weighted locally by corresponding data
producing a weighted average operator, where the weights are given by the data.

〈abi, c〉 ↔ data dependent mean-operator

For the fourth term it is vice versa. The mean-data is calculated using the
operator applicability as weights.

〈a, cf〉 ↔ operator dependent mean-data

Differential convolution should consequently be interpreted as: a standard con-
volution weighted with the local “energy” minus the “mean” operator acting on
the “mean” data.
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The name differential convolution stems from a basic property that might not
be evident from the definition. It can been shown that differential convolution
performs summation over all operator differences acting on corresponding data
differences, The meaning of this statement will hopefully be clearer after the
following calculations. Writing the sums in equation (5.17) explicitly gives:

di = (

N∑

k=1

akck)(

N∑

l=1

albilclfl) − (

N∑

k=1

ckakbik)(

N∑

l=1

alclfl)

=
∑

kl

alakclckbilfl −
∑

kl

akalckclbikfl (5.19)

where k and l are spatial indices while i corresponds to the basis function used.
Since the sum is symmetric, it is invariant to interchange of n and m, and the
symmetric counter part of each term can be added if the result is divided by two

1

2

[
∑

kl

akalckcl(bilfl + bikfk) −
∑

kl

akalckcl(bikfl + bilfk)

]

=

1

2

∑

kl

akalckcl(bilfl + bikfk − bikfl − bilfk) =

1

2

∑

klm

akalckcl(bil − bik)(fl − fk) (5.20)

which shows that differential convolution performs summation over all operator
differences acting on corresponding data differences.

It may be worth repeating that the double sum in equation (5.19) is never carried
out. The result is achieved by the combination of four simple sums. Note that
only point pairs having non-zero ak, ck, al and cl will contribute to the sum. If
bi or f is constant, the sum will vanish since either bil − bik = 0 or fk − fl = 0.

Normalized differential convolution is, as the name indicates, a combination of
the concepts presented in this chapter, normalized convolution and differential
convolution. Normalized differential convolution is a method for performing gen-
eral differential operations on data of signal/certainty type in cases where the
constant term of the signal, i.e. the zero order moment, is zero or irrelevant.

Definition 6 Let normalized differential convolution between abi and cf be de-
fined and denoted by:

f j = G−1
ij (〈a, c〉〈abi, cf〉 − 〈abi, c〉〈a, cf〉) (5.20)
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where

Gij = 〈a, c〉〈abib
∗

j , c〉 − 〈abi, c〉〈ab∗

j , c〉 (5.21)

✷

5.3 APPLICATIONS OF NORMALIZED

DIFFERENTIAL CONVOLUTION

5.3.1 Gradients from planar basis functions

This example shows how the gradients of the signal can be estimated using nor-
malized differential convolution. The minimum number of basis functions needed
for estimating of the local gradient using normalized differential convolution is
one for each dimension. The basis functions needed in n dimensions are

{1,x1,x2, ... ,xn}

where xk are planar functions. Figure 5.7 shows such filters in the two-dimensional
case (second and third figure to the left).

Localization of these basis functions by an applicability function a gives

{a, ax1, ax2, ... , axn}

Inserting the function in the relation derived in equation (5.17), writing all the
indices explicitly, gives:

di = 〈a, c〉〈abi, cf〉 − 〈abi, c〉〈a, cf〉 (5.23)

=
1

2

∑

kl

akalckcl
︸ ︷︷ ︸

dkl

(xik − xil)
︸ ︷︷ ︸

∆xikl

(fk − fl)
︸ ︷︷ ︸

∆fkl

(5.24)

=
1

2

∑

kl

dkl∆xikl∆fkl (5.25)

and

Gij = 〈a, c〉〈abib
∗

j , c〉 − 〈abi, c〉〈ab∗

j , c〉
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=
1

2

∑

kl

dkl∆xikl∆xjkl (5.26)

If the gradient, ∂f
∂xi

, is constant in the neighbourhood, then

∆fkl = ∆xkli
∂f

∂xi
for all k, l (5.26)

Equation (5.25) then simplifies to:

di =
∂f

∂xi

1

2

∑

kl

dkl∆xikl∆xjkl (5.27)

Equations (5.25) and (5.27) inserted in equation (5.2), the definition of normal-
ized differential convolution gives:

G−1
ij di =

∂f

∂xi
(5.28)

which shows that the true gradient is estimated for an ideal input signal.

A two-dimensional example

This example shows estimation of the local gradient in a sparsely and irregularly
sampled two-dimensional scalar field. The set of basis functions needed are:

{1,x1,x2,x
2
1,x1x2,x

2
2} (5.29)

where the last three filter functions are the three product filters, bib
∗
j in equa-

tion (5.21) needed for calculating the coordinates of the local metric. Localizing
the functions with an applicability function a gives

{a, ax1, ax2, ax
2
1, ax1x2, ax

2
2} (5.30)

These filters are shown in figure 5.7 (right).

Inserting these functions in the definition of normalized convolution gives

di = (d1, d2) = 〈a, c〉
(

〈ax1, cf〉
〈ax2, cf〉

)

−
(

〈ax1, c〉
〈ax2, c〉

)

〈a, cf〉
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Figure 5.6 Top Left: The Lena-image degraded to 10% of the original in-
formation. Top Right: Gradient magnitude estimation using normalized dif-
ferential convolution. Bottom: Estimation of the x- and y-gradient in the
top left image using normalized differential convolution with a filter having
τ = −3, β = 0, rmax = 8.
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Figure 5.7 Left: Filters required for gradient estimation in two dimensions.
Rigth: Multiplying the left function with the applicability function produces
filters with finite support. The top right function shows the shape of the ap-
plicability function, the analytical expression as defined in equation (4.22) have
α = 0, β = 2, rmax = 8. From the top the filters shown are 1,x1,x2,x2

1,x2
2,x1x2.
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Gij = 〈a, c〉
(

〈ax2
1, c〉 〈ax1x2, c〉

〈ax1x2, c〉 〈ax2
2, c〉

)

−

(
〈ax1, c〉〈ax1, c〉 〈ax1, c〉〈ax2, c〉
〈ax1, c〉〈ax2, c〉 〈ax2, c〉〈ax2, c〉

)

Note that many terms in this expression are identical. The actual number of
convolutions needed is the number of basis functions in equation (5.30), i.e. six
scalar convolutions, figure 5.7.

The sparsely sampled test image used in the interpolation example in section 4.3
is now used for testing the new gradient estimation method. The image is filtered
with the six filters shown in figure 5.7. Combining these outputs according to
the normalized convolution procedure gives the gradient estimate, see figure 5.6.
As shown, the algorithm has no problem coping with the large variation in the
sampling density

5.3.2 Divergence and curl in two dimensions

The gradient estimation method described in the previous section can be used for
estimation of first order differential invariants of image velocity fields, i.e. curl,
divergence and shear [KvD75]. Since these invariants have found considerable
attention in Computer Vision [CB92, Kan86, NA88], it is interesting to test
the signal/certainty philosophy on the problem of differentiating a velocity field.
The motion field induced by a moving camera is often sparse since estimation
of velocity requires moving texture or borders. The motion of flat surfaces is
unknown (not zero).

The invariants divergence, curl and shear can all be defined as a combination
of partial derivatives of the spatial coordinates Divergence in two dimensions is
defined by:

∇ · f = trace(∇f) = f11 + f22 =
∂f1

∂x1
+

∂f2

∂x2
(5.31)

The curl in 2D is a scalar defined by:

∇× f = f21 − f12 =
∂f2

∂x1
− ∂f1

∂x2
(5.32)
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The use of complex numbers instead of two-dimensional vectors simplifies the
formalism for the divergence and the curl operator. We therefore introduce a
complex gradient operator and a complex data representation:

∇ =
∂

∂x1
+ i

∂

∂x2
and f = f1 + if2

This gives the following representation of divergence and rotation:

Div = xf1 + yf2 and Curl = xf2 − yf1

Let b = eiβk and f = eiτk . Inserting this in the definition of normalized differen-
tial convolution gives:

d = 〈a, c〉〈ab, cf〉 − 〈ab, c〉〈a, cf〉

=
1

2

∑

akalckcl
︸ ︷︷ ︸

rkl

(eiβk − eiβl)(eiτk − eiτl)

= 2
∑

rkl sin(
∆βkl

2
) sin(

∆τkl

2
)ei(∆βkl+∆τkl)

where:

∆τ = τk − τl

∆β = βk − βl

and

G = 〈a, c〉〈abb∗, c〉 − 〈ab, c〉〈ab∗, c〉

=
1

2

∑

akalckcl ‖(eiβk − eiβl)‖2

= 2
∑

rkl sin
2(

∆βkl

2
)

Thus

G−1d =

∑
rkl sin(∆βkl

2 ) sin(∆τkl

2 )ei(∆βkl+∆τkl)

∑
rkl sin

2(∆βkl

2 )
(5.33)
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In this example it is shown how local divergence and curl can be estimated in
an image sequence [Fle92]. The camera is moving towards a slightly slanted
photograph of a tree, figure 5.8 (left). The input data is the sparse estimated
velocity field presented in figure 5.8 (right). The result of standard convolution
using the same operator is shown in figure 5.9 (left). The result of normalized
differential convolution using a divergence/curl operator is shown in figure 5.9
(right).
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Figure 5.8 Left: One frame from the tree-sequence. Right: Estimated ve-
locities from the tree-sequence [LHK93]. In order to increase the visuability the
original 150 × 150 image has been resampled to 30 × 30 pixels.

5.3.3 Robot vision applications

Another important area of applications for the normalized differential convolution
technique is found in robot vision.

The experiment was carried out using a simulated environment used to study the
performance of an active vision robot. The software package has been developed
by Westelius within the ESPRIT Basic Research Action 7108 “Vision as Process”
[Wes92].

Model based generation of certainty fields

Extracting salient features to attract the focus of attention is a central problem
in active vision. The opposite problem of neglecting salient features on already
modelled structures is equally important. If the focus of attention gets stuck on
the most salient feature it is not of very much help. The normalized differential
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Figure 5.9 Left: Standard convolution. We can see that missing data com-
pletely destroy many of the estimates. Right: Normalized differential convolu-
tion on the velocity field in figure 5.8 produces a field pointing to the right. If
the camera had had the reversed motion, i.e. a motion away from the scene, the
output field would have pointed to the left. Pure rotation of the camera would
have produced a vector field pointing up or down depending on the direction of
rotation.

convolution scheme has the ability to disregard the information where the cer-
tainty has been set to zero. This is not the same thing as removing estimates
after the operation has been run, which often creates problems for succeeding
operations.

The approximate position of the robot arm can be derived from its pose control
data. Information about the precise delineation between the arm and the back-
ground can then be estimated from the image. In the present implementation this
is done and used for creating a certainty field matching the projections (stereo)
of the arm. A certainty field can thus be used to mask out already modelled
structures, allowing other structures to be detected. A series of experiments
where the robot’s own arm is masked has been carried out using a simulated
robot working in a conveyor belt environment. Figure 5.10 shows that although
the arm is continuously moving, only the moving boxes on the conveyor belt are
detected.
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Figure 5.10 Top left: The robot is looking down at the conveyor belt, where
the objects are moving from right to left, while the robot arm is moving back and
forth. Top right: An overview showing the conveyor belt, the robot arm points
towards the viewer and the stereo camera head is looking down on the conveyor
belt. Bottom left: Traditional spatio-temporal filtering detecting all moving
objects in the scene including the arm. Bottom right: Spatio-temporal filtering
using normalized differential convolution and a zero certainty mask covering the
robot arm, detecting only the unknown moving objects. This algorithm was
implemented by Westelius.

5.4 NORMALIZED CONVOLUTION IN

SUBSPACES

This section addresses the problem of how a subset of the coordintes f i of a
signal described in a filter basis f = f ibi can be estimated. Images are normally
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described locally using simple basis functions. Low order local momentum such
as order 0 (the local DC component), 1 and 2 are commonly used. Low order
differentiations are also useful descriptors. In densely regularly sampled images,
these descriptors are easily computed using standard convolution. However, when
working with irregularly sampled data or incomplete data, the signal model has
to be of higher order than the signal variations of interest. This is the case where
only a part of the parameter vector is to be estimated. If possible, only this
part of the parameter should be calculated explicitly as opposed to calculating
the whole parameter vector. In this section a method based on partitioning the
model subspace into two parts is described.

5.4.1 Signal spaces

A sampled system can be interpreted as defining a multidimensional signal space
(figure 3.2). We denote this space E and let {ei} be a basis spanning this space.
The basis operator having these vectors as column vectors is denoted

E = ( e1 e2 ... en ) (5.34)

In general, information in images is locally low-dimensional. The tradition of
extracting useful images information using gradient operators, implicitly incor-
porate the assumption that the images can locally be modelled as being one-
dimensional. In this case it is obvious that the standard pixel description of this
neighbourhood is an overkill. A signal only varying in one dimension does not
need 7 by 7, i.e. 49 dimensions, to be described properly.

Expressing new vectors bi in the basis ei gives n-dimensional vectors. We define
the basis operator, B, having these n-dimensional basis vectors as column vectors:

B =









. . ... .

. . ... .
b1 b2 ... bm

. . ... .

. . ... .









(5.35)

It should be mentioned that the complexity of the calculation of a new transfor-
mation matrix is based on the number of new basis functions, and not, as in this
particular case, on the number of dimensions in the huge sample basis {en}.
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In general the new basis {bi} span a subspace of E Let this subspace be denoted
B. Let O denote the oblivious space, the space not describable with the new
basis. This space is the orthogonal complement to B

E = [B,O] (5.36)

Naturally, the signal can only be hoped for being well described if the range space
of E lies in B. The part of the signal space which we are interested in is denoted
S, and the part of the signal space we want to be invariant to is denoted L.

B = [S,L] (5.37)

A visualization of the spaces introduced is shown in figure 5.11.

B

E

O

L

S

Figure 5.11 The signal of interest lies in the subspace S.

5.4.2 Matrix form of normalized convolution

In [WNK94] the relation between normalized convolution and normalized differ-
ential convolution was described. It was shown that the estimated coordinate
vectors is equal in all components except the additional parameter defining the
local DC component for normalized convolution. The definition of normalized
convolution may be written in matrix form [WK94]:

U = G−1D = (B∗ACB)−1 B∗ACf (5.38)

where A is an n × n diagonal matrix containing an applicability function, C is
an n × n diagonal matrix containing the certainties of the signal, and f denotes
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the signal. Note that the expression in equation (5.38) not is equal to the More-
Penrose invers of ACB which would have squared matrices, A and C, in the part
corresponding to the metric in this equation.

The space L in B is the space we want to be invariant to and S is the part we
want to describe. This can be achieved by dividing the basis operator B in two
parts, B = (S L). Inserting this expression on equation (5.38) yields

(
US

UL

)

=

(
S∗ACS S∗ACL
L∗ACS L∗ACL

)−1(
S∗A
L∗A

)

Cf (5.39)

where

U =

(
US

UL

)

G =

(
S∗ACS S∗ACL
L∗ACS L∗ACL

)

D =

(
S∗A
L∗A

)

Cf

The inverse of a block matrix, G, [Kai80] may be rewritten as:

G−1 =

(
∆−1

S −∆−1
S X

−∆−1
L Y ∆−1

L

)

(5.40)

where

∆S = S∗ACS − S∗ACL(L∗ACL)−1L∗ACS

∆L = L∗ACL − L∗ACS(S∗ACS)−1S∗ACL

X = S∗ACL(L∗ACL)−1

Y = L∗ACS(S∗ACS)−1

which gives an explicit expression of the parameter vector of interest,

US = ∆−1
S (S∗A − XL∗A)Cf (5.42)

= ∆−1
S (S∗A − S∗ACL(L∗ACL)−1L∗A)Cf
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A special case of equation (5.41) is when the subspace S id invariant only to
constant functions. Then L is a vector, which means that (L∗ACL) is a scalar
that can extracted,

US = (∆SL∗ACL)−1(L∗ACLS∗A − S∗ACLL∗A)Cf

= G−1
S DS

where

DS = L∗ACLS∗ACf − S∗ACLL∗ACf

GS = L∗ACLS∗ACS − S∗ACLL∗ACS

This case corresponds to normalized differential convolution [KW93].

In this section it has been described how a subset of the coordinate vector de-
scribing a signal can be estimated. The basis operator is divided into two parts:
one part describing the space of interest, and one part not of interest. This is a
generalization of normalized differential convolution [KW93] which is invariant
to any constant term in the input signal. With the subspace formulation in,
the algorithm can be made invariant to any subspace in B, not only the one-
dimensional space of constant functions. For example, operations invariant to
everything but the constant function can be constructed. This is useful when the
local DC component of the signal is to be estimated as in for example interpola-
tion.



6
LOCAL STRUCTURE AND MOTION

6.1 INTRODUCTION

The techniques presented in this chapter are based on spatial or spatio-temporal
filtering and tensor representations [GK94]. For each neighbourhood a set of
quadrature filters are employed. The filters are sensitive to signals having differ-
ent orientations in the signal space. Each quadrature filter produces a magnitude
and a phase as output. The phase can be used to describe local symmetry prop-
erties of the signal. The magnitudes of the different filters are combined to give
a tensor description of local structure. In two dimensions, the structure is de-
scribed in terms of dominant local orientation and isotropy, where isotropy means
lack of dominant orientation. In three dimensions, in addition to isotropy, the
tensor contains information about how planar/linear the neighbourhoods are. In
higher dimensions, the basic shapes are more complicated than lines and planes,
and the different possible anisotropies become complex.

In section 6.4 velocity estimation from image sequences will be discussed. The
method is based on local spatio-temporal structure estimation [Knu85, Knu89,
BHKG91]. Viewing a time-sequence of two-dimensional images as a three-dimen-
sional volume makes it possible to estimate local velocity. In neighbourboods of
this volume that are constant on lines, true velocity may be estimated. In neigh-
bourhoods that are constant on planes, only the velocity component perpendic-
ular to the local structure can be measured. This corresponds to the well-known
aperture problem. It is shown how tensors describing planar structures can be
combined into tensors containing information of the true local motion.

An underlying assumption for the approach taken in this chapter is the fact that
local gradient directions contain important information. Equally important is the
local simplicity hypothesis [Gra78]. The basis for this hypothesis is that the spatial
variation of the gradient directions is in general much slower than the spatial

93
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variation of the image itself. The importance of local orientation descriptions
in the mammalian visual system has been demonstrated by the physiological
findings of Hubel and Wiesel and others [HW78].

6.2 LOCAL ORIENTATION TENSOR

Knutsson [Knu89] has shown that a tensor representation of local orientation can
be produced by combining the outputs from polar separable quadrature filters.
Regardless of dimensionality, a representation tensor T for orientation is given
by

T ≡ Ax̂x̂T (6.1)

where A > 0 is an arbitrary constant and x̂ is a vector pointing along the ori-
entation of maximal signal variation. The size of the tensor will depend on the
dimensionality of the signal, e.g. three-dimensional signals are described by a
3 × 3 tensor.

A simple neighbourhood of n dimensions is expressed as:

S(ξ) = G(ξT x̂) (6.2)

where S is an n-variable function and G is a single variable function. ξ is the
spatial position vector and x̂ is a constant vector oriented along the axis of
maximal signal variation. In three dimensions, simple functions are constant
on parallel planes. The direction perpendicular to these planes is the direction
of maximum signal variation, x̂, or “the direction” of the signal. Examples of
three-dimensional simple signals are shown in figure 6.1.

6.2.1 Quadrature filters

A quadrature filter can, independently of the dimensionality of the signal space,
be defined as a filter that is zero over one half of the Fourier space. In the spatial
domain, the filter is complex: an even real part and an odd imaginary part. In
two dimensions, the even part can be seen as a line filter, and the odd part as an
edge filter [Knu82, KP94],.

The lognormal filter is a spherically separable quadrature pair filter with a radial
frequency function that is Gaussian on a logarithmic scale.

Q(u) = R(ρ)Dk(û) (6.3)



LOCAL STRUCTURE AND MOTION 95

Sa(ξ) = G1(ξ
T x1) Sd(ξ) = G2(ξ

T x2)

Figure 6.1 Two different three-dimensional simple neighbourhoods. The
neighbourhoods are constructed using two different signal functions (G1 and
G2) and two different signal orienting vectors (x1 and x2).

where u is the multidimensional frequency variable, R(ρ) and Dk(û) are the
radial and the directional function respectively.

Directional functions having the necessary properties for directional interpolation
were first suggested by Knutsson in [Knu82] for the 2D case and in [Knu85] for
the 3D case. These functions are written

{
Dk(û) = (ûT n̂k)2 if uT n̂k > 0

Dk(û) = 0 otherwise
(6.4)

where n̂k is the filter directing vector, i.e. D(û) varies as cos2(ϕ), where ϕ is the
angle between u and the filter direction n̂k.

If the input signal is simple with the direction x̂, the output magnitude from a
quadrature filter in direction k is

qk = d(x̂T n̂k)2 = d〈x̂x̂T , n̂kn̂
T
k 〉 (6.5)

where d is independent of the filter orientation and depends only on radial dis-
tribution of the signal spectrum and the radial filter function.

The radial function R(ρ) can be chosen arbitrarily without violating the direc-
tional interpolation properties of the filter. This makes the choice of R(ρ) subject
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to considerations similar to those traditionally found in one-dimensional filter de-
sign. A radial filter function with useful properties [Knu89] is given by

R(ρ) = e−
4

B2ln2
ln2(ρ/ρ0) (6.6)

These functions are termed lognormal functions. B is the relative bandwidth and
ρ0 is the centre frequency of the filter. This type of filter is also used in chapter 8
for the estimation of local frequency.

6.2.2 Construction of the orientation tensor

The minimum number of quadrature filters necessary for orientation estimation
is three for the two-dimensional case. An example of filter orientations is given
by vectors pointing to three adjacent vertices of a regular hexagon [Knu82].

In three dimensions, the minimum required number of quadrature filters is six
[Knu89]. The orientations of the filters are given for example by vectors point-
ing to the vertices of a hemi-icosahedron [Knu85]. The orientation tensor T is
obtained by a linear summation of the quadrature filter output magnitudes,

T = Nkqk (6.7)

were Nk is a dual tensor basis corresponding to a tensor basis Nk = n̂kn̂
T
k ,

where n̂k are the filter directing vectors and qk is the output magnitude from the
quadrature filter k. The expression of the dual basis is

Nk = 〈Nk,Nl〉−1Nl (6.8)

since

〈Nk,Nj〉 = 〈Nk,Nl〉−1〈Nl,Nj〉 = δk
j (6.9)

which fulfills the dual basis requirement (equation (2.23)).

In the case of the filter directions pointing to the vertices of a hemi-icosahedron,
the dual basis, corresponding to the tensor basis n̂kn̂

T
k , has the regular expression

of [Knu89]

Nk = αn̂kn̂
T
k − βI (6.10)
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where I is the identity tensor and α is 4
3 for 2D and 5

4 for 3D. The parameter β
is 1

3 for 2D and 1
4 for 3D.

Note that the dual tensor basis is constant and can be pre-calculated. Thus, the
orientation tensor can be estimated by weighted summation of the fixed tensors
Nk, the weights being the quadrature filter output magnitudes qk.

Acquired data are seldom simple in the sense of equation (6.2). It is, however,
still possible to find a best approximation to T corresponding to a simple neigh-
bourhood, equation (6.2). This is done by finding the Ts that minimizes

∆ = ‖T − Ts‖ (6.11)

where Ts = Ax̂x̂T . The tensor most similar to T corresponding to a simple
neighbourhood is given by:

Ts = λ1ê1ê
T
1 (6.12)

where λ1 is the largest eigenvalue of T and ê1 is the corresponding eigenvector.
The value of ∆ indicates how well the one-dimensionality hypothesis fits the
neighbourhood. The smaller the value, the better the fit.

For two-dimensional signals, it is possible to represent the dominant orientation
of a neighbourhood using a two-component vector [Gra78]. This vector can
be constructed using the same principles as for the tensor contruction, i.e. by
multiplying the quadrature outputs with fixed elements and summing the results
[Knu82].

z = m̂kqk (6.13)

where

m̂k =

(
cos(2ϕk)

sin(2ϕk)

)

and ϕk = arg(n̂k) (6.14)

The minimum number of quadrature filters needed is the same as for the tensor
case, i.e. three filters.
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6.2.3 Geometric interpretation

In two dimensions, the orientation tensor can be visualized using an ellipse where
the principal axes correspond to the directions of the eigenvector system (fig-
ure 6.2).

T = λ1ê1ê
T
1 + λ2ê2ê

T
2

2

λ1

λ

Figure 6.2 Left: Geometric representation of a rank 2 tensor as an ellipse.
Right: Geometric representation of a rank 1 tensor: since the smallest eigenvalue
is zero, the ellipse has collapsed to a line. Two arrows have been added indicating
that it is an outer product of a vector which can be seen as an “unsigned” vector.

The relation between the double angle vector representation in equation (6.13)
and the tensor representation in equation (6.7) is shown in figure 6.3.

A geometric interpretation of the relationship between the eigenvectors of a 2D
tensor and a double angle description can be made in the following way. Suppose
that we have a tensor:

T = λ1e1e
T
1 + λ2e2e

T
2 (6.15)

where λn, en denote the eigenvalues and eigenvectors of T, respectively. When
the tensor is of rank 1, only one of the eigenvalues is greater than 0,

T = λ1e1e
T
1 ↔ λ1

(
e2
1x e1xe1y

e1xe1y e2
1y

)

, (6.16)

In this special case, proving the validity of the double angle method for extracting
the direction of the eigenvectors is straightforward since

2ϕ1 = 2arg (e1x, e1y) (6.18)



LOCAL STRUCTURE AND MOTION 99

λ 2

λ1

Figure 6.3 Representation of orientation in two dimensions. Left: A double
angle vector representation of local orientation. Right: A tensor representation
of local orientation. The largest eigenvector of the tensor indicates the local
orientation (in single angle), and the relation between the eigenvalues expresses
the certainty of the statement. The larger λ1 is compared to λ2 the higher the
certainty (λ1 ≥ λ2).

= arg (e2
1x − e2

1y, 2e1xe1y) (6.19)

= arg (cos(ϕ1)
2 − sin(ϕ1)

2, 2 cos(ϕ1) sin(ϕ1)) (6.20)

= arg (cos(2ϕ1), sin(2ϕ1)). (6.21)

This relationship applies separately for both the tensor λ1e1e
T
1 and the tensor

λ2e2e
T
2 in equation (6.15). However, the reason that this simple formula holds in

general, i.e. even if the tensor has more than one eigenvalue greater than zero, is
that the two eigenvectors are actually anti-parallel in the 2ϕ-domain. Figure 6.4
shows this relationship [Wes91]. The left side of this figure illustrates the direction
of the two eigenvectors of a tensor; on the right the corresponding double angle
representations of these vectors show that they are actually anti-parallel. This
means that the resultant vector in the 2ϕ-domain has the same direction for all
λ2. Only its length, (λ1 −λ2), varies. The figure also illustrates that the method
collapses when λ1 = λ2. However, in that case the tensor is completely circular,
which means that all vectors are eigenvectors.

We have shown that, in two dimensions, the double angle vector descriptor and
the tensor descriptor give the same result. The only difference is that the tensor
descriptor has an additional statement of the local energy, the norm of the ten-
sor. Both methods provide certainty estimates. In the tensor case, the relation
between the eigenvalues gives an estimate of the certainty [GK94]. In the double
angle method these estimates are mixed in the length of the produced vector.
The similarities between the methods show, however, that the double angle con-
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λ 2

λ1

λ 2

λ1

Figure 6.4 Left: Geometric representation of a tensor. Right: The two eigen-
vectors expressed in double angle. Note that they are anti-parallel.

cept is a fundamental form for description of directional data in 2D. In higher
dimensions, however, the tensor formulation must be used.

Discussions concerning filtering of four-dimensional signals using the orientation
tensor framework can be found in [KGB90, B̊ar91, GK94].

In three dimensions, a visualization of a symmetric tensor can be made similarly
using an ellipsoide. Suppose we have a tensor

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 + λ3ê3ê

T
3

An ellipsoide having principal axes as the eigenvector system may be used for
describing T. However, the exact shape of an ellipsoide is difficult to interpret
if only shading is used for depth cueing (figure 6.5, left). Usually motion is
necessary for fully perceiving the shape of a two-dimensional projection of an
ellipsoide.

An alternative is to use an object which can be seen as a sum of a spear, a
plate and a sphere. The spear describes the principal direction of the tensor
λ1ê1ê

T
1 where the length is proportional to the largest eigenvalue, λ1. The plate

describes the plane spanned by the eigenvectors corresponding to the two largest
eigenvalues, λ2(ê1ê

T
1 + ê2ê

T
2 ). The sphere with a radius proportional to the

smallest eigenvalue shows how isotropic the tensor is, λ3(ê1ê
T
1 + ê2ê

T
2 + ê3ê

T
3 ).

This type of object is shown in figure 6.5 (right). See also the cover of this book.
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Figure 6.5 Two ways of representing a symmetric tensor of rank 3 tensor.
Left: An ellipsoide having principal axes as the eigenvector system of the tensor.
Right: Alternative representation using a spear-plate-sphere object. Experi-
ence has shown that the ellipsoide representation is more difficult to interpret
compared to the proposed one.

6.2.4 Higher rank neighbourhoods

Simple neighbourhoods are represented by tensors, Ts, having rank 1. In higher-
dimensional data there exist highly structured neighbourhoods that are not sim-
ple. The rank of the representation tensor reflects the complexity of the neigh-
bourhood. The eigenvalue distributions and the corresponding tensor represen-
tations are given below for three particular cases of T for the three-dimensional
case. The relations between the local spatial auto-correlation function and the
corresponding energy distributions in the Fourier domain can be studied in fig-
ure 6.6.

Let λ1 ≥ λ2 ≥ λ3 ≥ 0 be the eigenvalues of a tensor T and let êi be an eigenvector
corresponding to λi.

Plane case: A rank 1 or simple neighbourhood where λ1 ≫ λ2 ≃ λ3.

T ≃ λ1T1 = λ1ê1ê
T
1 (6.21)

This case corresponds to a neighbourhood that is approximately planar, i.e. it is
constant on parallel planes of a given orientation. The orientation of the normal
vector of the planes is given by ê1.

Line case: A rank 2 neighbourhood where λ1 ≃ λ2 ≫ λ3.

T ≃ λ1T2 = λ1 (ê1ê
T
1 + ê2ê

T
2 ) (6.22)
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Spatial domain Fourier domain

Plane case: A planar auto-correlation function in the spatial domain corre-
sponds to energy being distributed on a line in the Fourier domain.

Line case: An auto-correlation function concentrated on a line in the spatial
domain corresponds to a planar energy distribution in the Fourier domain.

Isotropic case: A spherical auto-correlation function in the spatial domain
corresponds to a spherical energy distribution in the Fourier domain.

Figure 6.6 Iso-surface plots of spatial auto-correlation functions and corre-
sponding energy distributions in the Fourier domain.
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This case corresponds to a neighbourhood that is approximately constant on par-
alell lines. The orientation of the lines is given by the eigenvector corresponding
to the smallest eigenvalue, ê3.

Isotropic case: A rank 3 neighbourhood where λ1 ≃ λ2 ≃ λ3.

T ≃ λ1T3 = λ1 (ê1ê
T
1 + ê2ê

T
2 + ê3ê

T
3 ) (6.23)

This case corresponds to an approximately isotropic neighbourhood, meaning
that there exists energy in the neighbourhood but no dominant orientation, e.g.
in the case of noise.

In general, T will be a linear combination of these cases,

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 + λ3ê3ê

T
3

= (λ1 − λ2)ê1ê
T
1 − λ2ê1ê

T
1 + (λ2 − λ3)ê2ê

T
2 − λ3ê2ê

T
2 + λ3ê3ê

T
3

= (λ1 − λ2)ê1ê
T
1 + (λ2 − λ3)(ê1ê

T
1 + ê2ê

T
2 ) + λ3(ê1ê

T
1 + ê2ê

T
2 + ê3ê

T
3 )

which gives that T can be expressed as:

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + λ3T3 (6.24)

where (λ1 − λ2), (λ2 − λ3) and λ3 may be viewed as coordinates of T in the
tensor basis Ti.

6.3 ORIENTATION ESTIMATION AND

MISSING DATA

In this section local orientation and phase are estimated in a missing data ex-
ample. In two dimensions it is convenient to use four complex quadrature filters
[Knu82]. Each of the four quadrature filter has been compensated individually.
The filters are regarded as two-dimensional bases containing one even and one
odd basis filter (the real and imaginary part of the filters).

For quadrature filter k ∈ {1..4}, the expression of normalized differential convo-
lution is:

f j
k = G−1

ijk (〈a, c〉〈abik, cf〉 − 〈abik, c〉〈a, cf〉) (6.25)
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where

Gijk = 〈a, c〉〈abikbjk, c〉 − 〈abik, c〉〈abjk, c〉 i, j ∈ {1, 2} (6.26)

Note that G−1
ijk means inversion over indices i, j while k defines which filter it is.

The certainties associated with the estimated coordinates, f j
k , are contained in

Gijk. In the examples below, it has shown to work well to use the determinant
(over i, j) of Gijk as a certainty measure.

ck = det(Gij)k (6.27)

From equation (6.13) we have the expression of local orientation tensor expressed
in the dual basis Mk:

T = Mkqk (6.28)

where qk are the filter magnitude responses. Using the above certainty measure
ck, we define the compensated filter magnitude respons qk as

qk = ck‖f j‖k (6.29)

Inserting this in equation (6.13) gives an expression of the local orientation

T = Mkck‖f j‖k (6.30)

In figure 6.8 (top left), a grey level test image is shown. In the black areas of
this image, data is missing. To the left of this figure, the corresponding certainty
field is shown. Estimates of local orientation and local phase are shown in figures
6.9 and 6.10.
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The interpretation of the colour coding is shown in figure 6.7 The vectors in
correspond to a double angle representation of the eigenvector corresponding to
the largest eigenvalue

v = (λ1 − λ2)e
i2arge1

as described in figure 6.4. The phase is calculated by combining the phase outputs
for the four complex filter responses f1

k + if2
k , (with i =

√
−1) [Knu82].

GreenRed

Yellow

Cyan

GreenRed

Cyan

Yellow

Figure 6.7 Colour coding of orientation (top) and phase (bottom).
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Figure 6.8 Top: A grey level test image multiplied by the corresponding cer-
tainty field (left), and certainty field itself (right). Middle and bottom figures
are zoomed parts from the original images.
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Figure 6.9 Top: Local orientation estimation of the top left image in figure 6.8
using standard convolution with 15 × 15 (complex) quadrature filters. Bottom:
Local orientation estimation using normalized differential convolution.
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Figure 6.10 Top: Local phase estimation of the top left image in figure 6.8
using standard convolution with 15 × 15 (complex) quadrature filters. Bottom:
Local phase estimation using normalized differential convolution.
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Colour figure Colour figure

Colour figure Colour figure

Figure 6.11 Parts from figure 6.9 and figure 6.10 where the structure of the
missing data is close to perpendicular to the image structure. The top figures
are the result from standard convolution. The bottom figures are the result
obtained from using normalized convolution. We can see that the normalization
compensates effectively for the missing data and makes the estimation insensitive
to the structure of the certainty borders
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Colour figure Colour figure

Colour figure Colour figure

Figure 6.12 Parts from figure 6.9 and figure 6.10 where the structure of the
missing data is close to parallel to the image structure. The top figures are the
result from standard convolution. The bottom figures are the result obtained from
using normalized convolution. We can see that the normalization compensates
effectively for the missing data, even though the orientation of the certainty
borders are similar to that of the signal.
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6.4 MOTION ESTIMATION

This section presents a method for computation of two-dimensional motion vector
fields from an image sequence [WK94]. The magnitudes from a set of spatio-
temporal quadrature filters are combined into a tensor description. The shape of
the tensors describe, locally, the structure of the spatio-temporal neighbourhood
and provides information about local velocity and if true flow or only normal flow
is present [Knu89, Hag92]. Rather than presenting yet another motion algorithm,
we focuses on representation issues of velocity. In chapter 1 it was argued that
vectors as a sole description for velocity was not appropriate. The reason is
that, since motion fields seldom are dense, artifacts are introduced if the missing
data not is compensated for. As mentioned earlier, one way of compensating
is to use additional certainty statements. For a discussion on other important
aspects of information representation, see [Knu85, GK94]. When a representation
of a feature is uniform and continuous, the concept of average feature becomes
meaningful. In this section, the effects of averaging an orientation tensor field
are discussed. It is shown how normal flow estimates are combined into a true
flow using averaging of this tensor field description. An object tracker based on
this concept has been developed [KWWK95].

Performance of the original algorithm can be found in [Hag92, GK94]. The
quadrature filters used in the estimation were carefully optimized using the prin-
ciple described in [Knu82].

Optical flow computation has been the subject of intensive research during the
last decade and a large number of algorithms have been proposed. A recent per-
formance study comparing a number of regularly cited optical flow techniques can
be found in [BFB94]. One conclusion from this study is the need for appropriate
confidence measures accompanying the estimates.

The data conservation constraint states that the image intensity is preserved
locally in space and time in the direction of image motion [LM75, HS81].

df

dt
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂t
= 0 (6.31)

This constraint can be rewritten as

(fx, fy)

(
u
v

)

+ ft = 0 (6.32)

where (fx, fy) are the components of spatial gradient, ft is the temporal gradient,
and (u, v) are the image velocity components. Lucas and Kanade [LK81] derived
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a weighted least squares solution to equation (6.32) by minimizing the sum of
normal constraints over a local window a, i.e.

minimize
∑

i

a2
i

[
(fx, fy)i

(
u
v

)

i

+ (ft)i

]2
(6.33)

with the solution

v′ = (BT A2B)−1BT A2b (6.34)

where

BT =

(
fx1, ... , fxn

fy1, ... , fyn

)

A = diag(a1, ... , an)

bT = −(ft1, ... , ftn)

and where v′ is the estimated velocity. Similar approaches can be found in
[AB85, HJ92, SAH91, TS91].

The flow constraint in equation (6.32) can be rewritten more compactly as

(∇f)T v = 0 (6.35)

where (∇f)T is the spatio-temporal gradient with components (fx, fy, ft) and v
is a three-dimensional vector representation of the image velocity v = (u, v, 1)T .

Using this notation in equation (6.33) gives

minimize
∑

i

a2
i ((∇f)T

i v)2 (6.36)

which is equal to

minimize
∑

i

a2
i v

T∇fi(∇f)T
i v (6.37)

Let Fi denote the tensor ∇fi(∇fi)
T in spatial positions xi. Summing these

tensors, over a spatial localization window, ai, gives

∑

i

a2
i v

T Fiv = vT F′v (6.38)
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The least squares estimate of the velocity is the eigenvector of F′ corresponding
to the smallest eigenvalue. Note that this estimate is equivalent to the estimate
obtained in equation (6.34). The use of outer products of the gradient in a similar
way can be found in [Big88] .

6.5 VELOCITY FROM THE ORIENTATION

TENSOR

In the previous section the optical flow equation was rewritten in terms of spatio-
temporal gradients. This shows that estimating the local spatio-temporal struc-
ture is a natural way to estimate velocity in an image sequence. Note that for
time sequences, a spatial line in motion generates a spatio-temporal plane, and
that a moving spatial point generates a spatio-temporal line [WAJA85, AB85].

Velocity estimates can be obtained directly from the orientation tensor. In line-
like neighbourhoods, true velocity may be estimated. In plane-like neighbour-
hoods, only the velocity component perpendicular to the local structure can be
measured. In this section it is shown how tensors describing plane-like structures,
can be combined into tensors containing information of the true local motion.

For moving lines or moving linear structures only the velocity component per-
pendicular to the structure can be determined. The velocity component along
the line is indeterminable since motion in this direction induces no change in
the local signal, the so called aperture problem [Hor86]. In areas with enough
structure, i.e. rank(T) > 1, the correct velocity can be estimated, see figure 6.13.

True
flow

v

v

v

v

v

vn

vn vn

vn

Figure 6.13 Illustration of the “aperture problem”. On moving lines only the
normal flow (the true flow projected onto the normal vector of the line) only be
estimated. The true flow can be estimated near the corners.
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By examining the relations between the eigenvalues of the orientation tensor it is
possible to determin to which of the above categories the neighbourhood belongs.
The plane case corresponds to a moving line and gives an estimate only for the
velocity component perpendicular to the line. The line case corresponds to a
moving point and gives an estimate of the velocity in the image plane.

In order to categorize the estimated tensor into the plane case or the line case,
the following certainty estimates were used:

c1 =
λ1 − αλ2

λ1
and c2 =

λ2 − βλ3

λ2
(6.39)

where α and β are constants > 1. Negative certainty estimates, ci, in the formulas
above is set to zero. A large α sets the certainty to zero for all estimates not
corresponding to the plane case. A large β sets the certainty to zero for all
estimates not corresponding to the line case.

In general, it is more robust to estimate normal flow as opposed to true flow
[Alo90, Hag92]. We have experienced the same behaviour of the tensor estimates.
Therefore, the certainty of the normal flow case, c1, is used as a weight in the
tensor averaging (equation (6.40)). This means that the presumably noisy origi-
nal estimates, capable of estimating the true velocity, are removed by weighting
the original tensor field with the scalar certainty field c1.

The certainty measure, c1, is high only in areas that can be described as simple.
High certainty assures that the estimate is not describing a mixture of velocities
on a motion boundary. Contrary to T, the tensors F = ∇f∇fT (equation (6.38))
are always of rank 1 independent of the spatio-temporal structure (if F 6= 0).

The c1-weighted tensor field, c1T, contains tensors of rank 1 and describes the
normal flow. In figure 6.14 these tensors are marked T1 (section 6.2.4). Averaging
the c1-weighted tensor field, with a spatial localization window, ai, gives

∑

i

aic1iTi = T′ (6.40)

In figure 6.14 averaged tensors are marked T2. The average of two rank 1 tensors
is a rank 2 tensor. The two eigenvectors having non-zero eigenvectors span a
plane. Figure 6.14 shows that the eigenvalues of the T2 tensors vary because of
summation over different structures. It also shows that in a rigid body motion,
the plane the T2 tensors define is unique. The direction of the normal vector
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to this plane defines the velocity. Similar to equation (6.38), this vector is the
eigenvector e3 corresponding to the smallest eigenvalue of T′.

v′ = e3 = k(vx, vy, 1) (6.41)

Although the certainty measure removes estimates on motion boundaries, there
may still exist multiple motions under the local window W . The eigenvalue
distribution of the tensor T′ reveals this: if the smallest eigenvalue is not close
to zero, more than one motion may be present.

T1

T2

T1

T1

T1

T2

v
v

a b

Figure 6.14 a) Example of a structure containing two perpendicular lines mov-
ing with a velocity v. b) Two moving lines which are not perpendicular.

Let the coordinate axes of the image plane be denoted x̂1, x̂2, and let the time
axis be denoted t̂. Let Px be a projection operator projecting onto the image
plane

Px = x̂1x̂
T
1 + x̂2x̂

T
2

and let Pt be a projection operator projecting onto the time axis

Pt = t̂t̂T

The expression of the true velocity is then given by

v =
Pxe3

‖Pte3‖
=

Pxe3

|t̂T e3|
(6.42)
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Note that e3 does not necessarily have to be normalized.

In all practical cases, noise from various sources is present in the input signal.
One way of removing noisy estimates is to remove all estimates below a certain
threshold. Thresholding the output field based on the norm of the tensor removed
some of the “good” estimates without removing all the noisy ones. Instead of
doing this, it has shown useful to add a constant tensor, ǫI, to the estimated
ones and then remove tensors based only on their shape. The ǫI may be viewed
as a regularization term. Small tensors will become proportionally “rounder”
than larger ones when adding the tensor ǫI, and will consequently be removed
by a planar shape constraint. In the experiments below, ǫI has been added to
the output field using an ǫ equal to 1 percent of the norm of the largest output
tensor (globally).

The algorithm has been evaluated using a synthetic test sequence consisting of
two moving boxes, see figure 6.15. The white box is moving to the left with a
speed of 0.8 pixels per frame and the black box is moving 45◦ down and to the
left with a speed of 1.6 pixels per frame. The size of the images in the sequence
is 64× 64 pixels. The filter Wi used is a Gaussian filter of size 15× 15 pixels. In
figure 6.16, the information contained in the unfiltered tensor field is shown. The
final result in figure 6.17 indicates that the algorithm produces correct estimates
robustly.

We have introduced a method for estimating image flow based on lowpass filtering
normal constraints represented by second order tensors. If the neighbourhood is
not simple (equation (6.2)), rank 2 tensors containing information about true
velocity and certainty measures thereof are produced by the algorithm. If the
signal under the filter is simple, the algorithm will not break down. Instead,
it produces output tensors of rank 1 indicating that a larger window has to be
employed if true motion is to be estimated.

It is worth noting that, performing the smoothing in the tensor representation
space is a crucial component of the algorithm and is not the same as smoothing
normal velocities in the image plane. For example, the spatial average of the
normal estimates of the white box in figure 6.16 would not produce a vector
pointing in the direction of the true flow since the box is an elongated square and
has more normal estimates pointing upwards than downwards.
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Figure 6.15 Top: One frame from a synthetic test image sequence containing
two moving boxes. The white box is moving to the left with a speed of 0.8 pixels
per frame and black box is moving 45◦ down and left with a speed of 1.6 pixels
per frame. Bottom: The norm of the estimated orientation tensor in the same
frame.
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c1 c2

estimated normal flow estimated true flow

Figure 6.16 Left Top: Certainty of normal flow (c1), α = 5. Bottom: Esti-
mated normal flow. Right Top: Certainty of true flow (c2), β = 1.4. Bottom:
Estimated true flow. Note that the estimates are less stable than in the normal
flow case.
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Figure 6.17 Top: Certainty (c2) of true flow after a spatial smoothing of the
c1T tensor field with a 15 × 15 Gaussian smoothing filter, β = 1.4. Bottom:
Estimated true flow from the averaged tensor field.
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6.6 SACCADE COMPENSATION

The experiment was carried out using a simulated environment used to study the
performance of an active vision robot. The software package has been developed
by Westelius within the ESPRIT Basic Research Action 7108 “Vision as Process”
[Wes92].

Saccades, i.e. fast camera motions made in order to fixate a new point of in-
terest, will normally introduce strong erroneous responses for a substantial pe-
riod following the saccade. Such errors can almost completely be eliminated
using normalized differential convolution [KWW93]. In the following example, a
spatio-temporal Gabor basis function is used.

The Gabor basis function has the following form in the spatial domain:

b = eiω0xT t̂ (6.43)

where x is the spatio-temporal coordinate and t̂ is the normalized temporal
direction vector. Inserting this basis function in equation (5.20) gives:

θ =
〈a, c〉〈aeiω0xT t, cf〉 − 〈aeiω0xT t, c〉〈a, cf〉

〈a, c〉2 − 〈aeiω0xT t, c〉2
(6.44)

where f is the input signal.

Note that this equation contains only four different convolutions. The signal
certainty, c, is set to zero during the saccade. Otherwise it is set to one. This
is not the same thing as shutting off the camera during the saccade, since that
would produce strong edge effects.

In figure 6.18 a sequence from a simulated environment has been used for show-
ing the possibility of compensating for unwanted operator responses because of
saccades. The scenario is an object continuously moving around on the floor.
The initial viewpoint of the robot is on the wall at the rightmost painting. Then,
the robot makes a saccade, shifting its attention to the leftmost painting. The
middle sequence contains the output from standard convolution using a quadra-
ture filter. The spatio-temporal filter responses caused by the saccade clutter the
whole image. To the right in figure 6.18 the output from normalized differential
convolution is shown. The unwanted responses caused by the saccade have been
significantly reduced.
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Figure 6.18 Left: Original sequence, a simulation of an object moving around
on the floor. Every fourth frame is shown here. Middle: Filter magnitude output
from the used Gabor filter, ab. The applicability function a has the size 9×9×9.
Right: Output from Normalized differential convolution. The strong erroneous
responses in the middle sequence are almost eliminated.
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7
LINE AND PLANE EXTRACTION

USING TENSORS

7.1 INTRODUCTION

This chapter focuses on various aspects of representation and grouping of in-
formation. We begin with an investigation of the uniformity of some standard
parameter spaces (also termed parameter mappings). The analysis shows that,
to avoid discontinuities, great care should be taken when choosing the parameter
space for a particular problem.

It is shown that the local strucure tensor introduced in chapter 6 can be decom-
posed into projection operators which can be used for grouping collinear/coplanar
estimates [Wes91]. Based on these results, a new parameter mapping well suited
for line extraction, the Möbius strip parameterization [WK92b, Wes91], is de-
fined. The method has similarities to the Hough Transform [IK88].

7.2 PARAMETER MAPPINGS FOR LINE

SEGMENTATION

The reason for using a parameter mapping is often to convert a difficult global
detection problem in image space into a local one. Spatially extended patterns
are transformed so that they produce spatially concentrated features in a space
of parameter values. In the case of line segmentation, the idea is to transform
the original image into a new domain so that collinear subsets, i.e. global lines,
fall into clusters. The topology of the mapping must reflect closeness between
wanted features, in this case features describing properties of a line. The metric
describing closeness should also be uniform throughout the space with respect to
the features. If the metric and topology do not meet these requirements, signif-
icant bias and ambiguities will be introduced into any subsequent classification

123
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process. These aspects are especially important when working with dynamic
scenes. If, for example, the position in the parameter space for a moving line
does not change smoothly, it may be hard or impossible to keep track of them.
In this section some problems with standard mappings for line segmentation will
be illuminated. We start with discussing some intuitively natural mappings for
line segmentation.

The Hough transform, HT, was introduced by P. V. C. Hough in 1962 as a method
for detecting complex patterns [Hou62]. It has found considerable application due
to its robustness when using noisy or incomplete data. A comprehensive review
of the Hough transform covering the years 1962-1988 is found in [IK88].

The km-parameter mapping

The key ideas of the HT can be illuminated by considering identifying sets of
collinear points in an image. Points (x, y) lying on a straight line satisfy the
well-known relation

y = kx + m

where k is the slope and m is the intersection of the line with the y-axis. In the
x-y space, (x, y) are variables and (k,m) parameters. In the k-m space it is vice
versa. A mutual constraint between image points (x, y) and parameter points
(k,m) is defined by

y − kx − m = 0 (7.1)

The HT is a mapping from one to many. Each image point votes for all parame-
ter combinations that could have produced it. This means that each image point
(x, y) votes for a complete line in the parameter space (k,m). The histogram
produced from all the points in the image contains a peak, (kpeak,mpeak), corre-
sponding to the parameters defining the original line in the image, see figure 7.2
(left).

The ρϕ-parameter mapping

Severe problems with standard Hough parameterization are that the space is
unbounded and will contain singularities for large slopes, k. The difficulties
of unlimited ranges of the values can be solved by using two plots, the second
corresponding to interchanging the axes. This is of course not a satisfactory
solution. Duda and Hart [DH72] suggested that straight lines might be most
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usefully parameterized by the length, ρ, and orientation ϕ, of the normal vector
to the line from the origin, the normal parameterization, see figure 7.1.

ρ − x cos(ϕ) − y sin(ϕ) = 0 (7.2)

This mapping has the advantage of having no singularities.

y

x
ϕ

ρ

X Y,( )

Figure 7.1 The normal parameterization, (ρ, ϕ), of a line. ρ is the magnitude
of displacement vector from the origin and ϕ is its argument.

Measuring local orientation provides additional information about the slope of
the line or the angle ϕ when using the normal parameterization. This reduces the
standard HT to a one-to-one mapping. With one-to-one, we do not mean that
the mapping is invertible, but that there is only one point in the parameter space
that defines the parameters that could have produced it, see figure 7.2 (right).

Duda and Hart discussed this briefly in [DH73]. They suggested that this map-
ping could be useful when fitting lines to a collection of short line segments. Du-
dani and Luk [DL78] used this technique for grouping measured edge elements.
Princen, Illingworth and Kittler performed line extraction using a pyramid struc-
ture [PIK90]. At the lowest level they used the ordinary ρϕ-HT on subimages for
estimating small line segments. In the preceding levels they used the additional
local orientation information for grouping the segments.
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x

y

y = kx + m

m

k

m

k

Standard Hough, peak in the
transform domain defines the 
original line.

Estimating local orientation
reduces the voting to a 
single point.

Figure 7.2 Measuring local orientation provides additional information about
the slope of the line or the angle ϕ when using the normal parameterization.

Unfortunately, however, the normal parameterization has problems when ρ is
small. Some lines may generate more than one cluster. Consider for example
a line going through the origin in a xy-coordinate system. When mapping the
coordinates according to the normal parameterization, two clusters will be pro-
duced separated in the ϕ-dimension by π, see figure 7.3. Note that this will
happen even if the orientation estimates are perfectly correct. A line will always
have at least an infinitesimal thickness and is therefore likely to be projected on
both sides of the origin. A final point to note is that a translation of the origin
outside the image plane will not remove this topological problem. It will only be
transferred to other lines.

Granlund introduced a double angle notation [Gra78] in order to achieve a suit-
able continuous representation for local orientation. However, using this double
angle notation for global lines, removes the ability to distinguish between lines
with the same orientation and distance, ρ, on opposite sides of the origin. How-
ever, the problem near ρ = 0 is removed. In figure 7.3 the two horizontal lines
(marked a and c), located at the same distance ρ from the origin, are in the
double angle normal parameterization mixed into one cluster.
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Figure 7.3 A test image containing three lines and its transformation to the
ρϕ-domain, the normal parameterization of a line. The cluster from the line at
45◦ is divided into two parts. This mapping has topological problems near ρ = 0.
The ρ2ϕ-domain, however, folds the space so the topology is good near ρ = 0,
but unfortunately it is now bad elsewhere. The two horizontal lines, marked a
and c, have in this parameter space been mixed in the same cluster.

It seems that we need a double angle representation around for small values of ρ,
and a single angle representation elsewhere. This raises a fundamental dilemma:
is it possible to achieve a mapping that fulfills both the single angle and the
double angle requirements simultaneously?

We have been concerned with the problem of the normal parameterization spread-
ing the coordinates around the origin unsatisfactorily although they are located
very close in the Cartesian representation. Why do we not express the displace-
ment vector, i.e. the normal vector to the line from the origin, in Cartesian
coordinates, (X,Y ), since the topology is satisfactory? This parameterization is
defined by

X = x cos2(ϕ) + y cos(ϕ) sin(ϕ) (7.4)

Y = y sin2(ϕ) + x cos(ϕ) sin(ϕ) (7.5)

where ϕ as before, is the argument of the normal vector (the same as the dis-
placement vector of the line).

Davis uses the ρϕ-parameterization in this way by storing the information in a
Cartesian array [Dav86]. This gives the (X,Y ) parameterization. There are two
reasons for not using this parameterization. First, the spatial resolution is very
poor near the origin. Secondly, and worse, all lines having ρ equal to 0 will be
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mapped to the same cluster. The first problem, the poor resolution near the
origin, can at least be solved by mapping the XY -plane onto a logarithmic cone.
That would stretch the XY -plane so the points close to the origin get more space.
However, the second problem still remains.

7.3 THE ORIENTATION TENSOR

In this section the orientation information contained in the orientation tensor
presented in chapter 6 is related to the previous discussion concerning parameter
mappings for lines. It is shown that this tensor can be decomposed into projection
operators which can be used for grouping.

7.3.1 Decomposing the orientation tensor

As mentioned, the orientation tensor introduced in chapter 6 can be used for
grouping. Since this tensor is symmetric, equation (2.63) shows that the tensor
can be decomposed into a weighed sum of projection operators:

T =

n∑

i=1

λiêiê
T
i (7.5)

where êi is a normalized eigenvector of T.

If all the λi are distinct, the decomposition of T is unique and the projection
operators are the outer product of the eigenvectors:

êiê
T
i

If two or more eigenvalues are equal, there is an option in defining the eigen-
vectors in that subspace, and hence there is an option in the decomposition in
eigenvectors. The subspace they span is, however, distinct. Say for example that
ê1 and ê2 share the same eigenvalue and define an operator projecting onto this
subspace:

T2 = ê1ê
T
1 + ê2ê

T
2 (7.6)

Thus, decomposing the tensor in such operators gives a unique set of coefficients.
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An interesting choice is to decompose into projection operators having different
geometrical meaning. We define the following projection operators:

T1 = ê1ê
T
1 (7.8)

T2 = ê1ê
T
1 + ê2ê

T
2 (7.9)

Ti = ê1ê
T
1 + ê2ê

T
2 + ......... + êiê

T
i (7.10)

The first projection operator corresponds to a one-dimensional subspace, a line.
The second corresponds to a two-dimensional subspace, a plane, etc. Expressing
the orientation tensor in this new basis gives:

T = λnTn +

n−1∑

i=1

(λi − λi+1)Ti (7.10)

The coefficients are trivially derived by comparing this expression with the one
produced be the spectral decomposition theorem in equation (2.63).

Note that the above tensor decomposition is the same as the one used in chapter 6
for classifying higher order neighbourhoods.

7.3.2 Covariant and contravariant tensors

In chapter 2 it was stated that tensors are based on two forms, namely covariant
and/or contravariant tensors. Since the orientation tensor has close relations
to the outer product of the gradient, it can be argued that this tensor is a
covariant tensor of order two [Wes91]. Estimating the orientation in a simple
neighbourhood (equation (6.2)) produces a tensor of rank 1 (chapter 6). In our
context this corresponds to the projection operator T1 in equation (7.7). Letting
this tensor act on its spatial position vector gives:

ρ = T1(x) (7.11)

or written in component form (the index 1 is omitted):

ρj = Tijx
i (7.12)

where Tij denotes the components of the orientation tensor, xi denotes the com-
ponents of the vector defining the position in image space and ρj denotes the
components of the produced tensor; a covector.
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Thus, the projection operator T1 projects the spatial position (a contravariant
vector) of the estimate (a covariant tensor of order two) to a covariant vector.
The fact that the output is a covector is indicated by the subscript (chapter 2).

7.3.3 Lines in two dimensions

In two dimensions, equation (7.10) gives the decomposition of the orientation
tensor into projection operators

T = (λ1 − λ2)ê1ê
T
1 + λ2(ê1ê

T
1 + ê2ê

T
2 ) = (λ1 − λ2)T1 + λ2T2 (7.13)

As mentioned, the operation in equation (7.11) produces a covector, ρ.

It turns out that the orientation of this vector is perpendicular to the orientation
of line which is to be estimated (figure 7.4). Thus, the vector is pointing at
the line coordinate closest to the origin. To facilitate drawing of the orientation

x

ρ

T1

Figure 7.4 Grouping of information

tensor we have in this figure used the “double arrow” notation from figure 6.2.
The double arrow corresponds to the direction of the largest eigenvector. The
reason for having two directions is that if ê1 is the eigenvector of T1, so is −ê1.
The double arrow indicates these two directions. A second order tensor of rank
1 can therefore be seen as an “unsigned” vector.



LINE AND PLANE EXTRACTION USING TENSORS 131

The grouping that the tensor operation performs can be illuminated by the fol-
lowing derivation. The vector x in figure 7.4 can be divided into one vector
perpendicular to the line of collinearity and one parallel to it,

xi = ρi + αρj
⊥

(7.14)

where α defines the position along the line. Using this expression in the operation
from equation (7.12):

Tijx
j = Tij(ρ

j + αρj
⊥

) = Tijρ
j + αTijρ

j
⊥

(7.15)

Recalling the definition of the ideal orientation tensor as the tensor product
between the covector perpendicular to the line and itself,

Tij = ρiρj (7.16)

gives:

Tijρ
j + αTijρ

j
⊥

= ρiρjρ
j + αρiρjρ

j
⊥

= ρi + 0 = ρi (7.17)

which shows that all collinear tensors having equal orientation are projected onto
the same covector.

The fact that both the strucure tensor and ρ are covariant can also be shown by
studying their transformation properties geometrically. Suppose we change our
coordinate system making the line in figure 7.4 look like the one in figure 7.5.
In this figure the new transformed coordinate system is shown. If T and ρ were
contravariant tensors, they would be transformed as in the left figure. It can be
seen that they transform as the vector x, i.e. they become more vertical. Thus,
they turn in the “wrong” direction. To the right in this figure, it is shown how
covariant tensors would be transformed.

7.3.4 Lines and planes in three dimensions

In three dimensions, equation (7.10) shows that the decomposition of the orien-
tation tensor into projection operators has the following form

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + λ3T3 (7.18)
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ρ

T

x

ρ

T1 1

Figure 7.5 In this figure the new transformed coordinate system is shown. If
T and ρ were contravariant tensors, they would be transformed as in the left
figure. It can be seen that they transform as the vector x, i.e. they become more
vertical. To the right it is shown how covariant tensors would be transformed.

Simple and higher rank neighbourhoods were discussed in chapter 6 when in-
terpreting the orientation tensor in three dimensions. As mentioned there, the
rank of the tensor reflects the complexity of the neighbourhood. The plane case
corresponds to what was referred to as a simple neighbourhood. The line case
corresponds to a neighbourhood that is constant on lines. The orientation of the
lines is given by the eigenvector corresponding to the smallest eigenvalue, ê3.

The projection operator T1 groups coplanar points and T2 groups collinear
points. This grouping is visualized in figure 7.6, where the set of coplanar orien-
tation tensors will be projected onto ρ1 and the set of collinear tensors will be
projected onto ρ2. In both cases the elements are projected to the point on the
plane/line closest to the origin.

7.3.5 Parameter spaces defined by projection

operators

Two dimensions

In two dimensions, the parameter mapping is two-dimensional: the components
of the produced covector. However, lines passing through the origin of the image
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ρ
1

ρ
2

T1
T2

Figure 7.6 Grouping of information in three dimensions.

coordinate system (x = 0) are projected to the same cluster. One way of prevent-
ing the estimates from different lines from mixing is to incorporate the operator,
T1 = ê1ê

T
1 in the mapping as well. The operator contains three different compo-

nents and the produced covector contains two. This gives us a five-dimensional
grouping space:

(ρx, ρy, e2
1x

, e2
1y

, e1x
e1y

) (7.19)

Three dimensions

In three dimensions, we similarly get two parameter mappings. One nine-dimensional
grouping space for simple neighbourhoods:

(ρx, ρy, ρz, e
2
1x

, e2
1y

, e2
1z

, e1x
e1y

, e1x
e1z

, e1y
e1z

) (7.20)

and another nine-dimensional grouping space for rank 2 neigbourhoods:

(ρx, ρy, ρz, e
2
1x

+ e2
2x

, e2
1y

+ e2
2y

, e2
1z

+ e2
2z

, (7.21)

e1x
e1y

+ e2x
e2y

, e1x
e1z

+ e2x
e2z

, e1y
e1z

+ e2y
e2z

)
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Note, however, that the parameters in these mappings are dependent. This means
that only a subspace of the parameter space contains data. Unfortunately these
subspaces are folded in a complex manner.

This concludes the general discussion about projection operators and group-
ing data. In the next section we will focus on parameter mappings for two-
dimensional lines and present a parameter mapping that unfolds the five-dimensional
mapping presented in this section.

7.4 THE MÖBIUS STRIP

PARAMETERIZATION

In this section we present a new parameter space and discuss its advantages with
respect to the arguments of the previous section. The topology of the mapping
introduces its name, the “Möbius strip” parameterization. This mapping has
topological advantages over previously proposed mappings.

The Möbius strip mapping is based on a transformation to a four-dimensional
space by taking the normal parameterization in figure 7.1, expressed in Cartesian
coordinates (X,Y ) and adding a “double angle” dimension, (consider the Z-
axis in a XY Z-coordinate system). The problem with the Cartesian normal
parameterization is, as mentioned, that all clusters from lines going through
the origin mix into one cluster. The additional dimension, φ = 2ϕ, separates
the clusters on the origin and close to the origin if the clusters originate from
lines with different orientation. Moreover, the wrap-around requirement for φ is
ensured by introducing a fourth dimension, R.

The four-dimensional mapping






X = x cos2(ϕ) + y cos(ϕ) sin(ϕ)
Y = y sin2(ϕ) + x cos(ϕ) sin(ϕ)
φ = 2ϕ
R = R0 ∈ R

+

(7.22)

The two first parameters, X and Y , represent the normal vector in figure 7.1
expressed in Cartesian coordinates. The two following parameters, φ and R,
define a circle with radius R0 in the Rφ-subspace. Any R0 > 0 is suitable.
This gives a XY φ-system with wrap-around in the φ-dimension. This four-
dimensional mapping is a subspace of the five-dimensional space presented in
section 7.3.5. The relation between the mappings is: X = ρx, Y = ρy and the
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relation between the tensor components and the double angle representation is
described in section 6.2.3.

In the mapping above, the parameters are dependent. As the argument of the
vector in the XY -plane is ϕ and the fourth dimension is constant, it follows that
for a specific (X,Y ) all the parameters are given. Hence, the degrees of freedom
are limited to two, the dimension of the XY -plane. Thus, all the mapped image
points lie on a two-dimensional surface in the four-dimensional parameter space,
see figure 7.7.

2'

Y

X

Figure 7.7 The 2D subspace

The two-dimensional surface

The regular form of the two-dimensional surface makes it possible to find a two-
parameter form for the desired mapping. Let us consider a ηφ-plane correspond-
ing to the flattened surface in figure 7.7. Let

ρ2 = X2+Y 2 = (x cos2(ϕ)+y cos(ϕ) sin(ϕ))2+(y sin2(ϕ)+x cos(ϕ) sin(ϕ))2(7.23)

⇔ ρ = x cos(ϕ) + y sin(ϕ) (7.24)
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Then the (η, φ) mapping can be expressed as

η =

{
ρ 0 ≤ ϕ < π

−ρ π ≤ ϕ < 2π
(7.25)

φ = 2ϕ (7.26)

η is the variable “across” the strip with 0 value meaning the position in the
middle of the strip, i.e. on the 2ϕ axis. The wrap-around in the φ dimension
makes it easy to interpret the surface as a Möbius strip.

Finally, using the same test image as before (figure 7.3), we see that we can
distinguish between the two lines on opposite sides of the origin while not dividing
the cluster corresponding to the line going through the origin (figure 7.8).

Φ=2ϕ

η

. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..c ... ...... ... ......... ...... ... ...... ... ......... ...... ... ...... ... ......... ......... ...... ... ......... ...... a

... ...... ... ......... ...... ... ...... ... ......... ...... ... ...... ... ......... ......... ...... ... ......... ...... b

π

2π

Figure 7.8 (η, φ) he The Möbius strip mapping with parameters (η, φ). We
can see that we can distinguish between the two lines, a and c, at opposite sides of
the origin at the same time as the cluster corresponding to the line going through
the origin is not divided.

The name of the mapping, as mentioned above, reflects the topology of the ηφ-
parameter surface, its twisted wrap-around in the φ-dimension. The proposed
mapping has the following properties:

1. The parameter space is bounded and has no singularities such as the stan-
dard HT parameterization for large slopes.

2. The metric reflects the underlying geometry of the features. The mapping
does not share the topological problem of the ρϕ-mapping near ρ = 0. In



LINE AND PLANE EXTRACTION USING TENSORS 137

[WK92b] it was shown that any line passing through the origin produces two
clusters, separated by π in the ϕ-dimension.

Note that these properties have been achieved without increasing the dimension
of the parameter space compared to for example the normal parameterization in
figure 7.1.

7.5 LOCAL ESTIMATES WITH GLOBAL

SUPPORT

In this section a simple segmentation example is shown. The method is based
on segmenting estimates having local and global support simultaneously. The
magnitude of the local orientation estimates are shown in figure 7.9 (top right).
These estimates are projected and accumulated in a Möbius histogram (figure 7.9
top left).

The image is then transformed a second time. This time no new histogram is
produced. The coordinate obtained via the mapping is only used as a pointer,
checking the energy concentration in the earlier produced histogram. The model
support for a global line, the energy at the location of the pointer in the histogram
is combined with the certainty of the local orientation estimate is combined. This
is shown in figure 7.9 (middle and bottom)
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φ

η

φ

η

φ

η

Figure 7.9 By demanding simultaneous support in the two domains, only local
estimates having enough of neighbours along the global structure stating the
same orientation survives. The required level of energy support in the histogram
domain is denoted α. The histogram maxvalue is scaled to 1. Top: α = 0.
Middle: α = 0.3. Bottom: α = 0.7.



8
LOCAL FREQUENCY AND

BANDWIDTH ESTIMATION

This chapter describes a technique for estimation of local signal frequency and
bandwidth. Local frequency is an important concept useful for local structure
analysis as well as for determining the appropriate range of scales for subsequent
processing. The method is based on combining local estimates of instantaneous
frequency over a large number of scales. The filters used are a set of lognormal
quadrature filters. The bandwidth is used to produce a measure of certainty
for the estimated frequency. The algorithm is applicable to multidimensional
data and examples of the performance of the method are demonstrated for one-
dimensional and two-dimensional signals. The material is based on [KWG94].

8.1 INTRODUCTION

The concept of frequency is a mathematically well-defined entity. Any stationary
signal can be represented as a weighted sum of sine and cosine functions having
particular amplitudes, phases and frequencies. For non-stationary signals, how-
ever, this is not the case, and a description in term of sines and cosines becomes
meaningless. This fact has, since most real life signals are non-stationary, led to
a number of attempts to find methods which would allow non-stationary signals
to be analysed in a frequency-like manner.

8.1.1 Instantaneous frequency

One such attempt was the introduction of the notion of instantaneous frequency.
Carson and Fry [CF37] and van der Pol [vdP46] defined instantaneous frequency
and applied it to frequency modulated signals. The concept of instantaneous
frequency is based on the so-called analytic signal which in turn is defined via
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the Hilbert transform. We will shortly review these concepts, before defining
instantaneous frequency.

The Hilbert transform

The Hilbert transform corresponding to a signal f(x) is obtained by convolving
the signal with the function −1

πx ,

fHi(x) = f(x) ∗ −1

πx
(8.1)

Let FHi(u) denote the Fourier transform corresponding to fHi(x). Since convo-
lution in the spatial domain corresponds to multiplication in the Fourier domain
and the Fourier transform of −1

πx is i sign(u), it must be the case that

FHi(u) = F (u) · i sign(u) (8.2)

where u is the frequency variable and sign(u) equals one for u > 0 and minus one
for u < 0. Hence, the Fourier transform of fHi is obtained by multiplying F by
the imaginary unit i and then change sign of the result for negative frequencies.
Another way of describing this process is to turn the argument of the frequency
components an angle π

2 in the positive direction for positive frequencies and in the
negative direction for negative frequencies. From this follows immediately that
two Hilbert transforms in succession will simply change the sign of a function.

The analytic signal

Having defined the Hilbert transform, we can define the analytic signal, fA,
corresponding to a real signal f .

Definition 7 (The analytic signal) The analytic signal is a complex signal
and is uniquely defined as:

fA = f − ifHi (8.3)

where fHi denotes the Hilbert transform of f . ✷

Since the Hilbert transform is well-defined only for one-dimensional signals, the
analytic signal is well-defined only for these signals, too. The Hilbert transform
can be used in higher dimensional spaces if a direction in this space is specified.
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Example 10 The analytic signal corresponding to cos x is eiu. ✷

Example 11 The analytic signal corresponding to sinx is −ieiu. ✷

From the definition of the Hilbert transform it is clear that we can rewrite

fA = f ∗ [δ(x) +
i

πx
], (8.4)

which in the Fourier domain corresponds to

FA = F · [1 + sign(u)] = 2 F · step(u). (8.5)

where step(u) is the step function: step(u) = 1 for u > 0 and zero for u < 0.
Hence, the analytic signal corresponding to f is obtained by suppressing all its
negative frequencies and multiplying by two. It should be noted that this implies
that an analytic function can not be real and non-zero.

For a real signal, the corresponding analytic signal is complex, with the real part
being the original signal itself and the imaginary part being its Hilbert transform.
This is illustrated in figure 8.1.

The instantaneous frequency

The instantaneous frequency is commonly defined as the rate of change in argu-
ment of the analytic function. In the following, the argument of fA is referred to
as the phase of f .

arg[fA(x)] = ω0 + ωx + higher order terms. (8.6)

If f is a single frequency signal, the phase of f is a linear function of x and
arg[fA(x)] = ω0 + ωx. Hence, one way of obtaining the angular frequency is to
differentiate the phase with respect to x.

Definition 8 (Instantaneous frequency) For any real function such that its
phase has a well-defined derivative with respect to x, we define the instantaneous
frequency of f(x) as

ω =
d

dx
arg[fA(x)]. (8.7)

✷
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x

Re(fA) = f

fA

Im(fA) = −fHi

Re

Im

Figure 8.1 The analytic signal fA corresponding to a real function f . The
Hilbert transform fHi of f is shown with reversed sign in the imaginary domain.

In practice we are interested in filtered versions of the analytical signal. Note now,
according to the definition of the analytic signal fA, that all negative frequencies
of f are suppressed. Furthermore, we know that convolution in the spatial domain
corresponds to multiplication in the Fourier domain. Hence, employing filters
with zero response for negative frequencies, on the original signal, f , is equivalent
to act on the analytical signal fA. Such filters are called quadrature filters and
can be thought of as acting on the analytic signal fA, even though they in practice
act on f .

Local behaviour and spatial frequency are since long recognized as important
properties for signal processing. A historical review of the concept of instanta-
neous frequency, and methods for estimation instantaneous phase and frequency,
can be found in [Boa92a, Boa92b]. It is noteworthy that - despite its name -,
instantaneous frequency is a global entity, in that local alterations of the sig-
nal will effect the instantaneous frequency everywhere due to the infinite kernel
associated with the Hilbert transform.
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8.1.2 Local Fourier transforms

As mentioned in chapter 2, Gabor [Gab46] proposed a combined representation
of time and frequency. He expanded the signal in modulated Gaussian basis
functions

f(x) =
∑

i

αi gui,σ(x) (8.8)

where u is the frequency variable and

gui,σ(x) = eiuxe
x2

σ2 (8.9)

where the coefficients αi are obtained by convolving with the dual basis functions.

A similar expansion was demonstrated in chapter 4 where the the normalized
Fourier transform was introduced. It was shown how a signal is expanded in
infinite sinusoids and cosinusoids. The localization was achieved by using an
applicability function as a certainty window instead of changing the basis function
or the signal. In this case the dual basis is calculated implicitly via the metric
tensor. This dual basis is not exactly the same as the one derived from the
auxiliary function in figure 3.6 which is derived from a complete set of Gabor
function which is infinit.

In many practical situations, however, orthogonality of the basis functions used
is not a critical issue, and the Gabor functions have found extensive use as filter
functions. Such localized filters can be defined using a general window function
instead of the Gaussian. This leads to the definition of a windowed Fourier
transform which can be expressed:

F (x, u) =

∫ ∞

−∞

w(x − x′)f(x′)e−iux′

dx′ (8.10)

As above, this transform can be seen as a transform having different com-
plex modulated windows as basis functions. Performing this local transform
for all spatial positions results in a combined space-frequency representation,
also termed a spectrogram. This representation has long been used for analyzing
one-dimensional time varying signals (e.g. [AR77]).

Over the last few years, the wavelet concept has gained considerable attention
[Dau92, Mey92, WCP92]. A wavelet basis is produced by translation and di-
latations of a “mother wavelet”. By using dilation to control the frequency
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characteristic, a constant relative bandwidth on a logarithmic scale is achieved.
The use of such filter sets, based on Gabor filters, was first suggested to the
computer vision community by Granlund in 1978 [Gra78]. A feature of constant
relative bandwidth filters is that the spatial localization becomes proportional to
the local signal wavelength. It is also appropriate to note that filters with almost
constant bandwidth are consistent with current multi-frequency channel theories
in psychophysics [SK74, MS76, MPU77, Leg78]. A transform based on a set of
scaled Gabor functions was introduced by Morlet in 1988.

8.2 A LOGNORMAL SPACE-FREQUENCY

REPRESENTATION

In this section, local frequency can be interpreted in terms of a single frequency
as well as in terms of local spectrum. The notion of instantaneous frequency is
used for narrowband analysis over a number of scales. The estimates are weighted
and summed to produce a wide band frequency estimate.

8.2.1 The lognormal quadrature filter

For convenience, the definition of the lognormal filter in chapter 6 is repeated. A
new index n is added to the radial function defining different centre frequencies

Q(u) = Rn(ρ)Dk(û) (8.11)

where u is the multidimensional frequency variable, Rn(ρ) and Dk(û) are the
radial and the directional function respectively. ρ is the norm and û is the
direction of the frequency vector: u = ρû.

The radial function has the following form:

Rn(ρ) = e−CB ln2( ρ
ρn

) (8.12)

where CB = 4
B2ln2 , ρn is the centre frequency and B is the 6 dB relative band-

width in octaves, i.e. B is given by

B = (ln2)−1 ln
(ρu

ρl

)

(8.13)

where ρl and ρu are the ρ values for which Rn(ρ) = 0.5.
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As in chapter 6, but using bracket notation for the scalar product, the directional
function of the quadrature filters has the following form:

{
Dk(û) = 〈û, n̂k〉2 if 〈u, n̂k〉 > 0

Dk(û) = 0 otherwise
(8.14)

where n̂k is the filter directing vector, i.e. D(û) varies as cos2(ϕ), where ϕ is
the angle between u and the filter direction n̂k (figure 8.2). For simple signals
(equation (6.2)) having an orientation given by x̂, the output magnitude from a
quadrature filter in direction k is given by

qkn = dn〈x̂, n̂k〉2, (8.15)

where dn is independent of the filter orientation and will be determined by the
radial distribution of the signal spectrum F (ρ) and the radial filter function
Rn(ρ).

Figure 8.2 Iso-surface plot of the directional function, Dk, as a function of the
signal orienting vector x̂.
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8.2.2 Summation of directional components

An isotropic estimate of signal strength can be obtained by summing the magni-
tude of the outputs from a number of quadrature filters having the same frequency
response, but different orientations.

qn =
∑

k

qkn =
∑

k

dn〈x̂, n̂k〉2 (8.16)

If the filter orienting vectors n̂k constitute a tight frame (chapter 3),

∑

k

dn〈x̂, n̂k〉2 = dnβ‖x̂‖2 = dnβ (8.17)

where β is the frame bound. In particular, if the filter orienting vectors n̂k

constitute an orthonormal basis of the same dimensionality as x̂, equation (8.17)
reduces to

qn =
∑

k

dn〈x̂k, n̂n〉2 = dn (8.18)

since β = 1 for orthonormal bases. This shows that an isotropic estimate of signal
strength, which is local both spatially and in the frequency domain, is obtained by
summing the magnitudes of the outputs of oriented quadrature filters constituting
a tight frame. The minimum number of filters required in each set is the same
as the dimensionality of the signal: the orthogonal case.

8.2.3 The ratio of two lognormal filters

By combining the outputs from two or more sets of filters that differ only in
centre frequency ρn, it is possible to produce a local frequency estimate.

For simple, single frequency neighbourhoods, the contribution in the Fourier
domain will be concentrated at two points at the distance ρ from the origin. The
isotropic magnitude of a sum of filters is then given by equation (8.12),

qn = dn = Ae−CB ln2( ρ
ρn

) (8.19)
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where A is the local signal amplitude. The ratio between the outputs from two
filters differing only in their centre frequencies ρn and ρm is

qm

qn
=

e−CB ln2
(

ρ
ρm

)

e−CB ln2

(
ρ

ρn

) (8.20)

Simplification of this equation leads to a simple power relation [Knu82],

qm

qn
= e

CB

[

ln2
(

ρ
ρn

)
−ln2

(
ρ

ρm

)]

= e
CB

[(
ln ρ−ln ρn

)2
−

(
ln ρ−ln ρm

)2
]

= e
CB

[

2
(

ln ρm−ln ρn

)
ln ρ+ln2 ρn−ln2 ρm

]

= eCB

[
ln ρm−ln ρn

][
2 ln ρ−ln ρm−ln ρn

]

= e
CB

[
ln
(

ρm
ρn

) ][
2 ln
(

ρ√
ρmρn

)]

=
( ρ√

ρnρm

)2CB ln
(

ρm
ρn

)

(8.22)

It is convenient at this point to introduce two constants. The first, α, depends
on the relative bandwidth and the ratio of the centre frequencies of the filters,
and the second, ρ(nm), is the geometric mean of the two centre frequencies.

α =
[

2CB ln
(ρm

ρn

)]−1

(8.22)

ρ(nm) =
√

ρnρm (8.23)

The ratio between two lognormal filter outputs can then be written

qm

qn
=

(
ρ

ρ(nm)

)α−1

. (8.24)

Solving for ρ yields:

ρ = ρ(nm)

(
qm

qn

)α

(8.25)
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A particularly simple situation occurs if the filters are chosen such that α = 1.
Applying equation (8.22) then gives the following relation between the ratio of
the filter frequencies and the relative bandwidth

ρm

ρn
= 2

B2

8 (8.26)

A centre frequency ratio of 2 is a natural choice and has been shown to work
well; for α = 1, this choice requires a relative filter bandwidth B of 2

√
2.
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Figure 8.3 The local radial frequency ρ can be estimated as the ratio between
two lognormal functions times ρ(n n+1), the geometric mean of the two centre
frequencies, if α = 1 (equation (8.25)).

8.2.4 The relation between lognormal ratios

and instantaneous frequency

In this section it is shown that the magnitude of the ratio between two lognormal
quadrature filters can be interpreted as the instantaneous frequency of a filtered
simple signal. To start, note that a quadrature filter suppresses all negative
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frequencies and produces a filtered analytic signal sAn, where n indicates the
filter center frequency. Also note that for simple signals the problem can be
treated as one-dimensional, since u = ρx̂ for all parts in the Fourier domain
where the signal contribution is non-zero. For this reason ρ can be thought of
as equivalent to the one-dimensional frequency variable u. The instantaneous
frequency ωn for sAn can then be written

ωi =
∂

∂x
arg(sAn) (8.27)

where x is the projection of the spatial coordinate ξ on the signal directing vector
x̂, i.e. x = ξT x̂.

Equation (8.27) can be rewritten as

ωn = Im[
∂
∂x sAn

sAn
] (8.28)

The equivalent to differentiation in the spatial domain is multiplication by the
frequency variable and a phase shift of π

2 in the Fourier domain, i.e. for the
derivative in equation (8.27):

∂

∂x
sAn ↔ iρSn (8.29)

where Sn is the Fourier transform of sAn.

Sn is the product of the frequency response of the the quadrature filter Fn and
the Fourier transform of the signal S.

∂

∂x
fAn ↔ i ρFn S (8.30)

If the lognormal quadrature filter set is designed so that α = 1, the following
relation holds, (rewriting equation (8.25)).

ρ Fn = ρ(nm)Fn+1 (8.31)

Combining equation (8.30) and equation (8.31) yields

∂

∂x
fAn ↔ i ρ(nm)Fn+1 S = i ρ(nm)Sn+1 (8.32)
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Expressing the right hand side in spatial terms, equation (8.32) gives the inter-
esting result

∂

∂x
sAn = i ρ(nm) sA(n+1) (8.33)

This implies that, given the output from one lognormal filter, a whole set of
lognormal filters outputs can be generated by repeated spatial differentiation.
The filters corresponding to the outputs will have the same relative bandwidth
and geometrically increasing centre frequencies.

Finally, the instantaneous frequency can be written

ωn = ρ(nm) Re[
sA(n+1)

sAn
] (8.34)

The narrow-band instantaneous frequency estimates used in the present method
differ somewhat from equation (8.34) in that the magnitudes of the filter ratios
are used, i.e.

ωn = ρ(nm) ‖
sA(n+1)

sAn
‖ =

qn+1

qn
(8.35)

For complex exponential signals equation (8.34) and equation (8.35) will be iden-
tical. However, for broadband signals, the estimates produced by equation (8.35)
are less sensitive to phase interference effects and guarantee non-negativity. Neg-
ative estimates will frequently occur if equation (8.34) is used [GK94].

8.3 WIDE RANGE FREQUENCY

ESTIMATION

Using two band-pass filters to estimate local frequency will in most situations only
work well if the signal spectrum falls within the range of the filters. However, a
wide range local frequency estimate can be obtained by weighted summation of
a number of filter pairs covering an extended frequency range. Given a set of N
quadrature filters with a relative bandwidth of 2

√
2 and the centre frequencies

given by,

ρn = 2n ρ
0

(8.36)
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Then a wide range frequency estimate can be obtained as

ρ = [

N−1∑

n=1

cn ]−1
N−1∑

n=1

cn
qn+1

qn

√
ρnρn+1

(8.37)

where
√

ρnρn+1
= ρ

0
2n+0.5 and where cn are the weighting coefficients.

For single frequency neighbourhoods, all filter pairs will estimate the same fre-
quency, see figure 8.3, and any choice of weighting coefficients cn will yield the
same result. In practice, however, the choice of weighting coefficients is impor-
tant. To obtain reliable estimates the weighting coefficients should reflect the
amount of signal energy that a given filter pair encounters. A choice of cn that
satisfies this requirement and at the same time leads to a particularly simple
estimation algorithm is:

cn = qn (8.38)

With this choice, equation (8.37) becomes:

ρ̃ = ρ
0
[

N−1∑

n=1

qn ]−1
N−1∑

n=1

2n+0.5 qn+1
(8.39)

i.e. , a wide range frequency estimate is obtained as the ratio between two sums of
lognormal filter outputs. This estimation algorithm was used in the experiments
below, with eight filters having a relative filter bandwidth B of 2

√
2, one octave

apart.

8.3.1 Estimation of spectrum variance

The local frequency may be considered the average of the frequencies present at
a given spatial position. It is useful to have a measure defining the deviation
from this value. Such a measure may be interpreted as instantaneous bandwidth
[Boa92a], and will be directly related to the reliability of the mean frequency
estimate, ρ̃. The broader the bandwidth, the more uncertain the local frequency
estimate. An estimation of the local signal spectrum variance can be obtained by
summing the squared differences between the wide range estimation of the mean
frequency, ρ̃, and the estimates obtained by the individual filter pairs, i.e.

σ̃2 = [

N−1∑

n=1

q2
n ]−1

N−1∑

n=1

q2
n [ 2n+0.5

qn+1

qn

− ρ̃]2 (8.40)
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A certainty measure, c, based on the local spectrum variance can then be defined
as:

c =
1

1 + σ2
(8.41)

giving c = 1 as maximum certainty (when the variance i zero). This is the
certainty measure used in the examples below.

8.4 EXPERIMENTAL RESULTS

The first example contains a non-stationary signal, i.e. a signal with a space-
variant spectrum. It is constructed from three sinusoids covering four octaves
having the frequencies π

64 , π
16 and π

4 (figure 8.4). Note that the certainties of
the estimates are high in the constant frequency regions and low in the regions
where transitions between two frequencies occur.

The test signal in the second example (figure 8.5) is constructed as a sum of two
components, a constant frequency component, f = π/4, and a chirp signal which
has linearly increasing frequency from f = π/8 to f = 3π/8. This means that
the single frequency model is not valid. In this case the algorithm estimates the
mean of the two frequency components. Because of interference between the
frequencies, the mean frequency is difficult to measure at some spatial positions.
In these singular points the certainty of the estimate is close to zero. A smoother
estimate can be obtained using normalized averaging. Using this technique an
adaptive smoothing can be performed based on the accompanying certainty val-
ues. A new estimate of the certainty after this operation is also provided, as
shown by the dashed line.

The third one-dimensional example contains a test signal with one constant mean
frequency with exponentially increasing bandwidth from B = 0.25 to B = 4 oc-
taves (figure 8.6). The broader the bandwidth, the weaker the notion of instan-
taneous frequency becomes. This is why the estimates become more and more
noisy to the right in the middle right figure, and why the certainty decreases
in the bottom right figure. The estimates after normalized averaging are also
plotted in these figures.

In all two-dimensional examples below, five quadrature filters were used. The
centre frequencies of the filters are (π/

√
2, π/2, π/2

√
2, π/4, π/4

√
2) The filters

have a relative bandwidth of B = 2
√

2.

Figure 8.7 (top) shows a signal, constructed for two dimensions, consisting of a
sum of two components and similar to the one-dimensional signal of figure 8.5.
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Figure 8.4 Top: A test signal constructed by sinusoids of a stepwise increasing
frequency (π/64, π/16, π/4). Bottom: Estimated local frequency (solid) and
certainty (dashed).
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Figure 8.5 Top: A test signal containing one constant and one linearly in-
creasing frequency component. Top: Estimated local frequency before and after
normalized averaging; the smoother trace is after normalized averaging of the es-
timate, using the below certainty estimate. Bottom: Estimated certainty before
and after the normalized averaging step (dashed).
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Figure 8.6 Top: A test signal having constant mean frequency and a band-
width exponentially increasing to the right. Middle: Estimated local frequency;
the smoother trace is after normalized averaging the frequency estimate using
the certainty estimate below. Bottom: Estimated certainty and before and
after normalized averaging.
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The first component has a constant frequency; the second component has a fre-
quency that increases toward the centre. All the images have size 500×384 pixels.
Estimated local frequency is shown in the middle figure. White corresponds to
high frequency. Note the similar ringing of the estimates in the bottom image
and those in figure 8.5. The one-dimensional signal in figure 8.5 corresponds to
a line from the left top corner to the right bottom corner in bottom left figure.
As in the one-dimensional case, a more robust estimate can be obtained using
normalized averaging (figure 8.7 (bottom)). The filter used in the normalized
averaging has the size 15 × 15 and is very sharp, with the magnitude decreasing
as the reciprocal of the distance from the filter centre.

Another two-dimensional example is shown in figure 8.8. This image is con-
structed having regions from two different testpatterns that are overlapping in
radial sections. One component is a narrow-band noise process and the other
component has increasing frequency towards the centre covering 5 octaves. In
the overlapping regions the algorithm estimates the mean frequency component.
If the frequency components differ a lot, this is captured in the estimated cer-
tainty.

Figure 8.9 contains a third two-dimensional example. The test image contains a
circular area having constant frequency surrounded by an area having a frequency
gradient.
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Figure 8.7 Top: A test image consisting of a constant frequency plus a compo-
nent with a frequency that increases toward the centre. Middle: Estimated local
frequency. White corresponds to high frequency. Bottom: Updated frequency
estimate using normalized averaging.
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Figure 8.8 Top: The test image contains three different areas. One component
has increasing frequency towards the the centre covering 5 octaves, another part
contains a narrow-band noise process and the third part is a normalized sum
of the two signals. Middle: Estimated local frequency. White corresponds to
high frequency. In the overlapping regions the alghorithm estimates the mean
frequency component. Bottom: Updated frequency estimate using normalized
averaging.
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Figure 8.9 Top: A test image containing a circular area having constant fre-
quency surrounded by an area having a frequency gradient. Middle: Estimated
local frequency. White corresponds to high frequency. Right: Updated fre-
quency estimate using normalized averaging.
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Laboratory, Linköping University, Sweden, 1989.

[WK88] R. Wilson and H. Knutsson. Uncertainty and inference in the vi-
sual system. IEEE Transactions on Systems, Man and Cybernetics,
18(2), March/April 1988.



168 A Tensor Framework for Multidim. Signal Proc.

[WK92a] C-F Westin and H. Knutsson. Extraction of local symmetries using
tensor field filtering. In Proceedings of 2nd Singapore International
Conference on Image Processing. IEEE Singapore Section, Septem-
ber 1992. LiTH–ISY–R–1515, Linköping University, Sweden.
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