A Tensor Product Formulation of Strassen’s

Matrix Multiplication Algorithm with Memory

Reduction

B. KUMAR!, C.-H. HUANG!, P. SADAYAPPAN!, AND R.W. JOHNSON?
Department of Computer and Information Science, The Ohio State University, Columbus, OH 43210-1277;

e-mail: {kumar-b,chh,saday}@cis.ohio-state.edu

2Department of Computer Science, St. Cloud State University, St. Cloud, MN 56301; e-mail: rwj@eeyore.stcloud.msus.edu

ABSTRACT

In this article, we present a program generation strategy of Strassen’s matrix multiplica-
tion algorithm using a programming methodology based on tensor product formulas. In
this methodology, block recursive programs such as the fast Fourier Transforms and
Strassen’s matrix multiplication algorithm are expressed as algebraic formulas involv-
ing tensor products and other matrix operations. Such formulas can be systematically
translated to high-performance parallel/vector codes for various architectures. In this
article, we present a nonrecursive implementation of Strassen’s algorithm for shared
memory vector processors such as the Cray Y-MP. A previous implementation of Stras-
sen’s algorithm synthesized from tensor product formulas required working storage of
size O(77) for multiplying 27 x 2" matrices. We present a modified formulation in which
the working storage requirement is reduced to O(47). The modified formulation exhibits
sufficient parallelism for efficient implementation on a shared memory multiprocessor.

Performance results on a Cray Y-MP8/64 are presented. @ 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

Tensor products (Kronecker products) have been
used to model algorithms with a recursive compu-
tational structure that occur in application areas
such as digital signal processing [6, 15], image
processing [16], linear system design [5), and sta-
tistics [7]. In recent years, a programming meth-
odology based on tensor products has been suc-
cessfully used to design and implement high-
performance algorithms to compute fast Fourier
Transforms (FFT) [12, 14] and matrix multplica-

Received September 1994

Revised April 1995

© 1995 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 4, pp. 275-289 (1995)
CCC 1058-9244/95/040275-15

tion [10, 13] for shared memory vector multipro-
cessors. A set of multlinear algebra operations
such as tensor product and matrix multiplication
are used to express block recursive algorithms.
These algebraic operations can be systematically
translated into high-level programming language
constructs such as sequential composition, itera-
tion, and parallel/vector operations. Tensor prod-
uct formulas representing an algorithm can be
algebraically manipulated to restructure the com-
putation to achieve different performance charac-
teristics. In this way, the algorithm can be tuned to
match the underlying architecture.

Matrix multiplication is an important core com-
putation in many scientific applications. Conven-
tional matrix multiplication of 2" X 27 matrices
requires O(8") operations. In 1969, V. Strassen
proposed an algorithm for matrix multiplication

276 KUMAR ET AL.

[17] that employs a computationally efficient
method to compute the product of 2 X 2 matrices
using only seven multiplications. A recursive ap-
plication of this algorithm for multiplying 2° X 2~
matrices requires onlv O{7") operations, com-
pared with O(87) for conventional matrix multipli-
cation. Efficient parallel implementations of this
algorithm have been described in [1, 10}. This
algorithm has been used for fast mawix multipli-
cation in implementing Level 3 BLAS [9] and lin-
ear algebra routines [2].

In this article, we describe the tensor product
formulation of Strassen’s matrix multplication al-
gorithm, and discuss program generation for
shared memory vector processors such as the Cray
Y-MP. Ac hlewnﬂ high performance on these ar-
chitectures requires operating on large vectors and
reducing memory bank conflicts, at the same time
exploiting coarse-grained parallelism. We show
how the tensor product formula of Strassen’s al-
gorithm can be manipulated to operate on full
vectors with unit stride. An important feature of
the generated code is that it employs no recursion.

The initial formulation presented in [10] re-
quired a working array of size O(7") for the multi-
plication of 2% X 2" matrices. We present a modi-
fied formulation that significandy reduces the size
of working array to 0(4"). This reduction is made
possible through the reuse of working storage. We
describe how this memory reuse can he ¢ aptured
in tensor product formulas with the use of a selec-
tion operator. We present a strategy for automatic
code synthesis from tensor produet formulas con-
taining a selection operator. The modified formu-
lation exhibits sufficient parallelism for efficient
implementation on a vector-parallel machine
such as the Cray Y-MP. In addition, we express
Winograd’s variation {3] using our notation and
describe its translation to a programming code.
Winograd’s
multiplications, but a smaller number of addi-
tions, than the original Strassen’s algorithm.

This article is organized as toilmu Section 2
contains an overview of the tensor product nota-
tion. A formulation of Strassen’s algorithm using
this notation is presented in Section 3, along with
a discussion on how the formulation can be modi-
fied to achieve reduction in working sworage.
Section 4 presents a strategy for automatic code
generation from a tensor product formula. Wino-
grad’s variation of the Strassen’s algorithm is also
presented. Section 5 presents performance results
on the Cray Y-MP. Conclusions are presented in
Section 6.

4"45 = /:Inw !4’4:{—2 .

variation uses the same number of

2 AN OVERVIEW OF THE TENSOR
PRODUCT NOTATION

In this section, we give a brief overview of the ten-
sor product notation and the properties that are
used in this article. Let 4 € R™*" and B € R7*9.
The tensor product A & B is the block matrix ob-
tained by replacing each element a;; by the matrix
a; B, ie.,

apoB - g 18
A®B=

Apt.0B 0

an1-1.n-18

Whenever all the involved mairix produets are
valid, the following properties hold:

Property 2.1 (Tensor Product)

1.ARBRC=A®BRC)=AQB)®C
2. AQBYC®D)=AC® BD

3. AQB=AR1I,@B) = [, @B AR,
4. (AR BT =ATQ® BT

5. AQBy ' =4 ® B

0. Q] A:B;) = (R, 4) @y B

7 M0 (4,0 B) =T 4, ® H;:,‘

8. Lyy=1,91,

where I, represents the n X 2 identity matrix. 1177
cAg,and) A=A, 1 @A,y
®. . .8 4.

A matrix basis £75" is an m X n matirx with a
one in the i-th row and the j-th column and zeros
elsewhere. A vector basis e is a column vector of
length m with a one in the /-th position and zeros
elsewhere. If the basis £7%" of an m X n matrix is
stored by rows, it is isomorphic to the tensor prod-
uct of two vector bases e’ ® e, The tensor prod-
uct of two vector bases e ® e is equal to the
vector basis e, ie.. e/ @ ef = e, The tensor
product of two vector bases e & e is called a
tensor basis. If the basis elements are ordered lex-
icographically then

1y }‘(; P ' i
e{(® ® {3 1‘.’11 FLE el 1T

Expressing a vector basis e} as the tensor pxoduct
of vector bases /' @ - & e, where M = my X -
m, and i = (i div M) mod my, My = 1,00 ms,

STRASSEN'S MATRIX MULTIPLICATION ALGORITHM 277

M, = 1 is called the factorization of the vector
basis, e.g., the vector basis e}’ can be factorized
into the tensor bases e7 ® e} ® e3 or e} @ el
Expressing a tensor basis e/'' @ - - - @ €} as a vector
basis e/, vii ey 15 called linearization of the
tensor basis. For example, the tensor basis e} ® e
can be linearized to give the vector basis e}°.
One of the permutations used frequently in the
representation of algorithms in tensor product for-
mulas is the stride permutation. Stride permuta-

tion L7 is defined as
Lzm (f,’;” ® e[u} — (3;1 & (3:"

L7 permutes the elements of a vector of size mn
with stride distance n. This permutation can be
represented as an mn X mn transformation. For
example, L§ can be represented by the matrix

1 0 0 0 0 0] [xo
001000 X o
000010 Ta Ty
[zg.l': =
010000 Xy 1
0 01 0 0 X T3
0 0 0 0 01 s s

The stride permutation has the following proper-
ties:

Property 2.2 (Stride Permutation)

1. (Lpr)=1 = Lpn
2. L;v;l - Lgle‘rtst
3. L= (Lt ® L)1, ® L)

A permutation of the form 1, ® L7 ® I, is called a
tensor permutation.

The following theorem illustrates how a tensor
product of two matrices can be commuted by ap-
plying a stride permutation.

Theorem 2.1 {Communiation Theorem) If 4 is
an m X m matrix and B is an n X n matrix, then

LonA ® B) = (B ® A)L.

Pairwise multiplicaiton between two vectors im-
plies the product between the corresponding ele-

ments of those vectors, e.g.,

o Yo Yo
1 Y1 T1¥1
* =
Zp—1 yn—1 xn—‘i_ynwl

If the elements z; and y; are themselves subma-
trices, then x;y; corresponds to matrix multiplica-
tion between them.

3 A TENSOR PRODUCT FORMULATION
OF STRASSEN’S ALGORITHM

Strassen’s matrix multiplication algorithm s
based on a computationally efficient way of multi-
plying 2 X 2 matrices using only seven multiplica-
tions [17]. Gonsider the matrix multiplication C =

AB, where

Qoo o boo bor Coo Co1
Ao [] B - [c-
Q1o a bio b1 c10 €11
Strassen’s algorithm can then be written as fol-

lows. First, the following intermediate values are
calculated.

to = (ago + av1)(boo + byy)

= (a10 T a11)boo

o~
_-
|

ty = aglbor — b11)

ts = ai1{—bgo + b1g)

ta = (aon + ao1)bi

t3 = (—ag + aw)(bo + bo1)
te = (ap—ai){bio + bay)

Then the individual elements of C are given by:

Coo =fo + by — bty T 10
Clo = I1 T &3

Cor = ko + Uy

1=l —h+hti
In matrix notation, this can be represented as:

E = Sc('su/Z * SIB)

278 KUMAR ET AL.

where

100 1] 100
0 1 0 1 1 0 0
1 0 O 0 0 0 1

S, = 0 0 0O 1 LSy = -1 1

1 0 1 0 0 0
-1 1 0 0 0 1
L0001 —1_ 010

and /-1—., B. and C are vectors of length 4. and repre-
sent the storage of matrices 4. B, and Cin column
major form. The notation 4 corresponds exactlv to
the vec(4) notation [8], however, we shall use the
former for readability purposes. The matrices S,,.
Sy, and S, are termed basic operators, and do not
have to be explicitly generated. but specify which
operations have to be performed on specific com-
ponents of the input vectors.

The above formulation can be easily extended
to matrices of size 2" X 2" by considering a;. by.
and ¢; to be blocks of size 2"7" X 2"71. First, we
describe the block recursive storage of matrices in
memory. Let X be any 2" X 2" matrix. At the top
level, X can be viewed as:

'X()() *X(1
Xio Ay

A vector X representing an r-level block recursive
representation of X is recursively defined as:

X«m
— Yz 0
‘?m
X

N

with the boundary conditdon that Y is the column
major representation of any 277" X 277" block V.
An example of block recursive storage is given in
Figure 1. _

Let A. B, and C be the one-level block recursive
representation of 27 X 27 matrices 4. B, and C.
Strassen’s algorithm for computing C = AB can be
written as:

C=1(8® L[S, ® L)4 #,-1(S;, @ Lyu-\B]

_ O S e

- Y e

_— e O D

[B
<

- OO O
<

1
0
1
0 ,and S, =
1
0
0
1

where *,_; denotes pairwise matrix multiplication
between matrices of size 271 X 2071 We refer to
the above as one-level block recursive Swrassen’s
algorithm. In this case. the intermediate values ¢
are 2'71 x 2771 block matrices. and block matrix
multiplications are performed using conventional
matrix multiplication. This algorithm can be con-
veniently viewed in terms of a recursion tree (Fig.
2}, where the root node corresponds to the update
of C. and the leaf nodes correspond to the evalua-
tion of the intermediate values. The steps marked
by Ul refer to computations that require working
memory. Note that all the intermediate values can
be computed in parallel, because there are no
data dependences between them. Each interme-
diate value requires a working memory of 037~ 1),
Hence, a one-level block recursive Strassen’s al-
gorithm requires a total working storage of size
e S

Even though the above formulation has been

Ag
Ago Ay
Ay | A
! Al
"
L

FIGURE 1 Three-level block recursive storage.

STRASSEN’

@!

ol [t] 1] [s] Tu]l [s] [t

7 blocks of size 4" each

FIGURE 2 Recursion tree of depth 1 for Strassen’s
algorithm.

given for matrix sizes of the form 27 X 27 it is
straightforward to generalize the implementation
to handle arbitrary dimensions of matrices A and
B. A common technique used is to pad the matri-
ces with rows and columns of zeros (o increase the
matrix sizes to the next higher powers of two.
compute the extended matrix product. and then
extract the desired result [17]. Another approach
(4 is to drop the last rows and columns from the
computation to achieve even dimensions and then
compute the partial matrix product. The complete
matrix product is then obtained with a rank-& up-

date (k= 1,2, 3).

3.1 Block Recursive Strassen’s
Algorithm: Breadth-First Evaluation

In one-level application of Strassen’s algorithm,
2n=1 x 2771 block multiplications were computed
using conventional matrix multiplication. To get

S MATRIN MULTIPLICATION ALGORITHM 279

an additional savings in the total number of arith-
metic operations required to compute the matrix
product. Strassen’s algorithm can be recursively
applied to compute the block multiplications also.
Let A, B, and C be the [-level block recursive rep-
resentations of 2 X 2" matrices A. B. and C. The
computation of Cis described by the following for-
mulation [10]:

C = Sr!(SpliA) *,-1 Sp!(B)]

where
S”‘[= ®, 0 SYu &® [4“ 1= Hz[(1)<]"’ b” ® ['*” ! \]
gn[— " 0 Su ® [_’” ;= Hz ”\]-v, ® S/z ®].,u ,u\}
S:‘l.[: ®l ()‘S ®[-i”’ = :) N*]\[-”® S ®[_’” ”]/

and *,_; denotes pairwise multiplication between
blocks of size 277! X 277! This computation can
be interpreted as a breadth-first evaluation of the
recursion tree shown in Figure 3. Each intermedi-
ate block matrix ¢ is itself computed using Stras-
sen’s algorithm vielding intermediate subblocks
to, - - - L. This process is recursively applied
until blocks of size 277 x 271 which are then
computed using conventional matrix multiplica-
tion. Following our convention, [0 denotes com-
putation that requires working storage. The work-
ing array requirement in this case is O(7'4"~}. In
the extreme case. Strassen’s algorithm can be ap-
plied recursively down to blocks of size 2 X 2. and
such an (n — 1)-level (or n-level) Strassen’s algo-

fo0...

7! blocks of size 4% each

FIGURE 3 /-Level block recursive Strassen’s algorithm.

280 KUMAR ET AL.

Table 1. Comparison of Operation Counts for Strassen’s Algorithm and Conventional Matrix

Multiplication
Operation Count
Algorithm Additions Multiplications Total
MM 8" 8" 2-8"
STR 67" — 4" 7" Tl — 6 4
BLOCK_STR 6 - 4H{Tk — gk Tok2 - 8k — 4k TrR2 -8 454K — 6 4

rithm would require a working storage of size
o7,

Table 1 presents the total number of operations
required for multiplving two matrices of size 2" X
27 MM denotes conventional matrix multplica-
tion, STR refers to an n-level block recursive
Strassen’s algorithm, and BLOCK_STR denotes a
(n — k)-level block recursive Strassen’s algorithm.
STR has a lower operation count than MM only for
n = 10. The expression for the operation count for
BLOCK_STR has a minima at k = 3 for all integer
values of n and k. For £ = 3, BLOCK_STR has a
lower operation count than MM for n = 4. Hence,
block Strassen’s algorithm is better than conven-
tional matrix multiplication in terms of total oper-
ation count even for small values of n. However,
for implementation on a shared memory vector
machine such as the Cray Y-MP. a lower opera-
tion count does not imply smaller execution time,
because the effect of vector length and stride also
comes into play.

3.2 Block Recursive Strassen’s
Algorithm: Depth-First Evaluation

An [-level Strassen’s algorithm requires fewer op-
erations than conventional matrix multiplication
when the number of levels /is increased. An opti-
mal value is attained at n — [= 3. However, the
working storage requirement for an [-level algo-
rithm is O(7/477%), and hence increases exponen-
tially with an increase in [. This high storage
requirement comes due to the breadth-first ex-
pansion of the recursion tree in which all the inter-
mediate values have to be stored.

To achieve reduction in working storage, we
can perform the computation of Strassen’s algo-
rithm using a depth-first expansion of the recur-
sion tree. Instead of expanding all the leaves in the
recursion tree, we only compute a suburee. and
use the results obtained from that subtree 1o up-
date C. This process is repeatedly applied until all
the subtrees are evaluated. It is necessary to en-

sure that no redundant computation is performed.
The memory requirement for the algorithm in this
case will be the memory requirement for a single
subtree, because the same space can be reused for
the evaluation of different subtrees.

For the 2 X 2 case, the algorithm is modified as
follows. ¢ is a temporary variable that is used to
store intermediate values.

Step 1: t = (aoo + a]1><bo() + [’)11);
Coo = t; c11 = ¢

Step 2: t = {ao + ai1)boo:
Clo =t cC11 = ¢ — &
Step 3: t = ago(bor = b}

co1 =& ¢y = etk

Step 4. t = Clﬂ(_boo + b10>
Coo = Coo T+ & cip = cig T 4
Step 5: ¢t = (apo + ao1)bi1;
Coo = Cop — £, co1 = co1 T L
Step 6: t = (—apo + aio)(boo + bo1);
cn=cn t &
Step 7: t = (ap — an){bro T b11):

Coo = Coo T ¢

Now the extra memory requirement is of only one
element, because the same memory location can
be reused to evaluate different ¢,’s. In the original
formulation, seven memory locations are required
because all the intermediate values are calculated
before the update of C is performed. The total
number of arithmetic operations is unchanged.

We now formulate the concept of memory re-
duction using the tensor product framework. De-
fine D] to be a 7 X 7 matrix with d; = 1 and zeros
elsewhere. Note that EJ(«’:OD; = [7. Memory reduc-
tion for a 2 X 2 case can be formulated in matrix
notation as:

C =2 (S.D)(DiS)A = (D7s,)B)

j=0

STRASSEN'S MATRIX MULTIPLICATION ALGORITHM 281

D; is termed as a selection operator and selects
subsets of the input vector on which the computa-
tion is to be performed.

This framework can be extended to multiplying
matrices of size 27 X 2. We begin with the one-
level Strassen’s algorithm and assume that the
data matrices are stored in a one-level block re-
cursive form. The tensor product formula to com-

pute C = AB can then be written as:

6
C=2 (507 ® L)
j=0
[(D;S” ® [1”’1>/I *n*l(D;S/» ® [*/r*l>§:|

We can apply memory reduction at multiple levels
by performing the same operation recursively on
the smaller blocks. Assuming that the matrices are
stored in an [-level block recursive form, an /-level
Strassen’s algorithm with memory reduction can
be formulated as:

S S =1
c= 2 [((@(? &Dj) ® 1)(((@0) D;S(,)
Jogromji-i=0
=1
® [4~/>Z *-1 <(® D;S/)) & [_*,,/> §>:|
r=0

We refer to the above formulation as the partial
evaluation form of Strassen’s algorithm. 'The
computation specified in the above formulation
can be described using the recursion tree shown in

Figure 4. The current intermediate blocks being
computed are represented by 0. Working storage
is required for the intermediate blocks from the
leaf node being computed, to the root of the recur-
sion tree. Hence, the working storage required is

O, 47 = 0(4").

3.3 Combining Breadth-First and
Depth-First Evaluations

The * operator in the tensor product formula for
partial computation refers to pairwise matrix mul-
tiplication. Each block matrix mulidplication in
the pairwise matrix multiplication can itself be
performed using complete evaluation. Hence, we
have a three-level hierarchy. At the highest level,
partial evaluation is performed till blocks of size
277t x 277 Then complete evaluation is per-
formed tll blocks of size 2% X 2% are reached, after
which conventional matrix multiplication is ap-
plied. This can be expressed in the tensor product
notation as:

_ 6 =1 . -1
Cps = . 2 . [((@ S(Djr> @ [4u/><<(® D;S">
Jojis 1= r=0 =0

-1
® 14,,,>/T fes, ((@ D;S,,> ® 14,,,) Eﬂ
r=0

SRS AT 4y, SpHBY

C cS

where #¢5 , denotes pairwise matrix multiplication
between blocks of size 277/ X 27! using complete
evaluation, C'¢g corresponds to each block
pairwise multiplication during the partial evalua-

@O B @

FIGURE 4 [-Level block recursive Strassen’s algorithm with memory reduction.

282 KUMAR ET AL.

tion, which itself is evaluated using an ([— k)-level
Strassen’s algorithm, and #,,, denotes pairwise
matrix multiplication between blocks of size 2% X
2k using conventional matrix multiplication.

The root of the recursion tree is defined to be at
level 0. At level i, a working array of size O(4" ') is
required to store the intermediate results of partial
evaluation. The breadth-first expansion of the last
(I = k) levels requires a working array of O(7" k.
4%). Hence, the total memory requirement is
O] 4 4 Trolok o g4ky = ol4n 4 Trolok . 4k

Even for moderate values of n and small values of

[, this represents a significant savings compared
with O(7"7% - 4%) for complete evaluation. If the
matrices are of size N X N where NV is not a power
of 2, the technique of padding can be used.
and the memory requirement with reduction
will be o(4!leN + TlzNI=l=k . 48y compared with
O(7MeN=k - 4k) for complete evaluation.

3.4 Matrix Storage in Main Memory

The formulation presented in the previous sec-
tions assumes for simplicity of presentation that
the data matrices are stored in a block recursive
form. However, when implementing a block recur-
sive algorithm on a shared memory machine, ma-
trices are usually stored in a row major or column
major form. We have implemented Strassen’s al-
gorithm using Fortran on the Cray Y-MP. hence
the data matrices are stored in memory in column
major form. The tensor product formula to con-
vert a 27 X 2" matrix from a column major form to
a k-level block recursive form is given by [11]:

n—k-1

H (Ly2i1 @ L%”il\i' ® Ioner-i-1)

=0

Uy ® L0t @ I4)

Rn.k —

R™*is termed as a conversion operator. There are
two ways in which storage conversion can be im-
plemented. One way is to perform explicit conver-
sion from row/column major form to a block re-
cursive form through data movement. However, a
more efficient way is to merge the conversion op-
erator into the computation in Strassen’s algo-
rithm. which results in a modification of the data
array indexing functions. The modified tensor for-
mulation for Block Strassen’s algorithm is:

<Rn‘k)—‘IS:.I./\'[RH./\‘SZ./\‘Z ® RrukS;;.kE}
= SrH[Spd # Sp*B)

C

=l S, @ L)L @ L3

T
S

® 12n+k—i—1>j (IQn—A ® L%:fk ®]2A>

=~

n—k-1

Spt= 1] h®S, @ Lo)ln @ 1, @ 137

Il
S

& Lynvi-1) (Lo @ L3 @ L)

_ 0
St =y @ LY@ L) []

i=n—k-1

(1L & L

® Lri--)l @ S, ® L]

With I-level memory reduction, the above formu-
lation is modified into:
6

—1
c= > Sk @ & D]

Jo:j1ji-1=0 r=0 r=0

-1
X p?

Jr

-1
@ §d |+ | @ D} @ $p4B

r=0

4 CODE GENERATION FOR VECTOR
PROCESSORS

4.1 Block Strassen’s Algorithm

Matrix factorizations form the basis of translating
tensor product formulas bv mapping the opera-
tions implied by the formula to program con-
structs in a high-level programming language. The
translation process starts with the top-level ab-
straction and generates more refined code as it
proceeds to lower-level abstractions. At each
level, semantically equivalent program constructs
are chosen to replace mathematical operations.
Efficient programs can be synthesized {rom tensor
product formulas by exploiting the regular com-
putational structure expressed by such formulas.
The tensor product formulation of block recursive
algorithms usually involves certain basic compu-
tations, such as S,, S;,, and S, in the case of Siras-
sen’s algorithm. It is sometimes necessary to use
manually optimized codes for these basic compu-
tations to achieve high performance.

STRASSEN'S MATRIX MULTIPLICATION ALGORITHM 283

We now illustrate the code generation strategy
with an example. Let B be an m X n matrix, and X
be a vector of size np. Consider the application of

(1/) ® B) to AXy./ i.e.,

X[0:n—1]
Xn:2n—-1

Xip—1n:pn—1,

BX[0 :n — 1]
BX[n : 2n — 1]

BX[(p — 1)n:pn — 1]

This can be interpreted as p copies of B acting in
parallel on p disjoint segments of X. resulting in a
vector of size mp. Hence. ¥ = (I, ® B)X can be
implemented as:

CodelY = (I, @ B)X] = doalli = 0,p — 1
Code[¥[in: (i + 1)n — 1]
=BX[in:{i+ 1)n — 1]]
enddoall

Once an algorithm is expressed using the tensor
product framework, efficient implementation can
be obtained by algebrically manipulating the ten-
sor product formula. For example, consider the
implementation of

Y=(B&I,X

where ¥, B, and X are vectors as described before.
Using the commutation rule, it can be determined
that

B®I,) =Ly, ®B)LY

Hence, one implementation to compute ¥ might
be to permute X according to L, perform (/, ®
B). and permute the result according to L. A
more efficient implementation would be to incor-
porate the stride permutations into the indexing of
the input and output data arrays. The above can

be written as:

L) = U, & B(LX)

i.e.,

YIO:mp —1:p;
Y1 :mp —1:pl

L Yip—1:mp—1:p|]

X[0:np —1:p]
X(1:np—1:pl

L X[p—1:np—1:p]
Hence, the code can be written as

Code[V = (B®I,)X]=doalli=0,p — 1
Code[Y[in : (i + 1)n — 1 : pj
=BX[in: i+ 1)n—1:pll

enddoall

Let us consider the code generation for (n — &)-
level block Strassen’s algorithm for multiplving
2" X 2" matrices. Assume that the martrices are
stored in a (n — k)-level block recursive format.
and that at the lowest level, pairwise multiplica-
tion between blocks of size 2% x 2% is performed.
For simplification, we shall assume that no mem-
ory reduction is performed. The tensor product
formulation of this algorithm is given by (see Sec-

tion 3.4):

The formula for block Strassen’s algorithm con-
tains the operations S*%, Sp-% %, and S, All the
operations except #; are linear operations and
hence require an array operand. Operation #; is a
bilinear operation and requires two array oper-
ands. Each operation corresponds to an assign-
ment statement that stores its result in an array
that may be used as input data for the subsequent
assignment or represents the final output. Tempo-
rary arrays representing working arravs are de-
noted by 7. The above formula then translates 1o
the following high-level code:

284 KUMARET AL.

Ty = Srkq

Ty = Sp*B
To = Ty *e T,
6 = ;§?’kT(;

The assignment statements are composed se-
quentially to preserve the semantics of compu-
tation. However, the above sequential composi-
tion is not unique, For example. the assignment
statements for S7*4 and Sp#B can be in any order
because there are no data dependences between
them. 5

Stk Spkand St* have the form

=1

[H F,-] where F;
L,®0PQI,)
€L QI)

and OP is a basic operator

The generic tensor product formula ¥V = {[, ®
OP ® I,)X can be implemented as a fully parallel
doubly nested loop:

doalli; =0, -1
deall i, = 0,5, — 1
COde[OP,YﬁX“,l'17L'QJ
enddoall
enddoall

Any tensor permutation that may be present
results in a modification of the array indexing
functions. Different implementations of the above
formula are possible by changing the order and/or
blocking the inner loops, as they are fully permut-
able. However, different orderings of the inner
loops result in different data access patterns.
These in turn will have different performance
charateristics on systems with hierarchical/inter-
leaved memories.

Consider the application of the tensor product
formula I, F; to a vector X. The product term
corresponds to a sequential outer loop in which
the output of the /" stage is fed as input to the (i +
1) stage, i = 1, n — 1. Only two arrays are re-
quired for this operation. The input array for the
i* step can be reused as the output array for the
(i + 17 step. At the end of each iteration, the
arrays are swapped (which can be implemented
trivially simply by swapping the pointers to the two
arrays) and the resulting pseudocode is:

To «— X
doi=1n
Code[Ty = F/Ty.
Swap(Th T())
enddo

At the end of the last iteration, 7" contains the
result of [TIZ; F,1X. S+ Sp* and S have the
above form, and code can be easily generated for
them.

The pairwise multiplication #, performs a se-
quence of 7% matrix multiplications of 2* x 2#
blocks. Let the input vectors be Ty and T4, corre-
sponding to the evaluation of S**4 and S*4B. re-
spectively. All elements of a given block are stored
consecutively in the input arrays. Pseudocode for
the operation Ty = T #; Ty is presented below:

doall i = 0, 7n% — 1
Tolidh « (i + 14 — 1] = MatrizxMultiply
(Toli4* : (i + 1)4F — 1), Ty[id . G+ 14 — 1))
enddoall

where MatrizMultiply vefers to conventional ma-
trix multiplication between blocks of size 24 x 2k
stored in column major form.

4.2 Memory Management for Depth-First
Evaluation

Consider the tensor product formula:

. o 41 . 3
o= 3 (@sn)e r)
JoJ1 g1 =0 /

r={}

i1 -1
(((X D;S,,) ® 14,,»,)2 ey ((X D;Sz,) ® 1+)B"H
r={) r=0

The summation operator in the formulation of
partial evaluation corresponds to a sequential
loop nest, with the i loop performing a depth-first
evaluation of the i level in the recursion wree. At
each level, there are seven subtrees that need to be
evaluated. Evaluation of each subtree is followed
by an update of its parent. After the update, work-
ing storage used by that subtree can be reused for
the computation of the next subtree at that level in
the recursion tree. The loop structure hence looks
like the following:

do j, = 0,6
Code[T% = D;S.A]
Code [Ty = D SyB]
do j;, = 0,6
Code [T, = D} S.A]
Code [T} = D! SpB]

do jzfz = 0,6
Code[T.™t
Code [T}
Code [T1™!
Code [Ti?2 =

enddo

Il

Il

Il

Code [T, = D} S.T:

enddo
Code|[C = D} S.To]
enddo

STRASSEN’S MATRIX MULTIPLICATION ALGORITHM 285

/* partial evaluation */
/* partial evaluation */

/¥ partial evaluation */
/* partial evaluation */

D;{;L-«‘Sa‘g}
DjlflsaB]
T, *cs,, Tp '

D}, S.T:]

Ji-1

/* partial evaluation */
/* partial evaluation */
/* complete evaluation */
/* update of parent */

] /* update of parent =/

/* update of parent */

4.3 Implementation of Winograd’s

Variation

Strassen’s algorithm uses 18 scalar additions and
7 scalar multiplications to multply 2 X 2 matri-
ces. Winograd presented a more efficient algo-
rithm, which uses 15 scalar additions and 7 scalar
multiplications [3]. The Winograd’s variation is
based on the following three matrix operations:

1 10 1
1 0 0
0 0
W,= |1 =10 0
0 10 1
1 -1 1 -1
0 00 1]

IR

0

Wy= | 0

-1

0

1

0 -1 1]
0 0 0
1 00
0 -1 1
0 10
0 0 1
-1 -1 1.

01 1 0 0 0O 0

11 01 0 0 -1
and W, =

1T 1.0 0 1 1 0

11 01 1 0 0

The Winograd’s variation for multiplying 2 X 2
can be written as the matrix formula

Ca.n ag.o boo
€1.0 L @10 , b1.0
= LV(W,, *Wy,

Co.1 g1 b(m
€11 @11 b4

The generated code of operations W, W,,. and
W, contains some common terms. For example,
apg = aypis evaluated twice in a direct implemen-
tation of W,. The key to reducing the number of
additions in Winograd’s variation is to evaluate a
common term only once. We factorize W, W,,
and W, to eliminate the common terms:

286 KUMAR ET AL.

100000 0 -1
0100 0 1
01000 0[l0 o0

W, = 00100 0 0
00 0 1 0 0
-1 010 oj{o o

L 000 0 1]{0 o

10 0000000
1 000010
0 0000||0o0

Wo=100 01000 0
00 00100 0
00 00010

1 0-1000 0]]0
1.0 0
0 1
100 0 0 0)
W(‘:o 0000 =154,
00100
010010 0 o
00

There are 15 rows containing two nonzero ele-
ments in the matrix factorizations of W,, W,. and
W,, which correspond to the 15 additions in
Winograd’s variation of Strassen’s algorithm. The
rows containing a single one are implemented
as data movement, and those containing all zeros
are equivalent to null operations. The indices of
input and output array elements of W, are speci-
fied by the permutation operations in a tensor
product formula and are computed similar
to those of S,. Let p;, 0 = i < 4, be the indices
of the input arrav elements, and ¢;, 0 = < 7.
be the indices of the output array elements. The
computation 7" = W,4 on a vector A of length
7 is translated to the following sequence of
assignments:

Lo R =R o]

[T B R == I)

0

010 0}f0 0 0
00001 00
000o0llo o
100 0[]1 -1
010 0f]o0 1
000 o0{]o 0
000 1/[0 0 1]
0 -1 1 0] o0 o0 0]
0 00 0 10 0
0 0 0 1 0
00 0 00 -1 1/.and
0 -1 0 10
010 00 0 1
0 000 00 0 0]
0o0oo0]lfo110000]
0001100000
100/]l0000
00 0[[0001T0C00
100010000
01 0jl00000
00 1//000000 1]
Code[T = W,A] = Tig1] = A[po)
Tlg2] = Alp2]
Tlgs] = Alpo] — Alpi]
T(g4i = A[p1] + Alps
Tlgs] = Alps)
Tiqo] = = T{q:1] + T(q4]
Tlgs] = =Tlqo] + Tlq:]

The implementation of Winograd’s variation is
simply a replacement of the translated code of ¥,
Wy, and W, for the code of S,, Sy, and S, in the
corresponding implementation of Strassen’s algo-
rithm.

STRASS

Table 2. Execution Times for Block Strassen’s Algorithm with Memory Reduection

EN'S MATRIX MULTIPLICATION ALGORITHM

287

n=24a

n=9

n =10

SGEMM: 109 s (310 MFlop)
SGEMMS: 093 s (291 MFlop)

SGEMM: 868 5 310 MFlop}
SGEMMS: 665 s (285 MFlap!

SCGEMM: 6.95 5 {309 MFlop;
SGEMMS: 4.69 5 (284 MFlop!

| k=3 k=4 k=5 k=06 k=7 k=3 k=4 k=5 k=0 k=7 k=3 k=4 k=5 k=6 k=71
0 468 .179 103 .093 098 666 697
(35) (136) (246) (291} {305) (2877 (303)
1 474 182 106 .095 .103 3.202 1.268 736 672 712
(55} (133) (239} (285) (293) (561 (135! (133) (284) (297)
2 476 186 .108 .096 3.308 1.284 746 .67+ 710 8.92 519 472 4.98
(54) (130) (236) (282) (55) (133) 238) (283) (297) (135) (241) (284) (298)
3 494 200 .114 3.348 1.315 .767 .686 233 043 520 478 5.03
(52) (121) (221 (54} (130) 232) (278) (337 (132) (236) [281) /2953)
4 548 228 3.475 1.412 815 235 938 542 4.86
(47) (106) 327 (121} (218) (34) {(128) (231} (276)
5 671 3.857 1.619 24.4 10.02 5.76
(38) 47 {105) (32) (1200 (217)
6 4.665 271 11.42
(39) (47) {105)
7 32.8
39)

5 PERFORMANCE RESULTS ON THE CRAY
Y-MP

Performance statistics were gathered for different
matrix sizes, different block sizes, and different
levels of partial evaluation. Table 2 shows perfor-
mance for execution on a single processor. All ex-
ecution times are in seconds. The numbers in pa-
rentheses display performance in megaflops.
Empty fields indicate that the program could not
be run due to lack of sufficient memorv. The ma-
trix size is 2 X 27, the level of partial evaluation is
[, and the block size at which conventional matrix
multiplication is applied is 2f X 2%, The execution
times for the Block Strassen’s algorithm is com-
pared with the Cray Scienufic Library routines
SGEMM, which implements conventional matrix

multiplication, and SGEMMS., which implements
Strassen’s matrix multplication. Because
SGCEMM and SGEMMS are independent of [and
k, the times for those are given oniv once for each
value of n. SGEMM is used [or block matrix muld-
plication in the Block Strassen’s algorithm.

For anv value of [, the lowest execution time
occurs for k& = 6 because the vector length on the
Cray Y-MP is 64. The megaflops for kK = 7 are
higher than those for k = 6 {or the same valuc on n
and /. But, the execution time for k = 7 is longer
because a larger number of arithmetic operations
are performed.

The execution times and megaflops for k = 6.
{ = 0 are comparable (slightly better) to thai of
SGEMMS, There is a performance degradation
due to a slight increase in the number of memory

Table 3. Execution Times for & = 6 on Two Processors

Block Strassen

n SGEMMS (=0 =1 [=2 [=3 =4
8 050 047 053 055
(594) (574) (513) (497)
9 356 331 371 378 389
(592) (576) (513} (505} (490}
10 2.51 2.63 2.67 2.76
(589) 510} (502) (486)

288 KUMAR ET AL.

Table 4. Execution Times for k = 6 on Eight Processors*

Block Strassen

n SCEMMS [=0 [=1 1=2 /=3 [=4

8 016 (84.7%) .022 (54.2%) .018 (81.8%) .022 (74.6%)

9 10 (91.3%) 11 (77.3%) 14 (73.2% 13 {80.9%) 15 (76.0%)

10 84 (78.4%) 1.04 (70.9%) 1.02 (74.0%) 1.14 (70.5%)

* Percentages of 8-cpu obtained are given in parentheses.

operations as [increases for any fixed n and k= 6.
However, the difference is quite small, which is
evident from the execution times.

Table 3 gives the performance when the pro-
gram was run on two processors. A fixed value of
k = 6 was chosen because this resulted in the best
performance in the single processor case. Again,
the performance when [= 0 is slightly better than
that of SGEMMS. For larger values of /, the perfor-
mance degrades by about 12%. Table 4 shows the
performance results for eight processors. Because
the programs were run in a nondedicated mode on
the Cray Y-MP, we were unable to get all the eight
processors for the entire execution of the program.
The numbers in parentheses give the percentage
of 8-cups available for execution.

The amount of extra memory required has
been given in Figure 5 for different values of n and
[. It can be easily seen that there is an order of
magnitude improvement even for small values of /.
A value of k& = 6 was chosen because it is for this
block size that the execution times are minimum.

6 CONCLUSIONS

We have shown how tensor product formulas ex-
pressing Strassen’s matrix multiplication algo-
rithm can be translated to efficient parallel pro-
grams for shared memory multiprocessors. This
translation process is part of a more general pro-
gramming methodology for designing high-perfor-
mance block recursive algorithms for shared and

distributed memory machines. The methodology

uses a mathematical notation based on tensor
products for expressing block recursive algo-
rithms. Algebraic manipulation of these formulas
vields mathematically equivalent formulas that
result in implementations with different perfor-
mance characteristics. A large nubmer of pro-
grams can be generated to search for efficient im-
plementations. Tensor products give a powerful
method to generate these equivalent implementa-

tions automatically. As was illustrated in this
article, programs generated from tensor product
formulas compare favorably with the best hand-
coded ones.

This article presents an implementation of the
Strassen’s algorithm on a shared memorv mult-
processor such as the Crav Y-MP. In the Y-MP,
memory is organized into banks, and in the ab-
sence of bank conflicts, all memory accesses take
the same amount of time. However, in distributed
memory multiprocessors such as the Cray T3D,
where each processor has its own local memory, a
local memory access can be significantly faster
than a remote access. Hence, an efficient imple-
mentation on a distributed memorv machine re-
quires partitioning the algorithm in such a manner
that remote accesses are minimized.

Tensor product formulas can also be used to
specify regular data distributions for arrays. Given
a tensor product formula with a specified distribu-
tion of its input and output arrays, the interpro-
cessor communication cost incurred by the imple-
mentation can be determined. If the cost of
communication is high, it might be more efficient

Memory Words x10 6

= -1
o

FIGURE 5 Memory requirements for working arrays.

STRASSEN'S MATRIX MULTIPLICATION ALGORITHM

to perform a data redistribution before the com-
putation, to bring the arrays into a form where the
computation is local to the processors, if the over-
head of data distribution is lower than the benefit
gained due to the communication cost reducing to
zero. We are currently examining these issues and
are working on an implementation on the Cray
T3D.

Both formula modification and program gener-
ation are capable of being automated. We are cur-
rently implementing this methodology in an expert
system EXTENT (Expert System for Tensor For-
mula Translation) that assists in the development
of parallel programs for numerical algorithms on
various computer architectures. Currently, the
system generates Fortran programs for the Cray
Y-MP. The expert system employs various heuris-
tics to automatically generate alternative tensor
product formulas, translate tensor product formu-
las to programs for various parallel architectures,
test the produced programs, and analvze the test
results.

ACKNOWLEDGMENTS

This work was supported in part by ARPA and
monitored by NIST.

REFERENCES

(1] D. H. Bailey, ‘*Extra high speed matrix multipli-
cation on the Cray-2.”" SIAM J. Sci. Stat. Com-
put., vol. 9, pp. 603-607. 1988.

[2] D. H. Bailey, K. Lee, and H. D. Simon, “Using
Strassen’s algorithm to accelerate the solution of
linear systems.”” J. Supercomput., vol. 4, pp.
357-371, Jan. 1991.

[3] A. Borodin and I. Munro. The Computational
Complexity of Algebraic and Numeric Problems.
New York: American Elsevier Publishing Co.,
1975.

[4] R. P. Brent, *‘Algorithms for matrix multiplica-
tion,”” Computer Science Department Stanford
University, Palo Alto, CA, Tech. Rep. CS 157,
1970.

[5]

[6]

[10]

[11]

[12]

13]

[16]

171

289

J. W. Brewer, ‘‘Kronecker products and matrix
calculus in system theory,”” IEEE Trans. Circuits
Systems, vol. 25, pp. 772-781. 1978.

J. Granta, M. Conner, and R. Tolimieri, “*Recur-
sive fast algorithms and the role of tensor prod-
ucts,”” IEEE Trans. Signal Processing. vol. 40,
pp- 2921-2930, Dec. 1992.

F. A. Graybill, Matrices, with Applications in Sta-
tistics. Belmont, CA: Wadsworth International
Group, 1983.

H. V. Henderson and S. R. Searle, ““The vec-
permutation matrix, the vec operator and
kronecker products: A review.” Linear Multili-
near Algebra. vol. 9. pp. 271-288, 1981.

N. J]. Higham, “Exploiting fast matrix multiplica-
tion within the level 3 BLAS.” ACM Trans. Math-
ematical Software, vol. 16, pp. 352-368. Dec.
1990.

C.-H. Huang. J. R. Johnson, and R. W. Johnson.
**A tensor product formulation of Strassen’s ma-
trix multiplication algorithm,”” App. Math. Lett.,
vol. 3, pp. 67-71, 1990.

C.-H. Huang, J. R. Johnson. and R. W. Johnson,
““Generating parallel programs from tensor prod-
uct formulas: A case study of Strassen’s matrix
multiplication algorithin. in International Confer-
ence on Parallel Processing, vol. 3, 1992, p. 104.
J. R. Johnson, R. W. Johnson, D. Rodriguez, and
R. Tolimieri, **A methodology for designing, mod-
ifving and implementing fourier transform algo-
rithms on various architectures,” Circuits Sys-
tems Signal Process, vol. 9, pp. 45-500. 1990.

B. Kumar, C. H. Huang, J. Johnson. R. W. John-
son, and P. Sadavappan. A tensor product for-
mulation of Strassen’s matrix multiplication algo-
rithm with memory Seventh
International Parallel Processing Symposium,
1993, p. 5382.

C. Van Loan, Computational Frameworks for the
Fast Fourier Transform. New York: SIAM, 1992.
P. A. Regalia and S. K. Mitra, “*Kronecker prod-
ucts, unitary matrices and signal processing ap-
plications.”” SIAM Rev. vol. 31. pp. 586-613,
Dec. 1989.

G. X. Ritter and P. D. Gader, “lmage algebra
techniques and parallel image processing,”” J.
Parallel Distrib. Comput. vol. 4. pp. 7T—44, 1987,
V. Strassen, ““Gaussian eliminadon is not opti-
mal,”” Numer. Math., vol. 13, pp. 354-356.
1969.

reduction.” in

Journal of))
Industrial Engineering

Applied
Computational
Intelligence and Soft
Computing—

. A International Journal of
The Scientific Dictione. S
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Ll T Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networkhs
and Communications /1 Advances in

Artificia
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, = Neural Systems
- 2 \ i

International Journal of
Computer Games . in
Technology re Engineering

Reconfigurable
Computing

e Computational L g
Journal of Human-Computer Intelligence and Electrical and Computer
Robotics Interaction Neuroscience Engineering

