
A Tensor Product Formulation of Strassen's

Matrix Multiplication Algorithm with Memory

Reduction

B. KUMAR!, C.-H. HUANG!, P. SADAYAPPAN1
, AND R.W. JOHNSON2

1Department of Computer and Information Science, The Ohio State University, Columbus, OH 43210-1277;

e-mail: { kumar -b ,chh,saday }@cis. ohio-state. edu
2Department of Computer Science, St. Cloud State University, St. Cloud, MN 56301; e-mail: rwj@eeyore.stcloud.msus.edu

ABSTRACT

In this article, we present a program generation strategy of Strassen's matrix multiplica

tion algorithm using a programming methodology based on tensor product formulas. In

this methodology, block recursive programs such as the fast Fourier Transforms and

Strassen's matrix multiplication algorithm are expressed as algebraic formulas involv

ing tensor products and other matrix operations. Such formulas can be systematically

translated to high-performance parallel/vector codes for various architectures. In this

article, we present a nonrecursive implementation of Strassen's algorithm for shared

memory vector processors such as the Cray Y-MP. A previous implementation of Stras

sen's algorithm synthesized from tensor product formulas required working storage of

size 0(7n) for multiplying 2n x 2n matrices. We present a modified formulation in which

the working storage requirement is reduced to 0(4n). The modified formulation exhibits

sufficient parallelism for efficient implementation on a shared memory multiprocessor.

Performance results on a Cray Y-MPB/64 are presented. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

Tensor products (Kronecker products) have been

used to model algorithms with a recursive compu

tational structure that occur in application areas

such as digital signal processing [6, 15], image

processing [16], linear system design [5 ~. and sta

tistics [7]. In recent years, a programming meth

odology based on tensor products has been suc

cessfully used to design and implement high

performance algorithms to compute fast Fourier

Transforms (FFT) [12, 14] andmatrixmultiplica-

Received September 1994
Revised April 199S

© 199.5 by John Wiley & Sons, Inc.

Scientific Programming. Vol. 4. pp. 275-289 (1995)

CCC 10.58-9244/9.5/04027.5-15

tion [10, 13] for shared memory vector multipro

cessors. A set of multilinear algebra operations

such as tensor product and matrix multiplication

are used to express block recursive algorithms.

These algebraic operations can be systematically

translated into high-level programming language

constructs such as sequential composition, itera

tion, and parallel/vector operations. Tensor prod

uct formulas representing an algorithm can be

algebraically manipulated to restructure the com

putation to achieve different performance charac

teristics. In this way, the algorithm can be tuned to

match the underlying architecture.

Matrix multiplication is an important core com

putation in many scientific applications. Conven

tional matrix multiplication of 2" X 2" matrices

requires 0(8") operations. In 1969, V. Strassen

proposed an algorithm for matrix multiplication

276 KL:viAR ET AL.

[17] that employs a computationally efficient

method to compute the product of 2 x 2 matrices

using only seven multiplications. A recursive ap

plication of this algorithm for multiplying 2" X 2"

matrices requires only 0(7") operations, com

pared with 0(8") for conventional matrix multipli

cation. Efficient parallel implementations of this

algorithm have been described in [1, 10]. This

algorithm has been used for fast matrix multipli

cation in implementing Level 3 BLAS [9] and lin

ear algebra routines [2].

In this article, we describe the tensor product

formulation of Strassen's matrix multiplication al

gorithm, and discuss program generation for

shared memory vector processors such as the Cray

Y-MP. Achieving high performance on these ar

chitectures requires operating on large vectors and

reducing memory bank conflicts, at the same time

exploiting c:oarse-grained parallelism. We show

how the tensor product formula of Strassen's al

gorithm can be manipulated to operate on full

vectors ·with unit stride. An important feature of

the generated code is that it employs no recursion.

The initial formulation presented in r 10] n·

quired a working array of size 0(7") for the multi

plication of 2" X 2" matrices. \Ve present a modi

fied formulation that significantly reduces the size

of working array to 0(4"). This reduction is made

possible through the reuse of working storage. \Ve

describe how this memory reuse can be captured

in tensor product formulas with the use of a selec

tion operator. \Ve present a strategy for automatic

code synthesis from tensor product formulas con

taining a selection operator. The modified formu

lation exhibits sufficient parallelism for efficient

implementation on a vector-parallel machine

such as the Cray Y-\1P. In addition, we express

Winograd's variation [3 J using our notation and

describe its translation to a programming code.

Winograd's variation uses the same number of

multiplications, but a smaller number of mldi

tions, than the original Strassen's algorithm.

This article is organized as follows. Section 2
contains an overview of the tensor product nota

tion. A formulation of Strassen 's algorithm using

this notation is presented in Section :3, along with

a discussion on how the formulation can be modi

fied to achieve reduction in working storage.

Section 4 presents a strategy for automatic code

generation from a tensor product formula. \Vino

grad's variation of the Strassen's algorithm is also

presented. Section 5 presents performance results

on the Cray Y-MP. Conclusions are presented in

Section 6.

2 AN OVERVIEW OF THE TENSOR
PRODUCT NOTATION

In this section, we give a brief overview of the ten

sor product notation and the properties that arc

used in this article. Let A E rzJtmxn and B E 'lftpxq_

The tensor product A 0 B is the block matrix ob

tained by replacing each element a;.j by the matrix

a,,jB, i.e.,

A0B=

\Vhenever all the involved matrix products are

valid, the following properties hold:

Property 2.1 (Tensor Product)

1. A 0 B 0 C =A 0 IB 0 C) = (A 0 B) 0 C
2. (A0B)(C0D)=AC0BD

:3. A 0 B = (A 0 In:(l"' 0 B)= (/"' 0 B)(A 0111)

4. (A 0 B)T =AT 0 BT

u. (A 0Bt 1 =A~ 1 0B-1

6. (0;'o~/ A1B 1) = (0;',~ 1
1 A;) (0;',~/ B,)

7 fi;::C1
1

(A, 0 B,) = fi;',~ 1
1 A; 0 fi;:,:-;1

1 B,

8. lmn = fm 0 In

where/,. represents then X n identity mHtrix. fl;~-; 1
1

A, A,~ tA 11 ~:e ... Ao, and 0;~~ 1
1 A,= An-- 1 0 An~2

0 ... 0Ao.

A matrix basis Ef:'/' is an m X n rnatirx with a

one in the i-th row and the j-th column and zeros

elsewhere. A vector basis is a colun1n vector of

length m with a one in the i-th position and zeros

elsewhere. If the basis E;:'j" of an m x n matrix is

stored by rows, it is isorrw.rphic to the tensor prod

uct of two vector bases e;n 0 ej'- The tensor prod

uct of two vector bases ej" 0 ej' is equal to the

vector ba -i- e"'" · ,m K:A '" -· ""' 'l'l · " s ·in+j·. I.e ... c, '61 ci - cin+i· 1e tensor

producr of two vector bases ej" 0 ~/' is called a

tensor basis. If the basis elements are ordered lex

ic:ographieRily then

e"' 0 · · · 0 e"' =
11 lr

Expressing a vector basis e,l1 as the tensor produet

of vector bases e;~'' 0 ··· 0 e;~'', where J/ = m 1 X ··· X

mt and ik = (i div Jh) mod mk, .\1" = Hi=k+1 m;,

STRASSE'\'S :\lATRIX :\ILL TIPLICATIO'\ ALGORITfHvl 277

A11 = 1 is called the factorization of the vector

basis, e.g., the vector basis e~ 2 can be factorized

into the tensor bases ey 0 e{ 0 e5 or ej 0 e~.

Expressing a tensor basis e;:• 0 · · · 0 e'f; as a vector

basis e;:~~fl'n,+···+i,_,,,+,; is called linearization of the

tensor basis. For example, the tensor basis e~ 0 ej

can be linearized to give the vector basis e~ 2 .

One of the permutations used frequently in the

representation of algorithms in tensor product for

mulas is the stride permutation. Stride permuta

tion L';" is defined as

L"'" (em 0 en 1 = e" 0 e"'
n t .1) ~J t

L';" permutes the elements of a vector of size mn

with stride distance n. This permutation can be

represented as an mn X mn transformation. For

example, L~ can be represented by the matrix

1 0 0 0 0 0 :ro xo

0 0 1 0 0 0 ;1:1 xz

0 0 0 0 1 0 X:~ X4

L~x
0 1 0 0 0 0 X;-; X1

0 0 0 1 0 0 X4 X.~

0 0 0 0 0 1 Xc
.) X' ;)

The stride permutation has the following proper

ties:

Property 2.2 (Stride Permutation)

1 !£"'") -1 = £mn
· \ n m

2. L~;' = L~''L~' 1

3. L~·'' = (L~ 1 0 f,)(Ir 0 L;')

A permutation of the form lm 0 Lft1 0!11 is called a

tensor permutation.

The following theorem illustrates how a tensor

product of two matrices can be commuted by ap

plying a stride permutation.

Theorem 2.1 (Communtation Theorem) If A is

an m X m matrix and B is an n X n matrix, then

L;;"'(A 0 B)= (B 0 A)L~w.

Pairwise multiplicaiton between two vectors im

plies the product between the corresponding ele-

ments of those vectors, e.g.,

xo Yo XoYo

*

Yn-1 Xn-1Yn-1

If the elements X; andy, are themselves subma

trices, then x;y; corresponds to matrix multiplica

tion between them.

3 A TENSOR PRODUCT FORMULATION
OF STRASSEN15 ALGORITHM

Strassen' s matrix multiplication algorithm is

based on a computationally efficient way of multi

plying 2 X 2 matrices using only seven multiplica

tions ~ 17]. Consider the matrix multiplication C =

AB, where

[
coo co1]

CJO C11

Strassen's algorithm can then be written as fol

lows. First, the following intermediate values are

calculated.

to = (aoo + a11)(boo + b11)

t1 = (a10 + a11)boo

tg = a11(-boo + b10)

t4 = (aoo + ao1)b11

l.-; = (-aoo + aw)(boo + bo1)

t6 = (ao1-a11)(b10 + b11)

Then the individual elements of C are given by:

Coo = to + l:J - t 4 + t6

C10 = t1 + l:J

c11 = to - t1 + tz + l-;

In matrix notation, this can he represented as:

C = Sc(S,,A * SJJ)

278 KLYlAR ET AL.

where

1 0 0 1 1 0 0

0 1 0 1 1 0 0

1 0 0 0 0 0 1

s" = 0 0 0 1 'S~; = -1 1 0

1 0 1 0 0 0 0

-1 1 0 0 1 0 1

0 0 1 1 0 1 0

and X ll, ami Care vectors of length 4, and repre

sent the storage of matrices A, B, and C in column

major fonn. The notation "'T correspond,.; exactly to

the vec(A) notation [8], however, we shall use the

former for readability purposes. The matrices S(/,

Sh, and S, are termed basic operators., and do not

have to he explicitly generated, hut specify which

operations have to be performed on specif-ic com

ponents of the input vectors.

The above formulation can be easilv extended

to matrices of size 2" X 2" by considering a,1• bit.

and ci; to be blocks of size 2"- 1 X 2"-1. First. we

describe the block recursive storage of matrices in

memory. Let X be any 2" X 2" matrix. At the top

level, X can be viewed as:

[

Xoo
X=

Xw

A vector I representing an r-level block recursive

represemation of X is recursively defined as:

X=

Xoo

Xo1

X11

"·ith the houndan· condition that Y is the column

major representation of any 2"_,. X 2"-,. block Y.

An example of block recursive storage is given in

Figure 1.

Let A. B, and C he the one-level block recursi.-e

representation of 2" X 2" matrices A. B, and C.

Strassen·s algorithm for computing C = AB can lw

written as:

1

0
1 0 0 1 -1 0 1

-1
0 1 0 1 0 0 0

0 , and S,.
0 0 1 0 1 0 0

1
1 -1 1 0 0 1 0

0

1

where *11-1 denotes pairwise matrix multiplication

between matrices of size 2"-l X 2" 1
• \\ce refer to

the above as one-level block recursive Strassen' s

algorithm. In this ease, the intermcdiatP values li

are 2"- 1
X 2"- 1 block matrices. and block matrix

multiplications are performed using conventional

matrix multiplicat.ion. This algorithm can be con

veniently viewed in terms of a recursion tree (Fig.

2), where the root node correspond,; to the update

of C, and the leaf nodes correspond to the e.-alua

tion of the intermediate values. The steps marked

by 0 refer to computations that require working

memory . .\'ote that all the intermediate values can

be computed in parallel. because there are no

data dependences between them. Each interme

diate value requires a working memory of 0('±"- 1
).

Hence, a one-level block recursive Stra~sen ·s al

gorithm requires a total working storage of size

0(7 . '±"- 1
).

Even though the above formulation has been

A!o

FIGL:RE 1 Three-level hlflck recursive 6toraf!e.

STRASSE.YS \L\ TRlX \lCLT!PLIC\T!O.\ .\LCORlTII\1 279

7 blocks of size 4n-I each

FIGURE 2 Recursion tree of depth 1 for Strasscn· s

an additional savings in the total number of arith

metic operations required to compute the matrix

produce Strassen's algorithm can be n'cursiYt>ly

appl.i_:d_!o com1.mte the block multiplications also.

Let A, B, and C be the !-level block recursive rep

resentations of 2" X 2" matrices A. B. and C. The

computation of Cis described by the following for

mulation [10]:

algorithm. where

given for matrix sizes of the form 2" X 2". it is

straightforward to generalize the implementation

to handle arbitrarv dimensions of matrices A and

B. A common technique used is to pad thP matri

ces with rows and colun1ns of zeros to increase the

matrix sizes to the next higher powers of two.

compute the extended matrix product. and then

extract the desired result l1 '7]. Another approach

[4 _ is to drop the last rows and columns from the

computation to achieve even dimension,.; and then

compute the partial matrix product. The complete

matrix product is then obtained with a rank-k up

date (k = 1 .. 2, 3).

3.1 Block Recursive Strassen's
Algorithm: Breadth-First Evaluation

ln one-level application of Strassen· s algorithm,

2"- 1 X 2"- 1 block multiplications were computed

using conventional matrix multiplication. To get

. . .

I~

S".t = Q9i-1 S o.. I - no !J o.. , o.. \ , ;=o c IC::J ~~ 1- i=n- 1 \ ""!/ \6) .. S(. VY /-+~~-~~~,

and *11 -t denotes pairwise multiplication between

blocks of size 2"-1 X 2"-1
. This computation can

be interpreted as a breadth-first evaluation of the

recursion tree shown in Figure;). Each intermedi

ate block matrix t1 is itself computed using Stras

sen's algorithm yielding intermediate subblocks

t,o, . . . lth· This process is recursively applied

until blocks of size 2"-1
X 2"- 1

. "·hich are tlwn

computed using conventional matrix multiplica

tion. Following our convention, D denotes com

putation that requires working storage. The work

ing array requirement in this case is 0('714"-1
). ln

the extreme case. Strassen·s algorithm can be ap

plied recursively down to blocks of size 2 X 2. and

such an (n- 1)-level (or n-level) Strassen·s algo-

. . .

i blocks of sire 4n·l each

FIGURE 3 !-Level block recursive Strassen's algorithm.

280 KLYIAR ET AL.

Table 1. Comparison of Operation Counts for Stra;.;;.;en's Algorithm and Conventional Matrix

Multiplication

Algorithm

M~1

STR

BLOCK_STR

Additions

8"

6(?"- 4")
6 . 4k("7n-k _ qn-k)

rithm would requ1re a working storage of s1ze

0(7").

Table 1 presents the total number of operations

required for multiplying two matrices of size 2" X

2". ~M denotes conventional matrix multiplica

tion, STR refers to an n-level block recursive

Strassen's algorithm, and BLOCK_STR denotes a

(n- k)-level block recursive Strassen's algorithm.

STR has a lower operation count than "'[\I only for

n 2:: 10. The expression for the operation count for

BLOCK_STR has a minima at k = 3 for all integer

values of nand k. Fork = :~ .. BLOCK_STR has a

lower operation count than YI:'VI for rz 2:: 'f. Hence.

block Strassen's algorithm is better than conven

tional matrix multiplication in terms of total oper

ation count even for small values of n. However,

for implementation on a shared memory vector

machine such as the Cray Y -YIP. a lower opera

tion count does not imply smaller execution time.

because the effect of vector length and stride also

comes into play.

3.2 Block Recursive Strassen's
Algorithm: Depth-First Evaluation

An /-level Strassen's algorithm requires fewer op

erations than conventional matrix multiplication

when the number of levels lis increased. An opti

mal value is attained at n - l = .3. HoweveL the

working storage requirement for an /-level algo

rithm is 0(714"-1), and hence increases exponen

tially with an increase in l. This high storage

requirement comes due to the breadth-first ex

pansion of the recursion tree in which all the inter

mediate values have to be stored.

To achieve reduction in working o;torage. we

can perform the computation of Strassen's algo

rithm using a depth -first expansion of the recur

sion tree. Instead of expanding all the leaves in the

recursion tree, we only compute a subtree, and

use the results obtained from that subtree to up

date C. This process io; repeatedly applied until all

the subtrees are evaluated. It is necessarv to en-

Operation Count

Multiplication~ Total

8"
"7n

2. 8"
:n+l - 6. 4/1

?"-'(2 · Rk + ?J · qk) - 6 · 4"

sure that no redundant computation is performed.

The memory requirement for the algorithm in this

case will be the memory requirement for a single

subtree, because the same space can be reused for

the evaluation of different subtrees.

For the 2 X 2 case, the algorithm is modified as

follows. t is a temporary variable that is used to

store intermediate values.

Step 1: t = (aoo + att)(boo + btt):

coo = t; c11 = t

Step 2: t = (ato + a11)buo;

Cto = t; Ctt = Ctt - t;

Step 3: t = aoo(bot - btt)

Cot = l; Ctt = Ctt + t;

Step 4: t = att(-boo + bto)

coo = coo + l; Cto = Cto + t:

Step 5: t = (aoo + aot)btt;

coo = coo - t; Cot = Cot + t;

Step 6: t = (-aoo + a10)(boo + bot):

Ctt = Ctt + t;

Step 7: t = (ao1 - att)(bto + btt);

coo = coo + t;

Now the extra memory requirement is of only one

element, because the same memory location can

be reused to evaluate different t;'s. In the original

formulation, seven memory locations are required

because all the intermediate values are calculated

before the update of C is performed. The total

number of arithmetic operations is unchanged.

We now formulate the concept of memory re

duction using the tensor product framework. De

fine DJ to be a 7 X 7 matrix with d_;/ = 1 and zeros

elsewhere. Note that "':iJ=oD] = f.,. Ylemory reduc

tion for a 2 X 2 case can be formulated in matrix

notation as:

6

C = L (ScD;~)[(D7S")A * (D's,)B]
j=O J J '

STRASSEYS MATRIX :\ICL TIPLICATIO:'Ii ALGORITHM 281

D] is termed as a selection operator and selects

subsets of the input vector on which the computa

tion is to be performed.

This framework can be extended to multiplying

matrices of size 2" X 2". We begin with the one

level Strassen's algorithm and assume that the

data matrices are stored in a one-level block re

cursive form. The tensor product formula to com

pute C = AB can then be written as:

6

C = L (S,D7 0 /_,,~,)
j~O J

We can apply memory reduction at multiple levels

by performing the same operation recursively on

the smaller blocks. Assuming that the matrices are

stored in an /-level block recursive form, an /-level

Strassen's algorithm with memory reduction can

be formulated as:

E = . ± [((~ s,n') 0 !.,,~~)(((~ n' s")
r~o }• r~o 1·

Jo.Jt····.jt-1=0

We refer to the above formulation as the partial

evaluation form of Strassen's algorithm. The

computation specified in the above formulation

can be described using the recursion tree shown in

• • •

~

Figure 4. The current intermediate blocks being

computed are represented by D. Working storage

is required for the intermediate blocks from the

leaf node being computed, to the root of the recur

sion tree. Hence, the working storage required is

O(L!~1 4"-') = 0(4t').

3.3 Combining Breadth-First and
Depth-First Evaluations

The * operator in the tensor product formula for

partial computation refers to pairwise matrix mul

tiplication. Each block matrix multiplication in

the pairwise matrix multiplication can itself be

performed using complete evaluation. Hence, we

have a three-level hierarchy. At the highest level,

partial evaluation is performed till blocks of size

2"-1
X 2"-1

. Then complete evaluation is per

formed till blocks of size 2k X 2k are reached, after

which conventional matrix multiplication is ap

plied. This can be expressed in the ten:-;or product

notation as:

Cps = . ± _ [((~ S,D 1 ~) 0 !.,,~~)(((~ D] s,)
}0· ·}I·· 1-0 r=O r=O

0 f.,,~)A *cs, I ((@, n;s~,) 0 f.,,~~) B)]

where *cs,~ 1 denotes pairwise matrix multiplication

between blocks of size 2"-1
X 2"-1 using complete

evaluation, C' cs corresponds to each block

pairwise multiplication during the partial evalua-

•

FIGURE 4 /-Level block recursive Strassen's algorithm with memory reduction.

282 KL~1AR ET AL.

tion .. which itself is evaluated using an (l- k)-level

Strassen's algorithm .. and *Ill/; denotes pairwise

matrix multiplication between blocks of size 2k X

2k using conventional matrix multiplication.

The root of the recursion tree is defined to be at

level 0. At level i. a working array of size 0('±"-;) is

required to store the intermediate results of partial

evaluation. The breadth-first expansion of the last

(l- k) levels requires a working array of 0(7"-l-k ·

4k). Hence, the total memory requirement is

0(2.,':._11 4"-i + 7n-l-k. 4k) = o(4" + 7"-1-k. 4'}

Even for moderate values of n and small valuPs of

l, this represents a significant savings compared

with 0(7"-k · 4k) for complete evaluation. If the

matrices are of size /V X :V where ,y is not a power

of 2, the technique of padding can be used ..

and the memory requirement with reduction

will be o(4 11 ~'1 + 7!lg\]-l-k · 4k) compared with

0(7llg \l-k · '±k) for complete evaluation.

3.4 Matrix Storage in Main Memory

The formulation presented in the previous sec

tions assumes for simplicity of presentation that

the data matrices are stored in a block recursive

form. However. when implementing a block recur

sive algorithm on a shared memory machine, ma

trices are usually stored in a row major or column

major form. We have implemented Strassen's al

gorithm using Fortran on the Cray Y-YIP. hence

the data matrices are stored in memon· in column

major form. The tensor product formula to con

vert a 2" X 2" matrix from a column major forn1 to

a k-level block recursive form is given by [11]:

R"·k is termed as a conversion operator. There are

two ways in which storage conversion can be im

plemented. One way is to perform explicit conver

sion from row I column major form to a block re

cursive form through data movement. HoweveL a

more efficient way is to merge the conversion op

erator into the computation in Strassen's algo

rithm, which results in a modification of the data

array indexing functions. The modified tensor for

mulation for Block Strassen' s algorithm is:

E = (R''·kt1S;•·k[Rn.ks;;·kff *k R"·kS;;·kJ{

= s-n.k[S-"·kA *k· §n.kJ3]
c (J h

where

n-k-1

§~.k = Il
i=O

n-k-1

S'// = Il
i=O

§n.k
c

0

Il
i=n-k~l

[IJ /0, J ·)n A-,
\ _, 161 :2 0 L':jnA ,-/

With /-level memory reduction, the above formu

lation is modified into:

6 [((I-I))((1-1 E = L §n.k 0 0 D 7 0 D 7
. . . c j, ;.

JO·JF')I-t ~o r~O r~O

4 CODE GENERATION FOR VECTOR
PROCESSORS

4.1 Block Strassen's Algorithm

Matrix factorizations form the basis of translating

tensor product formulas by mapping the opera

tions implied by the formula to program con

structs in a high-level programming language. The

translation process starts with the top-level ab

straction and generates more refined code as it

proceeds to lower-level abstractions. At each

level, semantically equivalent program constructs

are chosen to replace mathematical operations.

Efficient programs can be synthesized from tensor

product formulas by exploiting the regular com

putational structure expressed by such formulas.

The tensor product formulation of block recursive

algorithms usually involves certain basic compu

tations, such as Sa, 5 6 , and S,. in the case of Stras

sen's algorithm. It is sometimes necessary to use

manually optimized codes for these basic compu

tations to achieve high performance.

STRASSE.YS .\lATRIX :\ICLTIPLICATIO'\ ALGORITH.\1 283

\Ve now illustrate the code generation strategy

with an example. Let B be an m X n matrix, and X

be a vector of size np. Consider the application of

(/P 0 B) to X i.e.,

X[O : n- 1J

X[n: 2n- 1:

X[(p - 1)n : pn - 1:

BX[O: n- 1]

BX[n: 2n- 1]

BX[(p - 1)n : pn- 1j

This can be interpreted asp copies of B acting in

parallel on p disjoint segments of X. resulting in a

vector of size mp. Hence. Y = (If' 0 B)X can be

implemented as:

Code[Y = (lp 0 B)Xl == doall i = 0, p - 1

Code[Y[in: (i + 1)n- 1]
= BX[in: (i + 1)n- 1]]

enddoall

Once an algorithm is expressed using the tensor

product framework, efficient implementation can

be obtained by algebrically manipulating the ten

sor product formula. For example, consider the

implementation of

where Y, B, and X are vectors as described before.

Lsing the commutation rule, it can be determined

that

(B 0 I I = L"'P(/ 0. B)L111'
pJ m p 1./Y fJ

Hence, one implementation to compute Y might

be to permute X according to L;t, perform (/" 0

B). and permute the result according to L~:"· A

more efficient implementation would be to incor

porate the stride permutations into the indexing of

the input and output data arrays. The above can

be written as:

i.e.,

Y [0 : mp - 1 : p J

Y[1 : mp - 1 : p l

Y[p - 1 : mp - 1 : p;

l ~::: ~J
0 · · ·B

X[O: np

X[1: np

1 : p]

1 : pl

X[p - 1 : np - 1 : p J

Hence, the code can be written as

Code[Y = (B 0 /")X]== doall i = O,p- 1

Code[Y[in: (i + 1)n- 1 :PI

=BX[in: (i + l)n- 1 :pll

enddoall

Let us consider the code generation for (n- k)

level block Strassen· s algorithm for multiplying

2 11
X 2 11 matrices. Assume that the matrices are

stored in a (n - k)-level block recursive format.

and that at the lowe,.;t leveL pairwise multiplica

tion between blocks of size 2k X '2.k is performed.

For simplification, we shall assume that no mem

ory reduction is performed. The tensor product

formulation of this algorithm is given by (see Sec

tion 3.4):

C' = s-~~.k[s-~~·kA- * S-;".kB-1
c (l k h -

The formula for block Strassen's algorithm con

tains the operations §;:·k, §;;·k, *k, and §;~·k. All the

operations except *k are linear operations and

hence require an array operand. Operation *k is a

bilinear operation and requires two array oper

ands. Each operation corresponds to an assign

ment statement that stores its result in an arrm·

that may be used as input data for the subsequent

assignment or represents the final output. Tempo

rary arrays representing working arrays are de

noted by T;. The above formula then translates to

the following high -level code:

284 KCMAR ET AL.

To

T1

S-n.k4-
" '

T'o = To *k T1

-C = 5n.k'T'
,:J, 1 (l

The assignment statements are composed se

quentially to preserve the semantics of compu

tation. However, the above sequential composi

tion is not unique. For example. the assignment

statements for ._5;;·kA and !hklJ can be in any order

because there are no data dependences b~twcen
them.

s;;·k, s;:·k, and s~:·k have the form

[TI Fi] where Fi
·=1

{

(lr,(i) OP Q9 Is)

= (fr;0L"'111
' 0[:)

and OP is a basic operator

The generic tensor product formula Y = (lr, 0

OP 0 ls.)X can be implemented as a fully parallel

doubly nested loop:

doall i1 = 0, r; - 1
doall i2 = 0, s; - 1

Code[OP,YXi1,i2]
enddoall

enddoall

Any tensor permutation that may be present

results in a modification of the array indexing

functions. Different implementations of the above

formula are possible by changing the order and/ or

blocking the inner loops, as they are fully permut

able. However, different orderings of the inner

loops result in different data access patterns.

These in turn will have different performance

charateristics on systems with hierarchical/inter

leaved memories.

Consider the application of the tensor product

formula ll;;,1 fi to a vector X. The product term

corresponds to a sequential outer loop in which

the output of the ph stage is fed as input to the (i +
1)lh stage, i = 1, n - 1. Only two arrays are re

quired for this operation. The input array for the

i1
h step can be reused as the output array for the

(i + 1)'1 step. At the end of each iteration, the

arrays are swapped (which can be implemented

trivially simply by swapping the pointers to the two

arrays) and the resulting pseudocode is:

To.,___ X

do i = L n

Code[T1 = ;:To]

Swap(T1, To)
end do

At the end of the last iteration, T1 contains the

result of [fi;;,1 F; 1X. s;:·k, S{;·k, and /hk have the

above form, and code can be easily generated for

them.

The pairwise multiplication *k performs a se

quence of 7"-k matrix multiplications of 2" x 2k
blocks. Let the input vectors be T0 and T, corre

sponding to the evaluation of §;;·kif and §;;·klJ. re

spectively. All elements of a given block are stored

consecutively in the input arrays. Pseudocode for

the operation T2 = To *k T1 is presented below:

doall i = 0, 7n-k - 1

T2 f i4k : (i + 1)4k - 1] ,l!atrix/vfultip(v
(T0 [i4k: (i + 1)4k- 1], T1 [i4k: (i + 1)4k

enddoall
11\

Jl

w:1ere i\Ialrixilfultip(v refers to conventional ma

trix multiplication between blocks of size 2k X 2k

stored in column major form.

4.2 Memory Management for Depth-First
Evaluation

Consider the tensor product formula:

The summation operator in the formulation of

partial evaluation eorn~sponds to a ;;equential

loop nest.. with the i1
" loop performing a depth-first

evaluation of the i1
" level in the recursion tree. At

each level, there are seven :-;ubtrees that need to he

evaluated. Evaluation of each subtree i;; followed

by an update of its parent. After the update, work

ing storage used by that subtree can be reused for

the computation of the next subtree at that level in

the recursion tree. The loop structure hence looks

like the following:

STRASSEXS .\lATRIX :\ILL TIPLICA TIO"i ALGORITI lM 285

do Jo 0,6

Code [T~ = DhSaA] I* partial evaluation *I
Code [Tg = Dj

0
SbB] I* partial evaluation *I

do jl = 0, 6

Code[T~
7 -

DJ,Sa~] I* partial evaluation *I
Code [T~ = D},S~]

do j 1-1 = 0, 6

Code [T~- 1

Code [Tb- 1

Code [T~- 1

Code [T~- 2

enddo

I* partial evaluation *I

I* partial evaluation *I
I* partial evaluation *I
I* complete evaluation *I
I* update of parent *I

Code [T~ = D},ScTcJ

enddo
I* update of parent *I

Code [C = Dj 0 ScT~]
enddo

I* update of parent *I

4.3 Implementation of Winograd's
Variation

Strassen's algorithm uses 18 scalar additions and

7 scalar multiplications to multiply 2 x 2 matri-

ces. \Vinoarad
0

presented a rnore efficient algo-

rithm, which uses 15 scalar additions and 7 scalar

multiplications [3]. The Winograd's variation is

based on the following three matrix operations:

-1 1 0 1

1 0 0 0

0 0 1 0

u>~~ == 1 1 0 0

0 1 0 1

1 -1 1 -1

0 0 0 1

1 0 -1 1

1 () 0 0

0 1 () ()

w" = 0 0 -1 1

1 0 1 0

() 0 () 1

1 -1 -1 1

0 1 1 0 0 0 0

1 1 () 1 0 0 1
and TV,

1 1 0 0 1 1 ()

1 1 0 1 1 0 0

The Winograd's variation for multiplying 2 X 2

can be written as the matrix formula

co_o ao_o bo_o

CJ.O a1.o b1.0
w,. W~, *Wi!

ho.1 co.1 ao.1

C1.1 a1.1 bu

The generated code of operations T¥,, W1,, and

W" contains some common terms. For example,

ao.o - a1.o is evaluated twice in a direct implemen

tation of W,,. The key to reducing the number of

additions in Winograd's variation is to evaluate a

common term only once. We factorize W,, W1,

and We to eliminate the common terms:

286 KCMAH ET AL.

W= a

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1 0 1 0 0 0 0

0 0 0 0 0 0 1

1 0

0 1

0 0

0 0

0 0

0 0

0 0 0 0 0

0 () 0 0 0

1 0 0 0 0

() 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 -1 0 0 0 0

1 () 0 0 0 0 0

0 1 0 () 0 0 -1

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 -1

0 1

0 0 1 0 0

0 0 0 0 ()

()

0

0

0

0

0 1 () () () 0

() 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 -1 1 0

0 1 0 0 0 0 ()

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0 () 0 0 0

0 1 0 1 0 0 0

0 1 0 0 1 0 0

0 0 () 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

() 0 0 0 0 0 1

0

1

0

1

0

0

0

0 0 0

0 0 0

0 1 0

1 0 0

1 0 1

0 0 0

0 () 1

0 0

1 0

0 1

() 0

0 ()

0 0

() 0 -1 1

-1 () 1 0

() 0 0 1

0 0 0 0

. and

0 1 1 0 0 0 0

1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 () 0 ()

0 0 0 0 1 0 ()

0 0 0 0 0 1 0

() 0 0 0 0 0 1

There are 15 rows containing two nonzero ele

ments in the matrix factorizations of II'~, Wt, and

f/i;., which correspond to the 15 additions in

~linograd's variation of Strassen' s algorithm. The

rows containing a single one are implemented

as data movement, and those containing- all zeros

are equivalent to null operations. The indices of

input and output array elements of ff" are speci

fied by the permutation operations in a tensor

product formula and are computed similar

to those of Sa. Let p;, 0 s i < 4, be the indices

of the input array elements, and q;. 0 s i < 7,

be the indices of the output array elements. The

computation T = Tf;,A on a vector A of length

7 is translated to the following sequence of

assignments:

Code[T = WaA] = T[q1]

T[q2j

A[po]

A[p2]

T[q4j

T[q6]

T[qo]

T[qs]

A[po1 - A[p1]

A[p1] + A[p:3j

A

T[qt] + T[q4]

-T[qo] + T[q2]

The implementation of Winograd's variation is

simply a replacement of the translated code of H;-;,
Wb, and TV,. for the code of 5", Eh, and Sc in the

corresponding implementation of Stra,;sen's algo

rithm.

STR\SSE:'\'S \L\TRL\ .\lt'LTIPLICATIO'\ ,\LGOHITII.\1 287

Table 2. Execution Times for Block Strassen's Algorithm with ,1\clemory Reduction

n = 8 n=9 n = 10

SGEMM: .109 s ('HO \'!Flop)

SGEMMS: .09~) s (291 \!Flop!

SCEJJJJ: .868 :o ~:310 MFlop) SGEJJ.ll: 6.95 s (:HJ9 \lFlop

SCLl!MS: 66:>, (28;) \lFlop) SGI::J!JJS: .:r.o9 ~ (284 \1Flop)

k=3k=4k=5k bk="'!k 3 k=4 k=S k=b k="'! k=?, k=-t k=3 k=6 k=?

0 .468 .179 .103 .09:3 .098

(55) (1:36) (2.:r6) (291) (:JO;J)

1 .474 .182 .106 .095 , 10:3 3.292 1.268
(:"r'"'\ 11331 (239) l285) (293) (;'i6: (1:35) \•JV; \ ;

2 .476 .186 , 108 .096 :3.:308 1.284

(5't) (130) (236) (282) (551 (1331

3 .494 .200 114 :3.348 1.315

(52) (121) (221) (54) (1:30)

4 .548 .228 :3.4?:-i 1.412

{.:t7) (106) (.32) (121)

5 .671 :3.85":" 1.619

(38) (47) (1 051

6 4.665

(39)
'7

5 PERFORMANCE RESULTS ON THE CRAY
Y-MP

Performance statistics were gathered for different

matrix sizes, different block sizes, and different

levels of partial evaluation. Table 2 shows perfor

mance for execution on a single processor. All ex

ecution times are in seconds. The numbers in pa

rentheses display performance in megaflops.

Empty fields indicate that the program could not

be run due to lack of sufficient memory. The ma

trix size is 2" X 2", the level of partial evaluation is

l, and the block size at which conventional matrix

multiplication is applied i;; 2" X '2". The execution

times for the Block Strm;;;en';; algorithm is com

pared with the Cray Scientific Library routines

SGEiv!JV!, which implements conventional matrix

.666 .69?

(28":') (:30:3)

.736 .672 .712

(1:35) (284) (297)

7-t6 .67-t ."'10 8.92 5.19 4.72 4.98

(238) (283) (297) (135) (241) 128-t) :298)
."'6'7 .686 23.:3 9.1:3 5.2() 4.78 s.o:.i
(2:12) (278:: (.SS) (132) 12:36) 1:281) :29:))

.815 2:3.S 9.:38 5.42 4.86

1218) (54) (128) (2:3 1) (2?6)

24.4 10 02 ;),'76

(;)2) (120) 1217)

27.1 11.42

(47) \1 ();))

32.8

(:39)

multiplication, and SGEV!MS, which implements

Strassen's matrix multiplication. Because

SGEMkl and SGEJfJJS are independent of l and

k, the times for those are given only once for each

value of n. SGE"f]VJ is used for block matrix multi

plication in the Block Strassen' s algorithm.

For any value of/, the lowest execution time

occurs for k = 6 because the vector length on the

Cray Y -MP is 64. The megaflop:- for k = 7 are

higher than those fork = 6 for the same value on n

and l. Rut, the f~xecution time fork = 7 is longt~r

because a larger number of arithmetic operations

are performed.

The execution times and megat1ops for k = 6.

l = 0 are comparable (slightly better) to that of

SGE:\L\18. There is a performance degradation

due to a slight increase in the number of memory

Table 3. Execution Times fork = 6 on Two Proeessors

Block Suassen

n SGEMMS l = () [= I l = 2 l = 3 l = 4

8 .050 .047 .053 .055

(594) (574) (513) (497)

9 .356 .331 .3'71 .378 .389

(592) (576) (513) (505) (490)

10 2.51 2.63 2.67 2.?6

(589) (510) (502) (486)

288 KL\1AR ET AL.

Table 4. Execution Times for k = 6 on Eight Processors*

n SGEMJHS l = 0 {= 1

8 .016 (84.7%) .022 (54.2%1 .018 (81.8%)

9 .10 (91.3%) '11 (77.3%) .14 (73.2%)

10 .84 (78.4%)

* Percentages of 8-cpu obtained are gin·n in parentheses.

operations as l increases for any fixed nand k = 6.

However, the difference is quite small, which is

evident from the execution times.

Table 3 gives the performance when the pro

gram was run on two processors. A fixed value of

k = 6 was chosen because this resulted in the best

performance in the single processor case. Again,

the performance when l 0 is slightly better than

that of SGEM/1!/S. For larger values of/, the perfor

mance degmdes hy About 12%. Table 4 shows the

performance results for eight processors. Because

the programs were run in a nondedicated mode on

the Cray Y-MP, we were unable to get all the eight

processors for the entire execution of the program.

The numbers in parentheses give the percentage

of 8-cups available for execution.

The amount of extra memory required has

been given in Figure 5 for different values of n and

l. It can be easily seen that there is an order of

magnitude improvement even for small values of/.

A value of k = 6 was chosen because it is for this

block size that the execution times are minimum.

6 CONCLUSIONS

~r e have shown how tensor product formulas ex

pressing Strassen's matrix multiplication algo

rithm can be translated to efficient parallel pro

grams for shared memory multiprocessors. This

translation process is part of a more general pro

gramming methodology for designing high-perfor

mance block recursive algorithms for shared and

distributed memory machines. The methodology

uses a mathematical notation based on tensor

products for expressing block recursive algo

rithms. Algebraic manipulation of these formulas

yields mathematically equivalent formulas that

result in implementations with different perfor

mance characteristics. A large nubmer of pro

grams can be generated to search for efficient im

plementations. Tensor products give a powerful

method to generate these equivalent implementa-

Block Strasscn

l = 2 l = 3 4

.022 (74.6%)

.13 (80.<.l%) .15 (76.0%)

1.04 (70.9%) 1.02 (74.0%) 1.14 (70 .. 3%)

lions Automatically. As wa:o illustrated in this

article, programs generated from tensor product

formulas compare favorably with the best hand

coded ones.

This article presents an implementation of the

Strassen's algorithm on a shared memory multi

processor such as the Cray Y -.\IP. ln the Y -.VIP,.

memory is organized into banks, and in the ab

sence of bank conflicts, all memory accesses take

the same amount of time. However. in distributed

memory multiprocessors such as the Cray 'r:JD,

where each processor has its own local memory, a

local memory access can be significantly faster

than a remote access. Hence, an efficient imple

mentation on a distributed memorv machine re

quires partitioning the algorithm in such a manner

that remote accesses are minimized.

Tensor product formulas can also be used to

specify regular data distributions for arrays. Given

a tensor product formula with a specified distribu

tion of its input and output arrays, the interpro

cessor communication cost incurred by the imple

mentation can be determined. If the cost of

eommunication is high, it might be more efficient

Memory Words xJO 6

2 3

n= 8
n=9
n=!O-

4

l

FIGURE 5 Memory requirements for working arrays.

STRASSE'\'S MATRIX MLL TIPLICATIO'\ ALGORITHM 289

to perform a data redistribution before the com

putation, to bring the arrays into a form where the

computation is local to the processors, if the over

head of data distribution is lower than the benefit

gained due to the communication cost reducing to

zero. We are currently examining these issues and

are working on an implementation on the Cray

T3D.

Both formula modification and program gener

ation are capable of being automated. ·we are cur

rently implementing this methodology in an expert

system EXTE~T (Expert System for Tensor For

mula Iranslation) that assists in the development

of parallel programs for numerical algorithms on

various computer architectures. Currently, the

system generates Fortran programs for the Cray

Y-.\1P. The expert system employs various heuri:o

tics to automatically generate alternative tensor

product formulas, translate tensor product formu

las to programs for various parallel architectures,

test the produced programs, and analyze the test

results.

ACKNOWLEDGMENTS

This work was supported m part bv ARPA and

monitored bv J\lST.

REFERENCES

[1] D. H. Bailey, "Extra high speed matrix multipli

cation on the Cray-2. '' SJA.H }. Sci. Stat. Cum

put., vol. 9, pp. 603-60?. 1988.

[2] D. H. Bailey, K. Lee, and H. D. Simon, '·Using

Strassen's algorithm to accelerate the solution of

linear systems,'· }. Supercomput., vol. -f, pp.

357-371, }an. 1991.

r3] A. Borodin and I. Munro. The Computational

Complexity of Algebraic and !Vumeric Problems.

l\ew York: American Elsevier Publishing Co.,

1975.

[4] H. P. Brent, "Algorithms for matrix multi plica

tion,'' Computer Science Department Stanford

University, Palo Alto, CA, Tech. Rep. CS 15?.

1970.

[5] J. W. Brewer. "Kronecker products and matrix

calculus in system theory.'' IEEE Trans. Circuits

Systems, vol. 25, pp. 772-?81. 19?8.

[6] J. Granta, M. Conner, and R. Tolimieri. "Recur

sive fast algorithms and the role of tensor prod

ucts," IEEE Trans. Signal Processing, vol. 40,

pp. 2921-2930,Dec. 1992.

[7] F. A. Graybill. Matrices, with Applications in Sta

tistics. Belmont, CA: Wadsworth International

Group, 1983.

[8] H. V. Henderson and S. H. Searle, --The ver

perrnutation matrix, the vee operator and

kronecker products: A review ... Linear Jlultili

near Algebra, vol. 9. pp. 2?1-288. 1981.

[9] l\. J. Higham, '·Exploiting fast matrix multiplica

tion within the level3 BLAS ... ACvl Trans. jfath

ematical Software, vol. 16. pp. :352-:-368, DPr.

1990.

[10] C.-H. Huang. J. R. Johnson, and H. \r. Johnson.

"A tensor product formulation of Strassen · s rna

trix multiplication algorithm.'' App .. Hath. Lett.,

vol. 3, pp. 67-71,1990.

[11] C.-H. Huang, J. R. Johnson. and R. \\.Johnson,

'·Generating parallel programs from tensor prod

uct formulas: A case study of Strassen' s matrix

multiplication algorithm, in international Confer

ence on Parallel Processing, vol. 3. 1992, p. 104.

[12] J. R. Johnson, H. W. Johnson. D. HodriguPz .. and

R. Tolimieri. ·'A methodology for designing. mod

if~·ing and implementing fourier transform algo

rithms on variom; architectures.,. Circuits S:1·s

tems Signal Process, vol. 9, pp. 45-500. 1990.

[13] B. Kumar. C. II. Huang, J. Johnson. H. W. John

son, and P. Sadayappan. --A tensor product for

mulation of Strassen's matrix multiplication algo

rithm with memory reduction.'' in Seventh

international Parallel Processing Symposium,

199:3, p. 582.

[14] C. Van Loan, Computational Frwneworks for the

Fast Fourier Transform. "ew York: SlA.\L 1992.

[15] P. A. Regalia and S. K. Mitra. ·'Kronecker prod

ucts, unitary matrices and signal processing ap

plications," SIA,\1 Rev. vol. :31. pp. ;)86-613,

Dec. 1989.

[16] G. X. Hitter and P. D. Gader, ·'Image algebra

techniques and parallel image processing .. , }.

Parf!llel Distrib. Comput. vol. 4. pp. ?-44. 198?.

[171 \". Strassen. --Gaussian elimination is not opti

mal.'' Sumer. Jlath .. yol. 1:3. pp. :3S4-:).)6.

1969.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

