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ABSTRACT 

In this article, we present a program generation strategy of Strassen's matrix multiplica

tion algorithm using a programming methodology based on tensor product formulas. In 

this methodology, block recursive programs such as the fast Fourier Transforms and 

Strassen's matrix multiplication algorithm are expressed as algebraic formulas involv

ing tensor products and other matrix operations. Such formulas can be systematically 

translated to high-performance parallel/vector codes for various architectures. In this 

article, we present a nonrecursive implementation of Strassen's algorithm for shared 

memory vector processors such as the Cray Y-MP. A previous implementation of Stras

sen's algorithm synthesized from tensor product formulas required working storage of 

size 0(7n) for multiplying 2n x 2n matrices. We present a modified formulation in which 

the working storage requirement is reduced to 0(4n). The modified formulation exhibits 

sufficient parallelism for efficient implementation on a shared memory multiprocessor. 

Performance results on a Cray Y-MPB/64 are presented. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Tensor products (Kronecker products) have been 

used to model algorithms with a recursive compu

tational structure that occur in application areas 

such as digital signal processing [ 6, 15], image 

processing [ 16], linear system design [ 5 ~. and sta

tistics [7]. In recent years, a programming meth

odology based on tensor products has been suc

cessfully used to design and implement high

performance algorithms to compute fast Fourier 

Transforms (FFT) [12, 14] andmatrixmultiplica-
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tion [10, 13] for shared memory vector multipro

cessors. A set of multilinear algebra operations 

such as tensor product and matrix multiplication 

are used to express block recursive algorithms. 

These algebraic operations can be systematically 

translated into high-level programming language 

constructs such as sequential composition, itera

tion, and parallel/vector operations. Tensor prod

uct formulas representing an algorithm can be 

algebraically manipulated to restructure the com

putation to achieve different performance charac

teristics. In this way, the algorithm can be tuned to 

match the underlying architecture. 

Matrix multiplication is an important core com

putation in many scientific applications. Conven

tional matrix multiplication of 2" X 2" matrices 

requires 0(8") operations. In 1969, V. Strassen 

proposed an algorithm for matrix multiplication 



276 KL:viAR ET AL. 

[17] that employs a computationally efficient 

method to compute the product of 2 x 2 matrices 

using only seven multiplications. A recursive ap

plication of this algorithm for multiplying 2" X 2" 

matrices requires only 0(7") operations, com

pared with 0(8") for conventional matrix multipli

cation. Efficient parallel implementations of this 

algorithm have been described in [1, 10]. This 

algorithm has been used for fast matrix multipli

cation in implementing Level 3 BLAS [9] and lin

ear algebra routines [2]. 

In this article, we describe the tensor product 

formulation of Strassen's matrix multiplication al

gorithm, and discuss program generation for 

shared memory vector processors such as the Cray 

Y-MP. Achieving high performance on these ar

chitectures requires operating on large vectors and 

reducing memory bank conflicts, at the same time 

exploiting c:oarse-grained parallelism. We show 

how the tensor product formula of Strassen's al

gorithm can be manipulated to operate on full 

vectors ·with unit stride. An important feature of 

the generated code is that it employs no recursion. 

The initial formulation presented in r 10] n·

quired a working array of size 0(7") for the multi

plication of 2" X 2" matrices. \Ve present a modi

fied formulation that significantly reduces the size 

of working array to 0(4"). This reduction is made 

possible through the reuse of working storage. \Ve 

describe how this memory reuse can be captured 

in tensor product formulas with the use of a selec

tion operator. \Ve present a strategy for automatic 

code synthesis from tensor product formulas con

taining a selection operator. The modified formu

lation exhibits sufficient parallelism for efficient 

implementation on a vector-parallel machine 

such as the Cray Y-\1P. In addition, we express 

Winograd's variation [3 J using our notation and 

describe its translation to a programming code. 

Winograd's variation uses the same number of 

multiplications, but a smaller number of mldi

tions, than the original Strassen's algorithm. 

This article is organized as follows. Section 2 
contains an overview of the tensor product nota

tion. A formulation of Strassen 's algorithm using 

this notation is presented in Section :3, along with 

a discussion on how the formulation can be modi

fied to achieve reduction in working storage. 

Section 4 presents a strategy for automatic code 

generation from a tensor product formula. \Vino

grad's variation of the Strassen's algorithm is also 

presented. Section 5 presents performance results 

on the Cray Y-MP. Conclusions are presented in 

Section 6. 

2 AN OVERVIEW OF THE TENSOR 
PRODUCT NOTATION 

In this section, we give a brief overview of the ten

sor product notation and the properties that arc 

used in this article. Let A E rzJtmxn and B E 'lftpxq_ 

The tensor product A 0 B is the block matrix ob

tained by replacing each element a;.j by the matrix 

a,,jB, i.e., 

A0B= 

\Vhenever all the involved matrix products are 

valid, the following properties hold: 

Property 2.1 (Tensor Product) 

1. A 0 B 0 C =A 0 IB 0 C) = (A 0 B) 0 C 
2. (A0B)(C0D)=AC0BD 

:3. A 0 B = (A 0 In:(l"' 0 B)= (/"' 0 B)(A 0111 ) 

4. (A 0 B)T =AT 0 BT 

u. (A 0Bt 1 =A~ 1 0B-1 

6. (0;'o~/ A1B 1 ) = (0;',~ 1
1 A;) (0;',~/ B,) 

7 fi;::C1
1 

(A, 0 B,) = fi;',~ 1
1 A; 0 fi;:,:-;1

1 B, 

8. lmn = fm 0 In 

where/,. represents then X n identity mHtrix. fl;~-; 1
1 

A, A,~ tA 11 ~:e ... Ao, and 0;~~ 1
1 A,= An-- 1 0 An~2 

0 ... 0Ao. 

A matrix basis Ef:'/' is an m X n rnatirx with a 

one in the i-th row and the j-th column and zeros 

elsewhere. A vector basis is a colun1n vector of 

length m with a one in the i-th position and zeros 

elsewhere. If the basis E;:'j" of an m x n matrix is 

stored by rows, it is isorrw.rphic to the tensor prod

uct of two vector bases e;n 0 ej'- The tensor prod

uct of two vector bases ej" 0 ej' is equal to the 

vector ba -i- e"'" · ,m K:A '" -· ""' 'l'l · " s ·in+j·. I.e ... c, '61 ci - cin+i· 1e tensor 

producr of two vector bases ej" 0 ~/' is called a 

tensor basis. If the basis elements are ordered lex

ic:ographieRily then 

e"' 0 · · · 0 e"' = 
11 lr 

Expressing a vector basis e,l1 as the tensor produet 

of vector bases e;~'' 0 ··· 0 e;~'', where J/ = m 1 X ··· X 

mt and ik = (i div Jh) mod mk, .\1" = Hi=k+1 m;, 
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A11 = 1 is called the factorization of the vector 

basis, e.g., the vector basis e~ 2 can be factorized 

into the tensor bases ey 0 e{ 0 e5 or ej 0 e~. 

Expressing a tensor basis e;:• 0 · · · 0 e'f; as a vector 

basis e;:~~fl'n,+···+i,_,,,+,; is called linearization of the 

tensor basis. For example, the tensor basis e~ 0 ej 

can be linearized to give the vector basis e~ 2 . 

One of the permutations used frequently in the 

representation of algorithms in tensor product for

mulas is the stride permutation. Stride permuta

tion L';" is defined as 

L"'" (em 0 en 1 = e" 0 e"' 
n t .1 ) ~J t 

L';" permutes the elements of a vector of size mn 

with stride distance n. This permutation can be 

represented as an mn X mn transformation. For 

example, L~ can be represented by the matrix 

1 0 0 0 0 0 :ro xo 

0 0 1 0 0 0 ;1:1 xz 

0 0 0 0 1 0 X:~ X4 

L~x 
0 1 0 0 0 0 X;-; X1 

0 0 0 1 0 0 X4 X.~ 

0 0 0 0 0 1 Xc 
.) X' ;) 

The stride permutation has the following proper

ties: 

Property 2.2 (Stride Permutation) 

1 !£"'") -1 = £mn 
· \ n m 

2. L~;' = L~''L~' 1 

3. L~·'' = (L~ 1 0 f,)(Ir 0 L;') 

A permutation of the form lm 0 Lft1 0!11 is called a 

tensor permutation. 

The following theorem illustrates how a tensor 

product of two matrices can be commuted by ap

plying a stride permutation. 

Theorem 2.1 (Communtation Theorem) If A is 

an m X m matrix and B is an n X n matrix, then 

L;;"'(A 0 B)= (B 0 A)L~w. 

Pairwise multiplicaiton between two vectors im

plies the product between the corresponding ele-

ments of those vectors, e.g., 

xo Yo XoYo 

* 

Yn-1 Xn-1Yn-1 

If the elements X; andy, are themselves subma

trices, then x;y; corresponds to matrix multiplica

tion between them. 

3 A TENSOR PRODUCT FORMULATION 
OF STRASSEN15 ALGORITHM 

Strassen' s matrix multiplication algorithm is 

based on a computationally efficient way of multi

plying 2 X 2 matrices using only seven multiplica

tions ~ 17]. Consider the matrix multiplication C = 

AB, where 

[
coo co1] 

CJO C11 

Strassen's algorithm can then be written as fol

lows. First, the following intermediate values are 

calculated. 

to = (aoo + a11 )(boo + b11) 

t1 = (a10 + a11 )boo 

tg = a11(-boo + b10) 

t4 = (aoo + ao1)b11 

l.-; = ( -aoo + aw)( boo + bo1) 

t6 = (ao1-a11)(b10 + b11) 

Then the individual elements of C are given by: 

Coo = to + l:J - t 4 + t6 

C10 = t1 + l:J 

c11 = to - t1 + tz + l-; 

In matrix notation, this can he represented as: 

C = Sc(S,,A * SJJ) 
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where 

1 0 0 1 1 0 0 

0 1 0 1 1 0 0 

1 0 0 0 0 0 1 

s" = 0 0 0 1 'S~; = -1 1 0 

1 0 1 0 0 0 0 

-1 1 0 0 1 0 1 

0 0 1 1 0 1 0 

and X ll, ami Care vectors of length 4, and repre

sent the storage of matrices A, B, and C in column 

major fonn. The notation "'T correspond,.; exactly to 

the vec(A) notation [8], however, we shall use the 

former for readability purposes. The matrices S(/, 

Sh, and S, are termed basic operators., and do not 

have to he explicitly generated, hut specify which 

operations have to be performed on specif-ic com

ponents of the input vectors. 

The above formulation can be easilv extended 

to matrices of size 2" X 2" by considering a,1• bit. 

and ci; to be blocks of size 2"- 1 X 2"-1. First. we 

describe the block recursive storage of matrices in 

memory. Let X be any 2" X 2" matrix. At the top 

level, X can be viewed as: 

[

Xoo 
X= 

Xw 

A vector I representing an r-level block recursive 

represemation of X is recursively defined as: 

X= 

Xoo 

Xo1 

X11 

"·ith the houndan· condition that Y is the column 

major representation of any 2"_,. X 2"-,. block Y. 

An example of block recursive storage is given in 

Figure 1. 

Let A. B, and C he the one-level block recursi.-e 

representation of 2" X 2" matrices A. B, and C. 

Strassen·s algorithm for computing C = AB can lw 

written as: 

1 

0 
1 0 0 1 -1 0 1 

-1 
0 1 0 1 0 0 0 

0 , and S,. 
0 0 1 0 1 0 0 

1 
1 -1 1 0 0 1 0 

0 

1 

where *11-1 denotes pairwise matrix multiplication 

between matrices of size 2"-l X 2" 1
• \\ce refer to 

the above as one-level block recursive Strassen' s 

algorithm. In this ease, the intermcdiatP values li 

are 2"- 1 
X 2"- 1 block matrices. and block matrix 

multiplications are performed using conventional 

matrix multiplicat.ion. This algorithm can be con

veniently viewed in terms of a recursion tree (Fig. 

2), where the root node correspond,; to the update 

of C, and the leaf nodes correspond to the e.-alua

tion of the intermediate values. The steps marked 

by 0 refer to computations that require working 

memory . .\'ote that all the intermediate values can 

be computed in parallel. because there are no 

data dependences between them. Each interme

diate value requires a working memory of 0('±"- 1 
). 

Hence, a one-level block recursive Stra~sen ·s al

gorithm requires a total working storage of size 

0(7 . '±"- 1 
). 

Even though the above formulation has been 

A!o 

FIGL:RE 1 Three-level hlflck recursive 6toraf!e. 
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7 blocks of size 4n-I each 

FIGURE 2 Recursion tree of depth 1 for Strasscn· s 

an additional savings in the total number of arith

metic operations required to compute the matrix 

produce Strassen's algorithm can be n'cursiYt>ly 

appl.i_:d_!o com1.mte the block multiplications also. 

Let A, B, and C be the !-level block recursive rep

resentations of 2" X 2" matrices A. B. and C. The 

computation of Cis described by the following for

mulation [10]: 

algorithm. where 

given for matrix sizes of the form 2" X 2". it is 

straightforward to generalize the implementation 

to handle arbitrarv dimensions of matrices A and 

B. A common technique used is to pad thP matri

ces with rows and colun1ns of zeros to increase the 

matrix sizes to the next higher powers of two. 

compute the extended matrix product. and then 

extract the desired result l1 '7]. Another approach 

[ 4 _ is to drop the last rows and columns from the 

computation to achieve even dimension,.; and then 

compute the partial matrix product. The complete 

matrix product is then obtained with a rank-k up

date (k = 1 .. 2, 3). 

3.1 Block Recursive Strassen's 
Algorithm: Breadth-First Evaluation 

ln one-level application of Strassen· s algorithm, 

2"- 1 X 2"- 1 block multiplications were computed 

using conventional matrix multiplication. To get 

. . . 

I~ 

S".t = Q9i-1 S o.. I - no !J o.. , o.. \ , ;=o c IC::J .... ~~ 1- i=n- 1 \ ""!/ \6) .. S(. VY /-+~~-~~~, 

and *11 -t denotes pairwise multiplication between 

blocks of size 2"-1 X 2"-1
. This computation can 

be interpreted as a breadth-first evaluation of the 

recursion tree shown in Figure;). Each intermedi

ate block matrix t1 is itself computed using Stras

sen's algorithm yielding intermediate subblocks 

t,o, . . . lth· This process is recursively applied 

until blocks of size 2"-1 
X 2"- 1

. "·hich are tlwn 

computed using conventional matrix multiplica

tion. Following our convention, D denotes com

putation that requires working storage. The work

ing array requirement in this case is 0('714"-1
). ln 

the extreme case. Strassen·s algorithm can be ap

plied recursively down to blocks of size 2 X 2. and 

such an (n- 1)-level (or n-level) Strassen·s algo-

. . . 

i blocks of sire 4n·l each 

FIGURE 3 !-Level block recursive Strassen's algorithm. 
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Table 1. Comparison of Operation Counts for Stra;.;;.;en's Algorithm and Conventional Matrix 

Multiplication 

Algorithm 

M~1 

STR 

BLOCK_STR 

Additions 

8" 

6(?"- 4") 
6 . 4k("7n-k _ qn-k) 

rithm would requ1re a working storage of s1ze 

0(7"). 

Table 1 presents the total number of operations 

required for multiplying two matrices of size 2" X 

2". ~M denotes conventional matrix multiplica

tion, STR refers to an n-level block recursive 

Strassen's algorithm, and BLOCK_STR denotes a 

(n- k)-level block recursive Strassen's algorithm. 

STR has a lower operation count than "'[\I only for 

n 2:: 10. The expression for the operation count for 

BLOCK_STR has a minima at k = 3 for all integer 

values of nand k. Fork = :~ .. BLOCK_STR has a 

lower operation count than YI:'VI for rz 2:: 'f. Hence. 

block Strassen's algorithm is better than conven

tional matrix multiplication in terms of total oper

ation count even for small values of n. However, 

for implementation on a shared memory vector 

machine such as the Cray Y -YIP. a lower opera

tion count does not imply smaller execution time. 

because the effect of vector length and stride also 

comes into play. 

3.2 Block Recursive Strassen's 
Algorithm: Depth-First Evaluation 

An /-level Strassen's algorithm requires fewer op

erations than conventional matrix multiplication 

when the number of levels lis increased. An opti

mal value is attained at n - l = .3. HoweveL the 

working storage requirement for an /-level algo

rithm is 0(714"-1), and hence increases exponen

tially with an increase in l. This high storage 

requirement comes due to the breadth-first ex

pansion of the recursion tree in which all the inter

mediate values have to be stored. 

To achieve reduction in working o;torage. we 

can perform the computation of Strassen's algo

rithm using a depth -first expansion of the recur

sion tree. Instead of expanding all the leaves in the 

recursion tree, we only compute a subtree, and 

use the results obtained from that subtree to up

date C. This process io; repeatedly applied until all 

the subtrees are evaluated. It is necessarv to en-

Operation Count 

Multiplication~ Total 

8" 
"7n 

2. 8" 
:n+l - 6. 4/1 

?"-'(2 · Rk + ?J · qk) - 6 · 4" 

sure that no redundant computation is performed. 

The memory requirement for the algorithm in this 

case will be the memory requirement for a single 

subtree, because the same space can be reused for 

the evaluation of different subtrees. 

For the 2 X 2 case, the algorithm is modified as 

follows. t is a temporary variable that is used to 

store intermediate values. 

Step 1: t = (aoo + att)(boo + btt): 

coo = t; c11 = t 

Step 2: t = (ato + a11)buo; 

Cto = t; Ctt = Ctt - t; 

Step 3: t = aoo(bot - btt) 

Cot = l; Ctt = Ctt + t; 

Step 4: t = att(-boo + bto) 

coo = coo + l; Cto = Cto + t: 

Step 5: t = (aoo + aot)btt; 

coo = coo - t; Cot = Cot + t; 

Step 6: t = (-aoo + a10)(boo + bot): 

Ctt = Ctt + t; 

Step 7: t = (ao1 - att)(bto + btt); 

coo = coo + t; 

Now the extra memory requirement is of only one 

element, because the same memory location can 

be reused to evaluate different t;'s. In the original 

formulation, seven memory locations are required 

because all the intermediate values are calculated 

before the update of C is performed. The total 

number of arithmetic operations is unchanged. 

We now formulate the concept of memory re

duction using the tensor product framework. De

fine DJ to be a 7 X 7 matrix with d_;/ = 1 and zeros 

elsewhere. Note that "':iJ=oD] = f.,. Ylemory reduc

tion for a 2 X 2 case can be formulated in matrix 

notation as: 

6 

C = L (ScD;~)[(D7S")A * (D's,)B] 
j=O J J ' 
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D] is termed as a selection operator and selects 

subsets of the input vector on which the computa

tion is to be performed. 

This framework can be extended to multiplying 

matrices of size 2" X 2". We begin with the one

level Strassen's algorithm and assume that the 

data matrices are stored in a one-level block re

cursive form. The tensor product formula to com

pute C = AB can then be written as: 

6 

C = L (S,D7 0 /_,,~,) 
j~O J 

We can apply memory reduction at multiple levels 

by performing the same operation recursively on 

the smaller blocks. Assuming that the matrices are 

stored in an /-level block recursive form, an /-level 

Strassen's algorithm with memory reduction can 

be formulated as: 

E = . ± [((~ s,n') 0 !.,,~~)(((~ n' s") 
r~o }• r~o 1· 

Jo.Jt····.jt-1=0 

We refer to the above formulation as the partial 

evaluation form of Strassen's algorithm. The 

computation specified in the above formulation 

can be described using the recursion tree shown in 

• • • 

~ 

Figure 4. The current intermediate blocks being 

computed are represented by D. Working storage 

is required for the intermediate blocks from the 

leaf node being computed, to the root of the recur

sion tree. Hence, the working storage required is 

O(L!~1 4"-') = 0(4t'). 

3.3 Combining Breadth-First and 
Depth-First Evaluations 

The * operator in the tensor product formula for 

partial computation refers to pairwise matrix mul

tiplication. Each block matrix multiplication in 

the pairwise matrix multiplication can itself be 

performed using complete evaluation. Hence, we 

have a three-level hierarchy. At the highest level, 

partial evaluation is performed till blocks of size 

2"-1 
X 2"-1

. Then complete evaluation is per

formed till blocks of size 2k X 2k are reached, after 

which conventional matrix multiplication is ap

plied. This can be expressed in the ten:-;or product 

notation as: 

Cps = . ± _ [((~ S,D 1 ~) 0 !.,,~~)(((~ D] s,) 
}0· ·}I·· 1-0 r=O r=O 

0 f.,,~)A *cs, I ( (@, n;s~,) 0 f.,,~~) B)] 

where *cs,~ 1 denotes pairwise matrix multiplication 

between blocks of size 2"-1 
X 2"-1 using complete 

evaluation, C' cs corresponds to each block 

pairwise multiplication during the partial evalua-

• 

FIGURE 4 /-Level block recursive Strassen's algorithm with memory reduction. 
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tion .. which itself is evaluated using an (l- k)-level 

Strassen's algorithm .. and *Ill/; denotes pairwise 

matrix multiplication between blocks of size 2k X 

2k using conventional matrix multiplication. 

The root of the recursion tree is defined to be at 

level 0. At level i. a working array of size 0( '±"-;) is 

required to store the intermediate results of partial 

evaluation. The breadth-first expansion of the last 

(l- k) levels requires a working array of 0(7"-l-k · 

4k). Hence, the total memory requirement is 

0(2.,':._11 4"-i + 7n-l-k. 4k) = o(4" + 7"-1-k. 4'} 

Even for moderate values of n and small valuPs of 

l, this represents a significant savings compared 

with 0(7"-k · 4k) for complete evaluation. If the 

matrices are of size /V X :V where ,y is not a power 

of 2, the technique of padding can be used .. 

and the memory requirement with reduction 

will be o(4 11 ~'1 + 7!lg\]-l-k · 4k) compared with 

0(7llg \l-k · '±k) for complete evaluation. 

3.4 Matrix Storage in Main Memory 

The formulation presented in the previous sec

tions assumes for simplicity of presentation that 

the data matrices are stored in a block recursive 

form. However. when implementing a block recur

sive algorithm on a shared memory machine, ma

trices are usually stored in a row major or column 

major form. We have implemented Strassen's al

gorithm using Fortran on the Cray Y-YIP. hence 

the data matrices are stored in memon· in column 

major form. The tensor product formula to con

vert a 2" X 2" matrix from a column major forn1 to 

a k-level block recursive form is given by [11]: 

R"·k is termed as a conversion operator. There are 

two ways in which storage conversion can be im

plemented. One way is to perform explicit conver

sion from row I column major form to a block re

cursive form through data movement. HoweveL a 

more efficient way is to merge the conversion op

erator into the computation in Strassen's algo

rithm, which results in a modification of the data 

array indexing functions. The modified tensor for

mulation for Block Strassen' s algorithm is: 

E = (R''·kt1S;•·k[Rn.ks;;·kff *k R"·kS;;·kJ{ 

= s-n.k[S-"·kA *k· §n.kJ3] 
c (J h 

where 

n-k-1 

§~.k = Il 
i=O 

n-k-1 

S'// = Il 
i=O 

§n.k 
c 

0 

Il 
i=n-k~l 

[ IJ /0, J ·)n A-, 
\ _, 161 :2 0 L':jnA ,-/ 

With /-level memory reduction, the above formu

lation is modified into: 

6 [( (I-I ))(( 1-1 E = L §n.k 0 0 D 7 0 D 7 
. . . c j, ;. 

JO·JF')I-t ~o r~O r~O 

4 CODE GENERATION FOR VECTOR 
PROCESSORS 

4.1 Block Strassen's Algorithm 

Matrix factorizations form the basis of translating 

tensor product formulas by mapping the opera

tions implied by the formula to program con

structs in a high-level programming language. The 

translation process starts with the top-level ab

straction and generates more refined code as it 

proceeds to lower-level abstractions. At each 

level, semantically equivalent program constructs 

are chosen to replace mathematical operations. 

Efficient programs can be synthesized from tensor 

product formulas by exploiting the regular com

putational structure expressed by such formulas. 

The tensor product formulation of block recursive 

algorithms usually involves certain basic compu

tations, such as Sa, 5 6 , and S,. in the case of Stras

sen's algorithm. It is sometimes necessary to use 

manually optimized codes for these basic compu

tations to achieve high performance. 
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\Ve now illustrate the code generation strategy 

with an example. Let B be an m X n matrix, and X 

be a vector of size np. Consider the application of 

(/P 0 B) to X i.e., 

X[O : n- 1J 

X[n: 2n- 1: 

X[ (p - 1 )n : pn - 1: 

BX[O: n- 1] 

BX[n: 2n- 1] 

BX[(p - 1)n : pn- 1j 

This can be interpreted asp copies of B acting in 

parallel on p disjoint segments of X. resulting in a 

vector of size mp. Hence. Y = (If' 0 B)X can be 

implemented as: 

Code[Y = (lp 0 B)Xl == doall i = 0, p - 1 

Code[Y[in: (i + 1)n- 1] 
= BX[in: (i + 1)n- 1]] 

enddoall 

Once an algorithm is expressed using the tensor 

product framework, efficient implementation can 

be obtained by algebrically manipulating the ten

sor product formula. For example, consider the 

implementation of 

where Y, B, and X are vectors as described before. 

Lsing the commutation rule, it can be determined 

that 

(B 0 I I = L"'P(/ 0. B)L111' 
pJ m p 1./Y fJ 

Hence, one implementation to compute Y might 

be to permute X according to L;t, perform (/" 0 

B). and permute the result according to L~:"· A 

more efficient implementation would be to incor

porate the stride permutations into the indexing of 

the input and output data arrays. The above can 

be written as: 

i.e., 

Y [ 0 : mp - 1 : p J 

Y[1 : mp - 1 : p l 

Y[p - 1 : mp - 1 : p; 

l ~::: ~J 
0 · · ·B 

X[O: np 

X[1: np 

1 : p] 

1 : pl 

X[p - 1 : np - 1 : p J 

Hence, the code can be written as 

Code[Y = (B 0 /")X]== doall i = O,p- 1 

Code[Y[in: (i + 1)n- 1 :PI 

=BX[in: (i + l)n- 1 :pll 

enddoall 

Let us consider the code generation for (n- k)

level block Strassen· s algorithm for multiplying 

2 11 
X 2 11 matrices. Assume that the matrices are 

stored in a (n - k)-level block recursive format. 

and that at the lowe,.;t leveL pairwise multiplica

tion between blocks of size 2k X '2.k is performed. 

For simplification, we shall assume that no mem

ory reduction is performed. The tensor product 

formulation of this algorithm is given by (see Sec

tion 3.4): 

C' = s-~~.k[s-~~·kA- * S-;".kB-1 
c (l k h -

The formula for block Strassen's algorithm con

tains the operations §;:·k, §;;·k, *k, and §;~·k. All the 

operations except *k are linear operations and 

hence require an array operand. Operation *k is a 

bilinear operation and requires two array oper

ands. Each operation corresponds to an assign

ment statement that stores its result in an arrm· 

that may be used as input data for the subsequent 

assignment or represents the final output. Tempo

rary arrays representing working arrays are de

noted by T;. The above formula then translates to 

the following high -level code: 
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To 

T1 

S-n.k4-
" ' 

T'o = To *k T1 

-C = 5n.k'T' 
,:J, 1 (l 

The assignment statements are composed se

quentially to preserve the semantics of compu

tation. However, the above sequential composi

tion is not unique. For example. the assignment 

statements for ._5;;·kA and !hklJ can be in any order 

because there are no data dependences b~twcen 
them. 

s;;·k, s;:·k, and s~:·k have the form 

[TI Fi] where Fi 
·=1 

{ 

(lr,(i) OP Q9 Is) 

= (fr;0L"'111
' 0[:) 

and OP is a basic operator 

The generic tensor product formula Y = (lr, 0 

OP 0 ls.)X can be implemented as a fully parallel 

doubly nested loop: 

doall i1 = 0, r; - 1 
doall i2 = 0, s; - 1 

Code[OP,YXi1,i2] 
enddoall 

enddoall 

Any tensor permutation that may be present 

results in a modification of the array indexing 

functions. Different implementations of the above 

formula are possible by changing the order and/ or 

blocking the inner loops, as they are fully permut

able. However, different orderings of the inner 

loops result in different data access patterns. 

These in turn will have different performance 

charateristics on systems with hierarchical/inter

leaved memories. 

Consider the application of the tensor product 

formula ll;;,1 fi to a vector X. The product term 

corresponds to a sequential outer loop in which 

the output of the ph stage is fed as input to the (i + 
1 )lh stage, i = 1, n - 1. Only two arrays are re

quired for this operation. The input array for the 

i1
h step can be reused as the output array for the 

(i + 1 )'1 step. At the end of each iteration, the 

arrays are swapped (which can be implemented 

trivially simply by swapping the pointers to the two 

arrays) and the resulting pseudocode is: 

To.,___ X 

do i = L n 

Code[T1 = ;:To] 

Swap(T1, To) 
end do 

At the end of the last iteration, T1 contains the 

result of [fi;;,1 F; 1X. s;:·k, S{;·k, and /hk have the 

above form, and code can be easily generated for 

them. 

The pairwise multiplication *k performs a se

quence of 7"-k matrix multiplications of 2" x 2k 
blocks. Let the input vectors be T0 and T, corre

sponding to the evaluation of §;;·kif and §;;·klJ. re

spectively. All elements of a given block are stored 

consecutively in the input arrays. Pseudocode for 

the operation T2 = To *k T1 is presented below: 

doall i = 0, 7n-k - 1 

T2 f i4k : (i + 1 )4k - 1] ,l!atrix/vfultip(v 
(T0 [i4k: (i + 1)4k- 1], T1 [i4k: (i + 1)4k

enddoall 
11\ 

Jl 

w:1ere i\Ialrixilfultip(v refers to conventional ma

trix multiplication between blocks of size 2k X 2k 

stored in column major form. 

4.2 Memory Management for Depth-First 
Evaluation 

Consider the tensor product formula: 

The summation operator in the formulation of 

partial evaluation eorn~sponds to a ;;equential 

loop nest.. with the i1
" loop performing a depth-first 

evaluation of the i1
" level in the recursion tree. At 

each level, there are seven :-;ubtrees that need to he 

evaluated. Evaluation of each subtree i;; followed 

by an update of its parent. After the update, work

ing storage used by that subtree can be reused for 

the computation of the next subtree at that level in 

the recursion tree. The loop structure hence looks 

like the following: 
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do Jo 0,6 

Code [T~ = DhSaA] I* partial evaluation *I 
Code [ Tg = Dj

0
SbB] I* partial evaluation *I 

do jl = 0, 6 

Code[T~ 
7 -

DJ,Sa~] I* partial evaluation *I 
Code [T~ = D},S~] 

do j 1-1 = 0, 6 

Code [T~- 1 

Code [Tb- 1 

Code [T~- 1 

Code [T~- 2 

enddo 

I* partial evaluation *I 

I* partial evaluation *I 
I* partial evaluation *I 
I* complete evaluation *I 
I* update of parent *I 

Code [ T~ = D},ScTcJ 

enddo 
I* update of parent *I 

Code [ C = Dj 0 ScT~] 
enddo 

I* update of parent *I 

4.3 Implementation of Winograd's 
Variation 

Strassen's algorithm uses 18 scalar additions and 

7 scalar multiplications to multiply 2 x 2 matri-

ces. \Vinoarad 
0 

presented a rnore efficient algo-

rithm, which uses 15 scalar additions and 7 scalar 

multiplications [3]. The Winograd's variation is 

based on the following three matrix operations: 

-1 1 0 1 

1 0 0 0 

0 0 1 0 

u>~~ == 1 1 0 0 

0 1 0 1 

1 -1 1 -1 

0 0 0 1 

1 0 -1 1 

1 () 0 0 

0 1 () () 

w" = 0 0 -1 1 

1 0 1 0 

() 0 () 1 

1 -1 -1 1 

0 1 1 0 0 0 0 

1 1 () 1 0 0 1 
and TV, 

1 1 0 0 1 1 () 

1 1 0 1 1 0 0 

The Winograd's variation for multiplying 2 X 2 

can be written as the matrix formula 

co_o ao_o bo_o 

CJ.O a1.o b1.0 
w,. W~, *Wi! 

ho.1 co.1 ao.1 

C1.1 a1.1 bu 

The generated code of operations T¥,, W1,, and 

W" contains some common terms. For example, 

ao.o - a1.o is evaluated twice in a direct implemen

tation of W,,. The key to reducing the number of 

additions in Winograd's variation is to evaluate a 

common term only once. We factorize W,, W1, 

and We to eliminate the common terms: 
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W= a 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

1 0 1 0 0 0 0 

0 0 0 0 0 0 1 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 

0 () 0 0 0 

1 0 0 0 0 

() 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

1 0 -1 0 0 0 0 

1 () 0 0 0 0 0 

0 1 0 () 0 0 -1 

0 0 1 0 0 1 0 

0 1 0 0 1 0 0 

0 -1 

0 1 

0 0 1 0 0 

0 0 0 0 () 

() 

0 

0 

0 

0 

0 1 () () () 0 

() 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 -1 1 0 

0 1 0 0 0 0 () 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 0 

1 0 0 () 0 0 0 

0 1 0 1 0 0 0 

0 1 0 0 1 0 0 

0 0 () 0 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

() 0 0 0 0 0 1 

0 

1 

0 

1 

0 

0 

0 

0 0 0 

0 0 0 

0 1 0 

1 0 0 

1 0 1 

0 0 0 

0 () 1 

0 0 

1 0 

0 1 

() 0 

0 () 

0 0 

() 0 -1 1 

-1 () 1 0 

() 0 0 1 

0 0 0 0 

. and 

0 1 1 0 0 0 0 

1 1 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 1 () 0 () 

0 0 0 0 1 0 () 

0 0 0 0 0 1 0 

() 0 0 0 0 0 1 

There are 15 rows containing two nonzero ele

ments in the matrix factorizations of II'~, Wt, and 

f/i;., which correspond to the 15 additions in 

~linograd's variation of Strassen' s algorithm. The 

rows containing a single one are implemented 

as data movement, and those containing- all zeros 

are equivalent to null operations. The indices of 

input and output array elements of ff" are speci

fied by the permutation operations in a tensor 

product formula and are computed similar 

to those of Sa. Let p;, 0 s i < 4, be the indices 

of the input array elements, and q;. 0 s i < 7, 

be the indices of the output array elements. The 

computation T = Tf;,A on a vector A of length 

7 is translated to the following sequence of 

assignments: 

Code[T = WaA] = T[q1] 

T[q2j 

A[po] 

A[p2] 

T[q4j 

T[q6] 

T[qo] 

T[qs] 

A[po1 - A[p1] 

A[p1] + A[p:3j 

A 

T[ qt] + T[ q4] 

-T[qo] + T[q2] 

The implementation of Winograd's variation is 

simply a replacement of the translated code of H;-;, 
Wb, and TV,. for the code of 5", Eh, and Sc in the 

corresponding implementation of Stra,;sen's algo

rithm. 
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Table 2. Execution Times for Block Strassen's Algorithm with ,1\clemory Reduction 

n = 8 n=9 n = 10 

SGEMM: .109 s ('HO \'!Flop) 

SGEMMS: .09~) s (291 \!Flop! 

SCEJJJJ: .868 :o ~:310 MFlop) SGEJJ.ll: 6.95 s (:HJ9 \lFlop 

SCLl!MS: 66:>, (28;) \lFlop) SGI::J!JJS: .:r.o9 ~ (284 \1Flop) 

k=3k=4k=5k bk="'!k 3 k=4 k=S k=b k="'! k=?, k=-t k=3 k=6 k=? 

0 .468 .179 .103 .09:3 .098 

(55) (1:36) (2.:r6) (291) (:JO;J) 

1 .474 .182 .106 .095 , 10:3 3.292 1.268 
(:"r'"'\ 11331 (239) l285) (293) (;'i6: (1:35) \•JV; \ ; 

2 .476 .186 , 108 .096 :3.:308 1.284 

(5't) (130) (236) (282) (551 (1331 

3 .494 .200 114 :3.348 1.315 

(52) (121) (221) (54) (1:30) 

4 .548 .228 :3.4?:-i 1.412 

{.:t7) (106) (.32) (121) 

5 .671 :3.85":" 1.619 

(38) (47) (1 051 

6 4.665 

(39) 
'7 

5 PERFORMANCE RESULTS ON THE CRAY 
Y-MP 

Performance statistics were gathered for different 

matrix sizes, different block sizes, and different 

levels of partial evaluation. Table 2 shows perfor

mance for execution on a single processor. All ex

ecution times are in seconds. The numbers in pa

rentheses display performance in megaflops. 

Empty fields indicate that the program could not 

be run due to lack of sufficient memory. The ma

trix size is 2" X 2", the level of partial evaluation is 

l, and the block size at which conventional matrix 

multiplication is applied i;; 2" X '2". The execution 

times for the Block Strm;;;en';; algorithm is com

pared with the Cray Scientific Library routines 

SGEiv!JV!, which implements conventional matrix 

.666 .69? 

(28":') (:30:3) 

.736 .672 .712 

(1:35) (284) (297) 

7-t6 .67-t ."'10 8.92 5.19 4.72 4.98 

(238) (283) (297) (135) (241) 128-t) :298) 
."'6'7 .686 23.:3 9.1:3 5.2() 4.78 s.o:.i 
(2:12) (278:: (.SS) (132) 12:36) 1:281) :29:)) 

.815 2:3.S 9.:38 5.42 4.86 

1218) (54) (128) (2:3 1) (2?6) 

24.4 10 02 ;),'76 

(;)2) (120) 1217) 

27.1 11.42 

(47) \1 ();)) 

32.8 

(:39) 

multiplication, and SGEV!MS, which implements 

Strassen's matrix multiplication. Because 

SGEMkl and SGEJfJJS are independent of l and 

k, the times for those are given only once for each 

value of n. SGE"f]VJ is used for block matrix multi

plication in the Block Strassen' s algorithm. 

For any value of/, the lowest execution time 

occurs for k = 6 because the vector length on the 

Cray Y -MP is 64. The megaflop:- for k = 7 are 

higher than those fork = 6 for the same value on n 

and l. Rut, the f~xecution time fork = 7 is longt~r 

because a larger number of arithmetic operations 

are performed. 

The execution times and megat1ops for k = 6. 

l = 0 are comparable (slightly better) to that of 

SGE:\L\18. There is a performance degradation 

due to a slight increase in the number of memory 

Table 3. Execution Times fork = 6 on Two Proeessors 

Block Suassen 

n SGEMMS l = () [= I l = 2 l = 3 l = 4 

8 .050 .047 .053 .055 

(594) (574) (513) (497) 

9 .356 .331 .3'71 .378 .389 

(592) (576) (513) (505) (490) 

10 2.51 2.63 2.67 2.?6 

(589) (510) (502) (486) 
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Table 4. Execution Times for k = 6 on Eight Processors* 

n SGEMJHS l = 0 {= 1 

8 .016 (84.7%) .022 (54.2%1 .018 (81.8%) 

9 .10 (91.3%) '11 (77.3%) .14 (73.2%) 

10 .84 (78.4%) 

* Percentages of 8-cpu obtained are gin·n in parentheses. 

operations as l increases for any fixed nand k = 6. 

However, the difference is quite small, which is 

evident from the execution times. 

Table 3 gives the performance when the pro

gram was run on two processors. A fixed value of 

k = 6 was chosen because this resulted in the best 

performance in the single processor case. Again, 

the performance when l 0 is slightly better than 

that of SGEM/1!/S. For larger values of/, the perfor

mance degmdes hy About 12%. Table 4 shows the 

performance results for eight processors. Because 

the programs were run in a nondedicated mode on 

the Cray Y-MP, we were unable to get all the eight 

processors for the entire execution of the program. 

The numbers in parentheses give the percentage 

of 8-cups available for execution. 

The amount of extra memory required has 

been given in Figure 5 for different values of n and 

l. It can be easily seen that there is an order of 

magnitude improvement even for small values of/. 

A value of k = 6 was chosen because it is for this 

block size that the execution times are minimum. 

6 CONCLUSIONS 

~r e have shown how tensor product formulas ex

pressing Strassen's matrix multiplication algo

rithm can be translated to efficient parallel pro

grams for shared memory multiprocessors. This 

translation process is part of a more general pro

gramming methodology for designing high-perfor

mance block recursive algorithms for shared and 

distributed memory machines. The methodology 

uses a mathematical notation based on tensor 

products for expressing block recursive algo

rithms. Algebraic manipulation of these formulas 

yields mathematically equivalent formulas that 

result in implementations with different perfor

mance characteristics. A large nubmer of pro

grams can be generated to search for efficient im

plementations. Tensor products give a powerful 

method to generate these equivalent implementa-

Block Strasscn 

l = 2 l = 3 4 

.022 (74.6%) 

.13 (80.<.l%) .15 (76.0%) 

1.04 (70.9%) 1.02 (74.0%) 1.14 (70 .. 3%) 

lions Automatically. As wa:o illustrated in this 

article, programs generated from tensor product 

formulas compare favorably with the best hand

coded ones. 

This article presents an implementation of the 

Strassen's algorithm on a shared memory multi

processor such as the Cray Y -.\IP. ln the Y -.VIP,. 

memory is organized into banks, and in the ab

sence of bank conflicts, all memory accesses take 

the same amount of time. However. in distributed 

memory multiprocessors such as the Cray 'r:JD, 

where each processor has its own local memory, a 

local memory access can be significantly faster 

than a remote access. Hence, an efficient imple

mentation on a distributed memorv machine re

quires partitioning the algorithm in such a manner 

that remote accesses are minimized. 

Tensor product formulas can also be used to 

specify regular data distributions for arrays. Given 

a tensor product formula with a specified distribu

tion of its input and output arrays, the interpro

cessor communication cost incurred by the imple

mentation can be determined. If the cost of 

eommunication is high, it might be more efficient 

Memory Words xJO 6 

2 3 

n= 8 ......... .. 
n=9 
n=!O-

4 

l 

FIGURE 5 Memory requirements for working arrays. 
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to perform a data redistribution before the com

putation, to bring the arrays into a form where the 

computation is local to the processors, if the over

head of data distribution is lower than the benefit 

gained due to the communication cost reducing to 

zero. We are currently examining these issues and 

are working on an implementation on the Cray 

T3D. 

Both formula modification and program gener

ation are capable of being automated. ·we are cur

rently implementing this methodology in an expert 

system EXTE~T (Expert System for Tensor For

mula Iranslation) that assists in the development 

of parallel programs for numerical algorithms on 

various computer architectures. Currently, the 

system generates Fortran programs for the Cray 

Y-.\1P. The expert system employs various heuri:o

tics to automatically generate alternative tensor 

product formulas, translate tensor product formu

las to programs for various parallel architectures, 

test the produced programs, and analyze the test 

results. 
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