
A terminological interpretation of (Abductive)

Logic Programming

Marc Denecker

�

Department of Computer Science, K.U.Leuven,

Celestijnenlaan 200A, B-3001 Heverlee, Belgium.

e-mail : marcd@cs.kuleuven.ac.be

Abstract

The logic program formalism is commonly viewed as a modal or default logic. In

this paper, we propose an alternative interpretation of the formalism as a terminological

logic. A terminological logic is designed to represent two di�erent forms of knowledge.

A TBox represents de�nitions for a set of concepts. An ABox represents the assertional

knowledge of the expert. In our interpretation, a logic program is a TBox providing

de�nitions for all predicates; this interpretation is present already in Clark's completion

semantics. We extend the logic program formalism such that some predicates can be left

unde�ned and use classical logic as the language for the ABox. The resulting logic can

be seen as an alternative interpretation of abductive logic program formalism. We study

the expressivity of the formalism for representing uncertainty by proposing solutions

for problems in temporal reasoning, with null values and open domain knowledge.

1 Introduction

The logic program formalism is commonly viewed as a modal, autoepistemic logic or, closely

related, as a default logic. In these di�erent interpretations the connective not is interpreted

as a modal connective (not p means it not believed that p) or as a default connective (not p

means it can be assumed by default :p). In this paper, we investigate a complementary view

on logic programming which relates this formalism to another important class of logics in AI

and knowledge representation, the terminological logics. At the origin of the terminological

languages lies the observation that an expert's knowledge consists of a terminological com-

ponent and an assertional component [1]. The terminological component, described in the

TBox, consists of the de�nitions of the technical vocabulary of the expert. The role of the

assertional component, described in the ABox is intimately tied to the representation of un-

certainty: when a number of concepts cannot be de�ned, then other, less precise information

may be available which can be represented as a set of assertions.

�

supported by a post-doctoral mandate of the research fund of the K.U.Leuven

1

The view that we investigate in this paper is that a logic program is a TBox: it gives

de�nitions to the predicates. The interpretation of a logic program as a formalism for rep-

resenting de�nitions is already present in Clark's work on completion semantics [2]. Under

Clark's interpretation, a program consists of a set of possibly empty de�nitions for all pred-

icates; predicates are de�ned by enumerating exhaustively the cases in which they are true.

Under this interpretation, a problem with the use of logic programs for knowledge represen-

tation, is that an expert needs to provide de�nitions for all predicates. In many applications,

such complete information is not available. A natural solution is to extend the logic program

formalism such that a subset of the predicates can be de�ned while other predicates can be

left unde�ned. One straightforward way to represent such an open logic program, as called

in the sequel, is as a tuple (P;D), or P

D

, which consists of a set P of program clauses and

a set D of predicates which are de�ned in P ; D contains all predicates which occur in the

head of a program clause of P and possibly some other predicates with an empty de�ni-

tion. In the sequel, predicates in D are called de�ned predicates; other predicates are called

open predicates. Note that in this formalism, one can distinguish predicates p which have

an empty de�nition (p 2 D) and predicates which have no de�nition (p 2=D). Just as in

terminological logics, there is need for an ABox to represent assertional knowledge on open

predicates; one can use classical �rst-order logic (FOL) for this. We thus obtain a new type

of theories, called OLP-FOL theories or open theories, which consists of two components:

an open logic program P

D

and a set of FOL axioms T .

The interpretation of a logic program under the modal and default view on one hand

and the terminological view on the other hand is fundamentally di�erent. This appears very

clearly in the following example. Consider the following logic program:

P = f dead(X) :-not alive(X) g

Under the auto-epistemic interpretation, the program clause reads as: if it is not believed

that X is alive then X is dead. P does not contain any information about the aliveness of,

say John. Therefore, it is not believed that John is alive, and therefore, it may be derived

that he is dead.

Under the terminological view, the set P can be embedded in two open logic programs

P

fdead;aliveg

and P

fdeadg

. Both open programs contain the same de�nition of dead which reads

as: X is dead i� X is not alive. The �rst open logic program provides full information on

alive: nobody is alive; hence, everybody is dead. The second open logic program contains

no information on who is alive. Hence, this program does not allow to determine whether or

not John is dead. Note that in P

fdeadg

there is no evidence that John is alive; equivalently,

it is not believed that John is alive. Yet the conclusion that he is dead cannot be drawn

from P

fdeadg

. This shows that not p in OLP-FOL cannot be interpreted as it is not believed

that p or there is no evidence that p. The not connective in OLP-FOL has the same objective

modality as classical negation : in FOL. This has important consequences for the negation as

(�nite) failure principle. Given an open logic program which de�nes all predicates, negation

as (�nite) failure acts as a solid inference rule to derive objective negative information.

However, the inference rule cannot be applied for open logic programs. For example, the

goal alive(john) �nitely fails in P

fdeadg

; yet, :alive(john) may not be derived.

2

OLP-FOL does not contain default rules nor modal connectives. Yet, the formalism is

nonmonotonic. Extending a de�nition by adding a new positive case is a nonmonotonic

operation. E.g. a logic program fp(a) :- g entails :p(b). After adding p(b) :- , it entails

p(b). OLP-FOL can be seen as an alternative interpretation of abductive logic programming

[13]. The formal objects in OLP-FOL and the abductive logic program formalism (in the

sequel: ALP) are the same: both contain tuples with a set of program clauses, an equivalent

partition of the predicates in two subsets and a set of FOL formulas. Yet, OLP-FOL and

ALP interpret these objects in di�erent ways.

First, abductive logic programming is seen as the study of abduction in the context of

logic programming. In contrast, we view OLP-FOL as a declarative logic in its own right.

In [7], we investigated the use of other computational paradigms such as deduction and

satis�ability checking on an equal basis as abduction. Second, the role of the formal model

semantics is di�erent in ALP and OLP. In ALP, a model semantics is meant as a speci�cation

of what abductive solutions must be computed [3] [14] [22]. In contrast, we look at model

semantics as a formalisation of the declarative and descriptive meaning of an OLP-FOL

theory. Third, the role of the FOL component in ALP and OLP seems di�erent. In [13], a

FOL formula is interpreted as an integrity constraint. The role of an integrity constraint is

determined by its relation to abduction and can be classi�ed either under the theoremhood

view, the consistency view or epistemic view. On the other hand, OLP-FOL is an integration

of two language components on equal basis. The FOL axioms in an OLP-FOL theory have

the same role and meaning as in a FOL theory and are not bound to a speci�c role in any

form of computation.

The content of this paper is the following. In section 2, we de�ne the syntax of OLP-FOL

and introduce the semantical primitives. Based on these, section 3 gives a semantics for the

logic. Section 4 gives a number of well-chosen examples which clarify the role of OLP-FOL

for knowledge representation. The paper closes with a discussion of related work and a

conclusion. The proofs of the theorems are omitted and can be found in [4] and [6].

2 Preliminaries.

An alphabet �, terms, atoms, literals and formulae based on � are de�ned as usual. As

usual, a free variable in a formula is not bound by a quanti�er; a closed or ground formula

does not contain free variables. Substitutions and variable assignments are de�ned as usual.

A program clause here corresponds to a general program clause as de�ned in [19] except that

we use the operator " :- " instead of " " in order to distinguish between program clauses

and FOL implications.

An open logic program P

D

is a pair of a set P of program clauses and a subset D of

predicates of �

p

, called de�ned, such that =2=D and all predicates in the head of program

clauses in P are contained in D. The other non-equality predicates in �

p

nD are called open.

A closed logic program is an open logic program which de�nes all non-equality predicates.

The de�nition of a de�ned predicate p in P is the set of clauses with p in the head. This set

may be empty. An OLP-FOL theory T , also called open theory, is a tuple (P

D

; T) with an

3

open logic program P

D

and a set of FOL axioms T .

In the next section we de�ne a model semantics for OLP-FOL. The model semantics

is based on the notion of a 3-valued �-interpretation (for a de�nition see e.g. [17]). It is

essentially a domain, a correspondence between functors and functions on the domain and

a correspondence between predicate symbols and 3-valued relations on the domain. With a

�-interpretation I, a truth function H

I

can be associated, which maps closed formulas to

truth values, as usual.

3 The semantics of OLP-FOL.

The formal declarative semantics of an OLP-FOL theory is given by the class of its models.

In the model theory of OLP-FOL, a model intuitively represents a possible state of the world.

Both the terminological component and the assertional component of an OLP-FOL theory

can be characterised by the way they impose restrictions on the possible states of the problem

domain. Therefore, though OLP-FOL is an amalgamation of two di�erent languages, it has

a conceptually coherent semantics.

The semantics of the FOL-language is de�ned as usual except that 3-valued interpreta-

tions are allowed.

De�nition 3.1 A �-interpretation I satis�es a closed FOL formula F i� H

I

(F) = t. A

�-interpretation I satis�es a FOL theory T i� for all F 2 T : H

I

(F) = t.

We denote this by I j= F and I j= T .

For the semantics of the open logic program language, we follow more or less Clark's

approach. Our approach extends both the 2-valued completion semantics for abduction in

logic programming of [3] and the 3-valued completion semantics for closed logic programs of

[17]. An open logic program P

D

de�nes a set comp

3

(P

D

), consisting of the completed de�-

nitions of the de�ned predicates of P

D

[17]. As in [17], the classical equivalence operator $

is replaced by a new operator , . The truth function H

I

associated to some interpretation

I is extended for this logical connective as given by the following table:

H

I

(E

1

, E

2

) = t i� H

I

(E

1

) = H

I

(E

2

)

H

I

(E

1

, E

2

) = f i� H

I

(E

1

) 6= H

I

(E

2

)

For two-valued interpretations, the meaning of the normal logical equivalence$ and , is

the same. The use of , is restricted to completed de�nitions and may not occur in the

FOL component of an open theory.

An integration of a logic programming formalism and FOL raises a problem concerning

the role of equality. Logic programming formalisms subsume virtually always the theory

of Free Equality (denoted FEQ(�

f

)), also called Clark's Equality theory [2] or the Unique

Names Axioms [25]. In intuitive terms, two di�erent terms represent di�erent objects. These

axioms lack in FOL; unless explicitly forbidden, two di�erent terms in a FOL theory possibly

represent the same object. Because computational techniques in logic programming such as

4

negation as failure rely on Free Equality, we de�ne OLP-FOL as a free equality logic. For a

de�nition of FEQ(�

f

), we refer to [2].

Using the above de�nitions, the declarative semantics of an OLP-FOL theory is de�ned

as follows:

De�nition 3.2 A �-interpretation I is a �-model of an OLP-FOL theory (P

D

; T) i� I is

2-valued on all open predicates and I satis�es T [FEQ(�

f

) [comp

3

(P

D

).

Given is an OLP-FOL theory T and a FOL formula F based on �.

De�nition 3.3 T is consistent i� there exists a �-model of T . Otherwise T is inconsistent.

T entails F i� for each �-model M of T , M j= F . F is satis�able with T i� there is a

�-model of T which satis�es F .

The OLP-FOL logic is an integration of logic programming and classical logic. The

integration of FOL in OLP-FOL is subject to one important restriction: the embedding of

a FOL theory T will be equivalence preserving only if T entails the theory of Free Equality.

Theorem 3.1 A closed logic program P based on � under Kunen's completion semantics

[17] is logically equivalent with the OLP-FOL theory (P

D

; �) with D = �

p

n f=g.

A FOL theory T based on � which entails FEQ(�

f

) is logically equivalent with the OLP-

FOL theory (�

�

; T).

In principle, the free equality in OLP-FOL does not restrict the expressivity in OLP-FOL

compared to FOL. N-ary functors for which the axioms in FEQ do not hold can always be

replaced by n+1-ary predicates.

The above semantics raises a number of questions. Why 3-valued logic and how to

interpret u? Why are the open predicates 2-valued?

The OLP component is to be used for de�nitions. However, due to the generality of

the OLP-formalism, one can easily construct senseless de�nitions. Consider the following

de�nition for p:

f p :-:p g

Under a 2-valued completion semantics, an open logic program containing such de�nition

would be inconsistent. In 3-valued completion semantics, such a program remains consistent;

yet the badly de�ned facts will have truth value u in all or a subclass of the models. This

use of u seems a better, more permissive solution to deal with badly constructed de�nitions.

At the same time, this shows that u is an error condition and not a truth value. u should

be interpreted as badly de�ned. H

M

(p(x

1

; : : : ; x

n

)) = u means that the de�nition of p fails

to describe the truth value of p(x

1

; : : : ; x

n

) in M . A 3-valued interpretation for an open

5

predicate would not make sense under this interpretation of u: open predicates have no

de�nition and cannot be badly de�ned

1

.

For the purposes of this paper, one interesting advantage of using the 3-valued completion

semantics is that it is the weakest semantics known for the (O)LP-formalism. In [4], the

following theorem is proven:

Theorem 3.2 If M is a model of P

D

wrt (2-valued completion semantics [2] [3]) (gener-

alised stable semantics [14]) (generalised well-founded semantics [22]) (justi�cation seman-

tics [5]) then M is a model of P

D

wrt 3-valued completion semantics.

As a consequence, the 3-valued completion semantics induces the weakest entailment

relation j=: if an open theory entails F according to the 3-valued completion semantics

then also wrt to the other semantics. In intuitive terms: the declarative meaning of an

open logic program under the 3-valued completion semantics is a safe approximation of its

meaning under these other semantics. As a consequence, many of the applications of OLP-

FOL under 3-valued completion semantics described in this paper are preserved under the

stronger semantics.

4 Knowledge Representation in OLP-FOL.

Crucial for knowledge representation in OLP-FOL is to distinguish assertional knowledge

and terminological or de�nitional knowledge. Below, we explore this distinction in a number

of problems. The problems include di�erent forms of uncertainty: uncertainty on predi-

cates, null values and uncertainty on the domain of discourse. First, we further explore the

di�erence between the modal and the terminological interpretation.

4.1 A modal knowledge example.

Recall the example in section 1. The following de�nition for dead:

dead(X) :-:alive(X)

in an open program is interpreted as the phrase X is dead i� X is not alive. In contrast,

the program clause in Extended Logic Programming (ELP):

dead(X) :- not alive(X)

under the modal interpretation is read as X is dead if it is not believed that X is alive. The

program clause with strong negation:

1

In addition, the introduction of 3-valued open predicates would cause disastrous technical problems.

One easily veri�es that in such a relaxed form of 3-valued completion semantics, an interpretation I such

that H

I

(A) = u for all atoms A, would be a model of P

D

. However, no FOL formula is satis�ed in I. As

a consequence, the tautologies of classical logic would not longer be satis�ed in OLP-FOL and it would be

impossible to embed classical logic in OLP-FOL. The assertional component of OLP-FOL would loose its

expressive power. None of the applications that are described further on in this paper would be maintained.

6

dead(X) :-:alive(X)

under the modal interpretation is read as X is dead if it is believed

2

that X is not alive.

None of the representations in ELP have the same meaning as the representation in OLP-

FOL. The not and : of ELP have both a di�erent modality than : in FOL and in OLP-FOL.

In the above example, only the OLP-FOL representation correctly represents our knowledge

on the relationship between dead and alive. In other examples, the modal interpretation is

the correct one. We recall an example from [10].

In ELP, one can represent the behaviour of a dare-devil who crosses a railroad if he has

no evidence that there is a train coming by the following program clause:

cross :- not train

Under the modal interpretation, the logic program P

1

consisting of the above program clause

contains no information whether there is a train or not, so cross should be true. Under

answer set semantics this is correctly modelled: the unique answer set of P

1

is fcrossg.

The behaviour of a more careful person who crosses if he believes that no train is coming

can be represented using strong negation:

cross :-:train

The logic program P

2

consisting only of the above program clause contains no information

whether there is a train or not, so cross should not be true. Under answer set semantics

this is correctly modelled: the unique answer set of P

2

is fg

3

.

Compare this with the OLP approach. Consider the set P = fcross :-:traing. There are

two open logic programs which include it: one in which only cross is de�ned (D

1

= fcrossg)

and another in which both cross and train are de�ned (D

2

= fcross; traing).

P

D

1

contains no information on whether the train comes or not. P

D

2

contains full

information on train because train has an empty de�nition. Both P

D

1

and P

D

1

share the

de�nition of cross. This de�nition asserts that whether a person knows that a train is coming

or not, he crosses i� there is no train coming. Clearly, this de�nition does not correspond to

the behaviour of the dare-devil nor of the more normal person.

In our opinion, this example shows clearly the di�erent modalities of not and : in Ex-

tended Logic Programming (ELP) and of : in classical logic and OLP-FOL. It shows also

that both interpretations are of value. We believe that OLP-FOL is not suited to represent

modal knowledge such as in the train example, while the modal interpretation is not suited

to represent de�nitional information.

2

Though [10] interprets the explicit negation : in ELP as classical negation, various mappings of extended

logic programs to autoepistemic logic have shown that it is more natural to interpret :p as it is known that

p is not true [18]. An answer set represents a set of beliefs. A literal :p in an answer set is interpreted as it

is believed that p is not true. It seems natural to carry over this interpretation to the literals in the program.

3

Note that P

2

does not contain information about what to do if it is unknown whether a train comes or

not. The program clause :cross :-not:train represents the behaviour that no crossing happens if it is not

believed that the train does not come. P

2

augmented with this program clause has the unique answer set

f:crossg.

7

4.2 Temporal uncertainty.

The representation of uncertainty has been investigated most intensively in the context of

temporal domains. Here we present solutions for a number of benchmark problems using an

OLP-FOL version of event calculus [16]. The event calculus provides a more natural repre-

sentation for reasoning on the actual time-line, compared to situation calculus which needs

to be extended to reason on an actual time-line [23] [15]. The solutions of the benchmark

problems below are similar to the abductive logic programs in [8]. However,[8] ignores the

declarative aspects of the representation and focusses on the abductive reasoning.

A fundamental assumption in event calculus is that the state of the world at any point

in time is determined completely by the initial state and the e�ects of actions in the past.

Intuitively, a property P is true at a certain moment T if it is initiated by some earlier event

and is not terminated since then. This knowledge can be interpreted as a de�nition for the

predicate holds at(P; T).

holds at(P; T) :-happens(E); E < T; initiates(E;P);:clipped(E;P; T)

holds at(P; T) :- initially(P);:clipped(P; T)

clipped(E;P; T) :-happens(C); E < C < T; terminates(C;P)

clipped(P; T) :- happens(C); C < T; terminates(C;P)

clipped(E;P; T) is an auxiliary predicate which intuitively means that the property P is

terminated during the interval]E;T [. clipped(P; T) means that the property P is terminated

before T . Interesting is that this de�nition for holds at shows that de�nitional knowledge is

not necessarily terminological knowledge: the de�nition for holds at can hardly be seen as

the de�nition of technical vocabulary of an expert. Here, this de�nition is used to represent

an empirical observation relating the state of
uents with the occurrence of past actions.

In [8], we defend the view of event calculus as a linear time theory, in contrast to situation

calculus which has branching time. That < is a linear order is formally assured by adding

the theory of linear order as FOL assertions:

X < Y ^ Y < Z ! X < Z transitivity

 X < Y; Y < X asymmetry, irre
exivity

happens(X) ^ happens(Y)! X < Y _X = Y _ Y > X linearity

For simplicity, we assume here that two events cannot happen simultaneously.

The de�nitions of holds at and clipped rely on the predicates initially, happens, <,

initiates and terminates, which describe the initial situation, the events, their order and

their e�ects. Depending on the given information, di�erent subsets of these predicates can

be de�ned. We illustrate this in a number of well-known variants of the notorious Turkey

shooting problem. In all these problems the e�ects of load, shoot and wait actions can be

represented as de�nitions for initiates and terminates:

initiates(E; loaded) :-act(E; loading)

terminates(E; loaded) :-act(E; shooting)

terminates(E; alive) :-act(E; shooting); holds at(loaded;E)

8

In the Turkey shooting problem, the other predicates initially=1, happens=1, < =2, act=2

can be de�ned by exhaustive enumeration:

initially(alive), happens(e1), happens(e2), happens(e3), happens(e4), act(e1; load),

act(e2; wait), act(e3; shoot) and the transitive closure of e1 < e2 < e3 < e4.

The resulting OLP-FOL theory T

TS

de�nes all predicates. The FOL axioms in the theory

of linear order in T

TS

are entailed by the de�nitions of happens and < and can be dropped

from T

TS

. The resulting closed logic program is a correct representation of the problem

speci�cation and entails :holds at(alive; e4).

A number of variants show various forms of uncertainty. An interesting variant is the Rus-

sian Turkey shooting problem, in which an indeterminate event of spinning the gun's chamber

takes place instead of waiting. The e�ect of this event is that it potentially unloads the gun.

A theory representing this problem should be satis�able with both holds at(alive; e4) and

:holds at(alive; e4).

The indeterminacy of the spinning action complicates the formulation of a de�nition for

terminates. One possibility is to leave the predicate open and to represent all knowledge

on it as FOL assertions. But it is signi�cantly simpler, clearer and more concise to give a

de�nition of terminates in which a new open predicate good luck=1 is used which captures

the indeterminacy. The resulting open logic program T

RTS

is obtained from T

TS

by replacing

the program clause act(e2; wait) by act(e2; spin) and adding the following clause to the

de�nition of terminates/2:

terminates(E; loaded) :-act(E; spinning); holds at(loaded;E); good luck(E)

Both holds at(alive; e4) and :holds at(alive; e4) are satis�able with T

RTS

.

Another variant is the Murder Mystery, in which a shooting event e1 followed by a waiting

event e2 occur and the turkey is found dead at a next event e3. The initial state is unknown.

A desired conclusion is that if the turkey is initially alive then the gun is initially loaded.

For this problem, all predicates except initially=1 can be de�ned. The de�nitions of

holds at, initiates, terminates are as in T

TS

. The predicates happens, < and act can be

de�ned by exhaustively describing the scenario:

happens(e1), happens(e2), happens(e3), act(e1; shoot), act(e2; wait), and the

transitive closure of e1 < e2 < e3.

The knowledge that the turkey is dead at e3 is formulated as a simple FOL assertion

:holds at(alive; e3). The resulting theory T

MM

provably entails

4

:

initially(loaded)_ :initially(alive)

A variant of the murder mystery illustrates nicely the distinction between de�nitional

knowledge and assertional knowledge and how these forms of knowledge are properly repre-

sented in OLP-FOL. Assume that the same events happen as in the murder mystery but that

4

Note that again, the de�nition of < entails all axioms of the theory of linear order. Hence, these axioms

can be dropped from T

MM

.

9

the turkey is found alive instead of dead at e3. Desired conclusions here are that initially

the turkey is alive and that the gun is unloaded. The question now is: should we add the

fact holds at(alive; e3) to the open logic program or as a FOL axiom?

Adding the atom to the open logic program boils down to extending the de�nition of

holds at. It is clear that event calculus' basic assumption -the state is determined by initial

state and e�ects of past actions- is not falsi�ed in this example, so there seems no a priori

reason why the de�nition should be changed. Stronger even, adding the atom as a program

clause would alter the de�nition in a way which really contradicts our intuition: according

to the extended de�nition, it would be possible that the
uent alive can originate at e3

as by deus ex machina, without being caused by past actions

5

. This is evidenced by the

behaviour of the corresponding program: the open logic program consisting of the program

clauses of T

MM

augmented with the program clause holds at(alive; e3) :- is satis�able with

:initially(alive).

The correct representation is the theory T

MM

0

obtained from T

MM

by substituting

holds at(alive; e3) for :holds at(alive; e3) as a FOL assertion. T

MM

0

entails initially(alive)^

:initially(loaded).

In all previous examples, the theory of linear order is entailed by the program and can be

dropped safely. The theory of linear order comes into play when there is uncertainty about

the events and/or their order. Take a scenario in which the gun is initially loaded (with one

bullet) and the turkey is alive; at e3 the gun is �red. Before e3, two di�erent events e1 and

e2 take place at which the gun's chamber is turned for 180 degrees. The order of e1 and

e2 is unknown. Note that no matter which is the order of e1 and e2, the gun's chamber is

turned for 360 degrees, so it is loaded when the shooting event takes place. Therefore, a

desired conclusion in this problem is that after the shooting the turkey is dead.

To represent this problem, a new action turn is introduced. When the gun is loaded,

then turn removes the bullet from the barrel. The resulting state is called opposite. Again

turning moves the bullet in the barrel and loads the gun. The de�nitions of initiate and

terminates in T

TS

are extended with:

terminates(E; loaded) :-act(E; turn); holds at(loaded;E)

terminates(E; opposite) :-act(E; turn); holds at(opposite;E)

initiates(E; loaded) :-act(E; turn); holds at(opposite;E)

initiates(E; opposite) :-act(E; turn); holds at(loaded;E)

The predicates initially, happens, act are de�ned by enumeration:

initially(alive), initially(loaded), happens(e1), happens(e2), happens(e3), happens(e4),

act(e1; turn), act(e2; turn), act(e3; shoot).

The remaining problem is the representation of the knowledge on <. It is tempting to

add the partial order of known atoms of < as a de�nition for < to the open logic program.

This approach for the representation of this form of uncertainty is proposed in [16]. The

5

Note here the non-monotonicity of the concept of a de�nition.

10

resulting logic program P

LTTS

6

contains de�nitions for all predicates. Note that the OLP-

FOL theory consisting of P

LTTS

augmented with the theory of linear order is inconsistent:

P

LTTS

violates the linearity constraint since it entails :e1 < e2 ^ :e2 < e1 ^ :e1 = e2. In

[21], examples were given where this approach failed. Also in this case the approach fails:

P

LTTS

entails holds at(alive; e4) and Prolog can be used to prove it. In more detail, one

easily veri�es that P

LTTS

entails holds at(loaded; e1) and holds at(loaded; e2). Therefore,

both e1 and e2 unload the gun, so that :holds at(loaded; e3) is entailed. Since the gun is

unloaded at e3, the shooting has no e�ect and the turkey remains alive.

A correct solution can be represented in OLP-FOL. Since there is uncertainty about <,

this predicate cannot be de�ned. The correct theory T

LTTS

is obtained from P

LTTS

by

dropping the de�nition of < and adding the theory of linear order and the following atoms

as FOL assertions:

e1 < e3, e2 < e3, e3 < e4

7

T

LTTS

correctly entails :holds at(alive; e4).

Interesting applications of uncertainty on the events and their order in event calculus are

planning problems. The goal of planning is to �nd an ordered set of events which produces

a given desired �nal state Q; the events are a priori unknown: in an OLP-FOL theory T

representing a planning domain, happens=1; < =2 and act=2 have no de�nition. An abductive

procedure can be used to �nd a set � of de�nitions for these predicates such that the theory

T +� j= Q [9].

4.3 Moore's example: a null value.

Moore gives the following example [?]. Three blocks, a, b and c, arearranged as shown:

a b c

The colour of a is green, c is blue and the colour of b is unknown. A desired conclusion is

that there is a green block adjacent to a non-green block

8

.

For simplicity, we assume that a, b and c are the only blocks and green and blue are

the only colours. Due to this assumption, block and colour can be de�ned by exhaustive

enumeration. The predicates next and adjacent can be de�ned as well.

block(a) :-

block(b) :-

block(c) :-

colour(blue) :-

colour(green) :-

6

LTTS stands for "Load Turn Turn Shoot".

7

Note that this set of facts is not transitive. Due to the presence of the of linear order, additional atoms

like e1 < e4 are entailed.

8

Moore's aim was to defend logic by showing that the desired conclusion can be obtained only by a

reasoning by 2 cases (either b is green or not), a form of reasoning formalised only in logic.

11

next(a; b) :-

next(b; c) :-

adjacent(X;Y) :-next(X;Y)

adjacent(X;Y) :-next(Y;X)

The fact that the colour of b is unknown poses a problem to de�ne has colour. An elegant

solution would be to represent the colour of b by a null value cb of type colour. [27] formalises

null values in classical logic. This approach exploits the fact that in classical logic, a constant

represents some unique object of unknown identity. Unfortunately, this approach does not

work in OLP-FOL due to the fact that OLP-FOL is a free equality logic. The reason is

clear: the FOL assertion colour(cb) and the de�nition of colour entail that cb is either green

or blue which is excluded by the free equality. However, there is an easy way to simulate

null values in a free equality logic. We introduce a new open predicate colour of b=1 which

-intuitively- represents the singleton fcbg. Using this predicate, has colour can be de�ned

as follows:

has colour(a; green) :-

has colour(c; blue) :-

has colour(b; C) :- colour of b(C)

The assertional knowledge that colour of b=1 contains a unique null value of type colour is

represented by the FOL assertions

9

:

9!C:colour of b(C)

8C:colour of b(C)! colour(C)

The result is an OLP-FOL theory T

Moore

with one open predicate colour of b=1. The theory

provably entails that there is a block which is not green adjacent to a green block.

4.4 The third man: an open domain problem.

The scenario of this simple problem is as follows. Bob is found murdered in his cottage while

being visited by John. Suicide is excluded and John seems to have an alibi but which is hard

to verify. The conclusions that can be derived in this domain clearly depend on whether

it is known or not that Bob and John were the only persons in the cottage. Only if this

knowledge is given, it can be concluded that John has a false alibi and is the murderer.

The following open theory T

3M

represents this scenario:

D = fkilled; alibig

P = f alibi(john) :-

killed(X; bob) :-murderer(X) g

T = f 9X::X = bob ^ killed(X; bob)

8X:murderer(X) ^ alibi(X)! false alibi(X) g

9

9!X:F [X] is the standard notation for 9X:F [X]^ 8X

1

; X

2

:F [X

1

] ^ F [X

2

]! X

1

= X

2

.

12

Open predicates are murderer and false alibi.

Just as classical logic, OLP-FOL is an open domain logic: the domain closure assumption

(DCA) is not a priori imposed. The theory T

3M

has models in which bob and john are the

only domain elements. In these models, false alibi(john) holds. There are other models

in which other domain elements appear and where both facts are false. In these models,

murderer(x) is true for some domain element x not represented by john.

The example clari�es the role of general interpretations versus Herbrand interpretations.

OLP-FOL (just like FOL) does not impose the DCA, due to the fact that general non-

Herbrand interpretations are allowed. A logic with a model semantics based on Herbrand

interpretations entails the DCA automatically. In many applications, these axioms are natu-

rally satis�ed in the problem domain; in other applications, they are not. From the knowledge

representation point of view, basing OLP-FOL on Herbrand interpretations would restrict

the expressivity in an undesirable way. If in the example, it is known that Bob and John

are the only persons, then this must be represented explicitly by adding the DCA

10

:

8X:X = bob _X = john

The resulting theory entails murderer(john).

An interesting class of domains where the domain closure assumption cannot be made are

planning domains in the context of event calculus. In such domains, the events are a priori

unknown and hence, the DCA cannot be added. Such domains are less easily described in a

logic with a Herbrand-based semantics.

4.5 A default knowledge example.

OLP-FOL does not contain default rules nor default connectives and hence, is not suitable

for representing defaults. Nevertheless, default reasoning on an OLP-FOL theory is not

excluded. We illustrate this with the well-known quaker-republican problem: Nixon is a

quaker and a republican. Normally, quakers are doves, republicans hawks. It is impossible to

be both hawk and dove. To represent defaults, it is essential that the number of applications of

defaults is maximised, or equivalently that the number of exceptions to defaults is minimised.

This view is found in default logic [26] and in circumscription [20]. To maintain consistency

in the quaker-republican problem, one of the two defaults must be violated since Nixon

cannot be both hawk and dove. Minimising the number of exceptions to default rules, only

one default is allowed to be violated and one concludes that Nixon is either a hawk or a

dove.

With respect to the representation in OLP-FOL, note that this example contains no

de�nitional information: the concepts quaker, republican, dove, hawk cannot be de�ned

using the above speci�cation (unless we would assume that Nixon is the only republican

and quaker). (OLP-)FOL does not provide default rules; therefore, we believe that the most

precise formalisation in OLP-FOL would be the following FOL theory:

10

It is well-known that when � contains functors with arity > 0, the DCA can not be represented correctly

in FOL. As was shown in [5], the DCA can be represented correctly in OLP-FOL under stronger semantics

than the 3-valued completion semantics.

13

T

1

= f republican(nixon)

quaker(nixon)

8X::hawk(X) _ :dove(X) g

in which the two defaults are not represented.

However, [24] argued that though FOL is unsuited to represent default knowledge, default

reasoning on FOL theories is possible. Following this approach, abnormality predicates

ab rep and ab quak are introduced and two FOL implications are added to "represent" the

defaults.

T

2

= T

1

[f hawk(X) republican(X);:ab rep(X)

dove(X) quaker(X);:ab quak(X) g

As a representation of the defaults, T

2

is a failure: there is no way to express in FOL

that lesser or minimal interpretations of ab rep and ab quak are preferred. Therefore, the

information content of T

1

and T

2

-restricted to the symbols of T

1

- is the same. It is easy

to prove that T

2

is a conservative extension [29] of T

1

and hence the formulas that do not

contain ab rep and ab quak and that can be proven for T

2

are precisely those that can be

proven from T

1

.

However, [24] puts the burden of dealing with the defaults not on the information con-

tent of the theory but on the reasoning - not on the level of meaning but on the level of

reasoning. More precisely, [24] argues that default reasoning is inherent to hypothetical or

abductive reasoning; the default aspect of hypothetical reasoning lies in the fact that the set

of explaining hypotheses is minimised. Such a procedure can be applied even to a monotonic

logic.

Under this -weaker- view, it does not matter that T

2

does not represent the defaults in the

strong sense. The default reasoning becomes alive when for example an abductive procedure

is called to explain why Nixon does not violate the constraint. A suitable procedure will

compute minimal explanations; it will raise the hypothesis that Nixon is an abnormal quaker

or that he is an abnormal republican, but not both.

5 Conclusions and future work.

The above examples show the expressivity of OLP-FOL for knowledge representation. The

elegance of the above presented solutions may easily mislead. Many of the temporal rea-

soning problems in section 4.2 are considered as di�cult knowledge representation problems

and have been used to show problems with several temporal reasoning proposals. The rep-

resentation of null values and open domain knowledge is still an open question in logic

programming and, in the case of ELP, seems to require substantial changes to the semantics

[30] [12]. Other experiments further con�rm the expressivity of OLP-FOL. [7] presents a

sound and complete transformation of the temporal reasoning language A (which allows to

represent uncertainty on the initial state) to OLP-FOL. In comparison, the transformation

from A to ELP proposed in [11] is not sound in general and not complete. In ongoing work,

we mapped Reiter's situation calculus [28] to OLP-FOL (under a stronger semantics than the

14

one used in this paper), despite the fact that this theory contains a second order induction

axiom. In another experiment, a terminological language was mapped to OLP-FOL.

An interesting issue which falls outside the scope of this paper is the representation of

inductive de�nitions in the OLP-FOL formalism. OLP-FOL (under completion semantics)

nor FOL are suited to represent inductive de�nitions; in ongoing work we showed that under

stronger semantics such as justi�cations semantics [5], inductive de�nitions can be correctly

represented in an open logic program. As a consequence, OLP-FOL under justi�cation

semantics signi�cantly extends the FOL expressivity. This extra expressivity allows to rep-

resent the Domain Closure Axiom or the second order induction axiom in situation calculus.

Another interesting issue is how theorem provers and problem solvers for OLP-FOL can be

developed. In [6], we show how existing abductive extensions of SLDNF resolution can be

used for reasoning on OLP-FOL theories, not only to solve abductive problems but also for

deductive and satis�ability checking problems.

To conclude, the OLP-FOL logic provides an alternative interpretation of (abductive)

logic programming. The auto-epistemic and default interpretation on one hand and the

terminological interpretation on the other hand are di�erent interpretations which assign a

di�erent modality to negation in logic programs. In OLP-FOL, negation has the objective

modality of negation in classical logic. As a consequence, it makes no sense to add classical

negation to OLP-FOL. On the contrary, it would be interesting to add modal forms of

negation, as found in the auto-epistemic interpretation. Such an extension would allow to

represent also modal problems (e.g. the train example in section 4.1) and would combine the

representational power of ELP and OLP-FOL. The problems of such an integration don't

seem insurmountable. Last but not least, OLP-FOL is a declarative integration of logic

programming and classical logic and opens the possibility of cross fertilisation between both

�elds.

Acknowledgements

I thank Danny De Schreye and Kristof Van Belleghem for many valuable discussions. Danny,

Kristof and Marion Mircheva gave justi�ed comments on earlier drafts. Hector Levesque

pointed me to the analogy in the motivations for OLP-FOL and terminological languages.

References

[1] R. J. Brachman and H.J. Levesque. Competence in Knowledge Representation. In Proc.

of the National Conference on Arti�cial Intelligence, pages 189{192, 1982.

[2] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

Databases, pages 293{322. Plenum Press, 1978.

[3] L. Console, D. Theseider Dupre, and P. Torasso. On the relationship between abduction

and deduction. Journal of Logic and Computation, 1(5):661{690, 1991.

15

[4] M. Denecker. Knowledge Representation and Reasoning in Incomplete Logic Program-

ming. PhD thesis, Department of Computer Science, K.U.Leuven, 1993.

[5] M. Denecker and D. De Schreye. Justi�cation semantics: a unifying framework for the

semantics of logic programs. In Proc. of the Logic Programming and Nonmonotonic

Reasoning Workshop, pages 365{379, 1993.

[6] M. Denecker and D. De Schreye. A terminological interpretation of (Abductive) Logic

Programming. Draft, K.U.Leuven, 1994.

[7] M. Denecker and D. De Schreye. Representing Incomplete Knowledge in Abductive

Logic Programming. Journal of Logic and Computation, to appear, 1994.

[8] M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reasoning with abductive

event calculus. In Proc. of the European Conference on Arti�cial Intelligence, 1992.

[9] K. Eshghi. Abductive planning with Event Calculus. In R.A. Kowalski and K.A. Bowen,

editors, Proc. of the International Conference on Logic Programming, 1988.

[10] M. Gelfond and V. Lifschitz. Logic Programs with Classical Negation. In D.H.D.Warren

and P. Szeredi, editors, Proc. of the 7th International Conference on Logic Programming

90, page 579. MIT press, 1990.

[11] M. Gelfond and V. Lifschitz. Representing Action and Change by Logic Programs.

Journal of Logic Programming, 17(2,3,4):301{322, 1993.

[12] M. Gelfond and H. Przymusinska. Reasoning in Open Domains . In Proc. of Logic

Programming and nonmonotonic reasoning workshop, page 397, 1993.

[13] A. C. Kakas, R.A. Kowalski, and F. Toni. Abductive Logic Programming. Journal of

Logic and Computation, 2(6):719{770, 1993.

[14] A.C. Kakas and P. Mancarella. Generalised stable models: a semantics for abduction.

In Proc. of the European Conference on Arti�cial Intelligence, 1990.

[15] R. Kowalski and F. Sadri. The Situation Calculus and Event Calculus Compared. In

Proc. of International Logic Programming Symposium. MIT Press, 1994.

[16] R.A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Com-

puting, 4(4):319{340, 1986.

[17] K. Kunen. Negation in Logic Programming. Journal of Logic Programming, 4:231{245,

1989.

[18] V. Lifschitz and G. Schwarz. Extended Logic Programs as Autoepistemic Theories. In

L. Pereira and A. Nerode, editors, Proc. of the Logic Programming and Non-monotonic

Reasoning Workshop, 1993.

16

[19] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[20] J. McCarthy. Circumscription - a form of nonmonotonic reasoning. Arti�cal Intelligence,

13:89{116, 1980.

[21] L.R. Missiaen. Localized abductive planning with the event calculus. PhD thesis, De-

partment of Computer Science, K.U.Leuven, 1991.

[22] L.M. Pereira, J.N. Aparicio, and J.J. Alferes. Hypothetical Reasoning with Well

Founded Semantics. In B. Mayoh, editor, Proc. of the 3th Scandinavian Conference

on AI. IOS Press, 1991.

[23] J. Pinto and R.Reiter. Temporal Reasoning in Logic Programming: A Case for the

Situation Calculus. In Proc. of the International Conference on Logic Programming,

pages 203{221, 1993.

[24] D. Poole. A Logical Framework for Default Reasoning. Arti�cal Intelligence, 36:27{47,

1988.

[25] R. Reiter. On Closed World Data bases. In H. Gallaire and J. Minker, editors, Logic

and Data Bases, pages 55{76. Plenum Press, New York, 1978.

[26] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.

[27] R. Reiter. On integrity constraints. In M. Vardi, editor, Proc. of Conf. on Theoretical

Aspects o Reasoning about Knowledge, pages 97{111, 1988.

[28] R. Reiter. Formalizing Database Evolution in the Situation Calculus. In Proc. of the

International Conference on Fifth Generation Computer Systems, pages 600{609, 1992.

[29] J. Shoen�eld. Mathematical Logic. Addison-Wesley, Reading, Mass., 1967.

[30] B. Traylor and M. Gelfond. Representing Null Values in Logic Programming. In Proc. of

the ILPS'93 workshop on Logic Programming with Incomlete Information, pages 35{47,

1993.

17

