
Published in the Proceedings of IMIA WG6, Geneva, May 1994

1

A Terminology Server for Medical Language and Medical
Information Systems

AL Rector1 WD Solomon1 WA Nowlan2 TW Rush2

1Medical Informatics Group, Department of Computer Science, University of Manchester,
Manchester, M13 9PL, UK

2Medical Products Group, Hewlett-Packard Ltd, Bristol, BS12 6QZ, UK

Abstract
GALEN is developing a Terminology Server to support the development and integration of clinical
systems through a range of key terminological services, built around a language-independent, re-
usable, shared system of concepts - the CORE model. The focus is on supporting applications for
medical records, clinical user interfaces and clinical information systems, but also includes systems
for natural language understanding, clinical decision support, management of coding and
classification schemes, and bibliographic retrieval. The Terminology Server integrates three
modules: the Concept Module which implements the GRAIL formalism and manages the internal
representation of concept entities, the Multilingual Module which manages the mapping of concept
entities to natural language, and the Code Conversion Module which manages the mapping of
concept entities to and from existing coding and classification schemes. The Terminology Server
also provides external referencing to concept entities, coercion between data types, and makes its
services available through a uniform applications programming interface. Taken together these
services represent a new approach to the development of clinical systems and the sharing of medical
knowledge.
Keywords: Terminology server, Natural language processing, Coding and classification schemes

Electronic medical records, Knowledge representation

1. Introduction: The Idea of a ‘Terminology Server’
Clinical practice centres on the care of patients by doctors, nurses, and other clinicians . Medical
information should centre on the record of that care. There is a world-wide move towards ‘patient-
centred’ information systems in which clinical information gathered by health care professionals
during the process of patient care is both used to further that care and re-used to serve other functions
within the health care systems.
If clinical information is to be re-used and shared, the basic concepts used to describe that care must
be shared. Different specialised systems may organise those basic concepts differently for their own
purposes, but the fundamental concepts must be common to all applications. In terms of classic data-
modelling, we can imagine many different data models, but the meaning of the entities in those
models— the meaning of ‘the information that goes in the boxes on the modelling diagram’ — must
be shared. Such shared systems of concepts are increasingly known as ‘ontologies’ in the database
and artificial intelligence communities.
The GALEN1 project is funded by the European Commission as part of the AIM programme.
GALEN’s goal is to develop a ‘Terminology Server’ to manage language-independent shared
systems of concepts for clinical applications. The Terminology Server will be a new type of
integrating service for heterogeneous information systems. GALEN aims to demonstrate the
feasibility and usefulness of such a Terminology Server:

• To provide infrastructure support for the development and integration of clinical systems.

1 General Architecture for Languages Enclopædias and Nomenclatures in Medicine. The members of the GALEN

consortium are: University of Manchester (UK, Coordinator), Hewlett-Packard Ltd (UK), Hôpital Cantonal
Universitaire de Genève (Switzerland), Consiglio Nazionale delle Ricerche (Italy), University of Liverpool (UK),
Katholieke Universiteit Neijmegen (Netherlands), University of Linköpking (Sweden), The Association of Finnish
Local Authorities (Finland), The Finnish Technical Research Centre (Finland), GSF-Medis Institut, (Germany),
Conser Systemi Avanzati (Italy)

Published in the Proceedings of IMIA WG6, Geneva, May 1994

2

• To provide a flexible, extensible basis for achieving ‘coherence without uniformity’ amongst the
many different clinical information services required.

• To serve as an accessible repository of language-independent medical conceptual knowledge,
and to map this repository to potentially many different natural languages.

• To convert between existing representations and coding schemes.
• To provide dynamically generated local nomenclatures or ‘coding schemes’ which are more

comprehensive and thoroughly organised than can be held as a static structure or managed
manually.

If computer systems are to play a significant role in clinical care, then formal ontologies which can be
manipulated by computer systems are essential. Manual ‘coding systems’ or ‘controlled
vocabularies’ interpreted by human users (largely on the basis of the natural language rubrics attached
to the symbolic codes) are no longer sufficient. The difficulties of using even such massive efforts as
the Unified Medical Language System [1], SNOMED-III [2] and the Read Codes [3] are all too
apparent. Such systems are becoming too large to manage, but remain too small to contain the detail
required to meet clinical requirements. Their organisation remains too limited to support acceptable
clinical interfaces, and too rigid to support the variety and rapid evolution of clinical care.
To capture more detail and achieve greater organisation the meaning of the concepts must be captured
not just in the rubrics but in the symbolic structure itself so that it can be manipulated
computationally. Mechanisms are needed to encapsulate the resulting intrinsically variable
descriptions into the fixed formats used by relational databases. These requirements have been
extensively discussed elsewhere and we shall not review them further here [4-8].
Medicine is not alone in perceiving the need for shared terminology. Sharing and re-use of
‘ontologies’ is now a major growth area in many areas of information and knowledge based systems
development [9-13]. However, medicine may be unique in its scale, its large and diverse body of
professional users and sublanguages and in its common international effort to share knowledge based
on extensive shared understanding of the domain. If there is not already a shared model of clinical
medicine and disease, there is a vigorous international effort to create one, an effort largely motivated
by clinical goals. GALEN is one response to the special needs of supporting these clinical efforts to
share knowledge and practice. Others include [14-16].
Because of medicine’s distinctive situation, GALEN takes a distinctive approach to knowledge
sharing. We shall return at the end of this paper to the relationship between our concept of a medical
Terminology Server and other knowledge sharing efforts. In the next section we discuss GALEN’s
approach to meeting needs of the clinical community; Section three provides a functional description
of the GALEN Terminology Server. Sections four and five discuss the architecture of the
Terminology Server and the special features of the GALEN modelling formalism — the GRAIL
Kernel — which derive from the special clinical requirements for reuse and information sharing. The
final section provides an overall discussion including questions of evaluation and maintenance.

2. GALEN
2.1 Fundamental proposition
The fundamental proposition of the GALEN project is that there is a terminological — or more
properly, a conceptual — component of clinical language which can be usefully separated from other
aspects of medical natural language processing, information modelling, knowledge based systems,
and user interface design. GALEN contends that this conceptual component can be made largely
independent of surface natural language characteristics. We suggest that this model is sufficiently
strongly shared across clinical and linguistic groups to permit the development of an ‘interlingua’
[17] based on a single coherent COncept REference (CORE) model of medical concepts. We believe
that such a CORE Model of medical concepts is the appropriate reference point for developing
coherent collections of clinical applications which work together successfully and build on each
others achievements.
Because access to the CORE Model and related information is a common and pervasive requirement
for many applications, GALEN aims to encapsulate access to the CORE Model and related functions

Published in the Proceedings of IMIA WG6, Geneva, May 1994

3

in a server — the ‘Terminology Server’. In a network environment the Terminology Server will
both mediate amongst existing systems and act as a repository for terminology to facilitate
developing new systems. We do not claim that such a ‘Terminology Server’ will solve all problems
of mediation amongst existing systems or of building new systems. Indeed, one of the primary aims
of GALEN is to modularise the overall task of building clinical systems. The goal of the
Terminology Server is to relieve individual applications of technically difficult operations involving
terminology, or conceptual knowledge of the domain. Our image is of groups of applications,
developers and sites co-operating to develop and maintain one or more CORE Models which they all
share and which support their joint efforts.

2.2 GRAIL
The modelling formalism in which the CORE Model is built is known as the GRAIL (GALEN
Representation And Integration Language) Kernel [18]. GRAIL is a compositional formalism —
rather than having to enumerate all and only those clinical concepts that are available, the GRAIL
modeller specifies elementary concept entities, and relations that may be used to combine them into
'complex' concept entities. This process can be recursive, thus providing for indefinitely complex
concept entities.
GRAIL is generative and GRAIL models are sparse. A GRAIL model contains only the minimum
information necessary to sanction the generation of all sensible concept entities. An indefinitely large
number of concept entities can be inferred from the sanctions in the model and generated as needed
without having to store them explicitly.
GRAIL classifies composite concepts automatically on the basis both of their definition and of
indefeasible statements which are conceptually necessary to a concept. Hence there is no need for
maintaining multiple classifications manually or even for specifying them in advance. Concepts such
as “congenital heart disease” can be classified automatically under both congenital diseases and heart
diseases without manual intervention.
GRAIL also provides a facility for attaching ‘extrinsic’ information to concept entities. Extrinsic
information is information which does not affect an entity’s classification. For example, the
statement:

Aspirin extrinsically mayBeBoughtIn 100mgTablets
is a representation of additional ‘real-world’ knowledge beyond what is necessarily true about Aspirin
conceptually. The well structured taxonomies in GRAIL models are often useful and compact ways
to organise other extrinsic knowledge.

2.3 The Terminology Server
The Terminology Server provides an encapsulation of, and a networked applications programming
interface to, the CORE Model, the facilities provided by the GRAIL formalism, and linguistic and
coding functionality. It provides means of referring to concept entities, asking questions of them, and
transforming them into other representations, such as natural language. Individual modules within
the Terminology Server handle different aspects of the overall task. The Terminology Server
provides a uniform interface to the services provided by each of these modules, as well as combining
multiple services into those useful for external applications. There are five major tasks that the
Terminology Server as a whole performs:

• managing external references to concept entities ('Reference management') and coercion between
data types;

• implementing the GRAIL formalism, and managing the internal representation of concept
entities (implemented by the Concept Module) ;

• managing the data and functionality required to map concept entities to natural language (and,
potentially, the inverse), (handled by the Multilingual Module);

• managing the data and functionality required to map concept entities to and from existing coding
and classification schemes (handled by the Code Conversion Module);

• providing the functionality and management to handle extrinsic information (the Extrinsic
Information Module).

Published in the Proceedings of IMIA WG6, Geneva, May 1994

4

Section 3 provides a functional description of the Terminology Server; Section 4 provides an
overview of its architecture.

2.4 Expected Applications
The test of the Terminology Server will be whether it supports applications successfully. To be
successful it must be shown to support applications both individually and, more importantly, within
an environment of heterogeneous interworking clinical information systems. Our goal is not an
abstract ‘pure’ representation of the essence of medical thought ; rather, the goal is a practical tool for
developers of clinical information systems. Experience suggests that, within limits, ‘cleaner’, more
formal representations lead to systems which are more flexible and extensible. However the ultimate
criteria is use in practical applications; compromises are therefore inevitable.
Applications should benefit from the Terminology Server in at least four ways:

• Operations involving terminology can be delegated outside of individual applications;
• Development should be easier because it is based on existing ontologies and, increasingly, re-

uses other work which uses those ontologies.
• Communication with other applications using the shared ontology should be possible.
• Many of the tasks of updating the system as new developments appear should be easier, because

much of this work will be done by those maintaining the CORE Model. (There is, of course, the
converse obligation to perform regression testing when there are major changes to the CORE
Model or other aspects of the Terminology Server.)

GALEN itself includes experimental applications using the Terminology Server for electronic
medical records, decision support systems, classification management and bibliographic retrieval.
Other evaluations are being undertaken through collaboration with other projects. The results of
these experiments will be reported on separately as they mature. More broadly, we expect to see at
least six families of applications make use of the GALEN Terminology Server and CORE Model:

• Medical records, clinical user interfaces and clinical information systems
• Natural language understanding systems.
• Clinical decision support systems
• Management of, and conversion amongst, coding and classification schemes
• Bibliographic retrieval indexing
• Retrieval of clinical information, intelligent querying, research, and epidemiological analysis.

3. A Functional Description of the Terminology Server
The Terminology Server provides services for applications. In this section we first describe the
patterns of functions and types of data handled by the terminology server. We then describe the kinds
of question that may be asked.

3.1 Modes of Use and Types of Data
3.1.1. Modes of Use
The GALEN Terminology Server is potentially used in two different ways:

• To support operational systems at run time with dynamic interpretation and encapsulation of
codes, natural language expressions, and references.

• To support the development and maintenance of systems by providing a repository of concepts
and terms and a means of extending this repository coherently and co-operatively.

When used to support operational systems, the Terminology Server must help applications in their
interactions with end-users, and will primarily be asked questions. When used in development it
must support editing and knowledge acquisition programmes in their interaction with knowledge
engineers and other specialised users, and will frequently be told new information. The facilities and
ergonomics of the two situations are markedly different. Whether they can be achieved within a
single framework remains to be seen.
When used with operational systems, the Terminology Server will be an important part of a
‘mediation service’ to assist in access to existing heterogeneous databases. However, the larger

Published in the Proceedings of IMIA WG6, Geneva, May 1994

5

payoff should be the use of the Terminology Server as a repository for concepts to enable the
development of groups of coherent systems which can work together and build on each other
cumulatively. More importantly, it should provide a means of maintaining and updating such groups
of systems coherently as new information and new concepts need to be incorporated.
3.1.2. Terminology Server Requests
A typical pattern of interaction by an application, whether as part of development or at run time, is to
connect to the Terminology Server, perform a series of requests, and then to disconnect. This series
of events is known as a connection session.
A request made of the Terminology Server by an application is specified in three parts: an operation,
its input, and its required output(s). An important feature of the Terminology Server is that of
mapping between different external representations (languages and coding schemes); as this is a
common operation, we provide an invisible, automatic coercion mechanism. This mechanism
performs the mapping to GRAIL concept entities from codes on input, and allows the caller to
specify a series of required output formats which are then produced from the underlying concept
entity which is typically the result of a Terminology Server call. This mechanism has the advantages
of ease-of-use for the application developers, and of minimising the number of requests; because the
Terminology Server is a networked resource, there is a fixed overhead per call.
The input or output types for the Terminology Server may be any of the following forms:

• ‘References’ — e.g. pointers — to (elementary or complex) concept entities. References can be
combined into a specification of any complex concept entity.

• ‘Linguistic expressions’ which can be generated from (and potentially translated into) GRAIL
expressions, but which are not in general unique. A major function of the Multilingual Module
is to provide a buffer between the intrinsic ambiguity of natural language and the unambiguous
formal representation in GRAIL of the CORE Model.

• ‘External expressions’ such as from coding and classification systems, database schemata, etc.
which can be mapped into or out of the CORE Model. Mapping expressions and coping with
the problems of mismatches, partial matches, and differences in granularity is the task of the
Code Conversion Module.

In general the Terminology Server will accepts input objects in any of these forms and likewise will
produce answers in any of these forms.
Where necessary, the Terminology Server will perform internal 'coercion' on input arguments and
output results, by making calls of the individual modules invisibly to the user. For example, an
application may have hold of an ICD code for Ulcer, and may wish to use the knowledge in the
CORE model to produce a list of the possible relationships along which this may be refined.
Informally: "what can I say about ulcers to describe them further?" The results are required to be put
up on a screen, so we need output in a natural language (say French for this example), but we also
require efficient handles for the results (see Section 3.3), so we can use them in subsequent requests
to the Terminology Server. The request, in this example, will have the following form:
Input: ICD531.9 an ICD Code
Operation: refiningRelationships a terminological operation implemented

by the Terminology Module within the
Terminology Server

OutputSpecification <asNaturalLanguage(french),
 asVolatileReference>

an array of output specifications; this
says that the output is required both as
French natural language, and as a
volatile reference for use in future
requests

3.1.3. Reference to Concept Entities: Managing Persistence
One of the permitted input and output forms that the Terminology Server supports are 'references' to
concept entities. References can be of three forms:

Volatile valid only during single application's connection session with a particular

Published in the Proceedings of IMIA WG6, Geneva, May 1994

6

Terminology Server. These references (or 'handles') are the cheapest form of
reference, but have the most limited lifetime. They are of fixed length.

Local local to a particular Terminology Server at a particular site and its extensions. They
are also of fixed length. Local identifiers are typically used for communication
between applications that may connect to the same Terminology Server, or for local,
long-term, data storage within applications.

Global valid across all Terminology Servers containing a specific version of the CORE
Model. Global identifiers have the widest applicability, though are the most
expensive, and they are of variable length. They are used to communicate between
different, geographically distinct, Terminology Servers.

Applications may construct complex concept entities - GRAIL expressions - using any combination
of global, local, and volatile references. A single reference may be thought of as an elementary
GRAIL expression.
The Terminology Server can generate a single volatile or local reference from any GRAIL expression
which is sanctioned by the CORE Model. However, there may not be an elementary global reference
corresponding to a particular expression. Therefore, requests for global references may be of variable
length and are thus expressions rather than pointers.

3.2 Questions which the Terminology Server can answer
3.2.1. What does this reference or expression mean?
The Terminology Server can be presented with an expression (for example made up of concept entity
references) which may or may not correspond to one or more legal concept entities sanctioned by
CORE Model. If sanctioned, a concept entity may or may not already have been generated by the
Concept Module. The first task of the Terminology Server is to examine the expression, convert it to
a sanctioned GRAIL expression if possible, and then see if either a corresponding concept entity
exists, or if not to generate and classify the new concept entity required. Note however that the
external application is unaware of which of these actions has been taken. The Terminology Server
can then answer questions such as:

• Is this a legal expression, and what is its simplest form (e.g. with any redundancies removed)?
• If it is legal, how is it classified— what more general concepts subsume it? What more

specialised concept entities does it subsume?
• What is known about this concept entity conceptually from the CORE Model? What other

extrinsic information has been said about this concept entity?
3.2.2. What can be said about this concept entity?
A major function of the Terminology Server is to tell applications what further can be sensibly said
about a concept entity — to support a user interface to help clinicians enter the information; to assist
a bibliography system refine a query; or to assist a natural language system to disambiguate candidate
phrases. Correspondingly, much of the information in the CORE Model is not about what is true but
about what can sensibly be said. Once concept entities are generated and classified, the Terminology
Server can therefore answer questions such as:

• What statements can sensibly be made about this concept entity? What are its sensible modifiers
and relations?

• How can this concept be specialised according to given criteria? — e.g. anatomically,
functionally, according to clinical indications or effects.

• What are the ‘sensible’ ways in which this set of concepts can be combined into a single larger
concept?

Answers to any of these questions may involve generating further new entities. For example, the
CORE Model does not store information about every phalanx of every finger explicitly, but it can
respond to questions such as the parts of the “left fourth finger” by generating entities representing
concepts such as the “first phalanx of the left fourth finger”, “proximal interphalangeal joint of the
left fourth finger”, “second phalanx of the left fourth finger”, etc.

Published in the Proceedings of IMIA WG6, Geneva, May 1994

7

3.2.3. What are the nearest representations to this in some other representation?
Another major use of the Terminology Server is to convert between external representations
including both coding and classification systems and natural languages. (Although initially its ability
to convert from natural language will be limited). Exact conversion or translation is not always
possible because the corresponding concepts may not have representations in the target system. The
Code Conversion and Multilingual modules are responsible for providing applications with a variety
of strategies for coping with inexact matches. However, in many situations the best that can be done
is to provide the application with the information on the potential matches and details about the
imperfections in the matching process. It is then up to the application program to decide how to deal
with this information according to its own particular requirements.
Conversion using the Terminology Server is always a two-stage process — first map the expression
into the CORE Model and then map it back into the target external or linguistic representation. At
the same time, the Multilingual and Code Conversion Modules maintain extra information to enable
them to answer specific questions relating to the external representations. Combining and
encapsulating these techniques the Terminology Server can respond to questions such as:

• What are the external expressions for this concept entity in a particular external system? What is
the preferred term for this concept entity in that system?

• What are the natural language expressions for this concept in a particular language? What is the
preferred form for a particular ‘clinical linguistic group’.

• Are these two concept entities derived from two different external representations the same? If
not, how do they differ? What information would have to be added or removed from each to
make them the same?

• Find all of the expressions in a given external representation which correspond to children of this
concept entity, i.e. all of the codes which this concept entity subsumes. This is a particularly
important question for information retrieval. It allows the Terminology Server to compensate
for the deficiencies in the organisation of external coding systems. For example, forms of heart
disease are found in at least five different chapters of ICD-9.

3.2.4. Encapsulation and the transformation of terms
Different applications may require information to be encapsulated in different forms. In general,
applications want to store the information which they manipulate locally and to encapsulate
information which they do not expect to need. Therefore a surgical system might want to record the
approach, instruments, and method of anaesthesia separately whereas a general practice system might
want to encapsulate these details into a single code for a surgical procedure.
Furthermore, most systems use relational technology which is based on fixed length identifiers for
most fields. The variable length recursive structures from the CORE Model itself fit badly into
relational schemes. One of the functions of the Terminology Server is to encapsulate complex
expressions into fixed length references and to provide alternative sets of such references representing
different degrees of encapsulation — e.g. a single reference for a surgical procedure for a general
practice system or separate references for the main procedure, approach, anaesthesia, and instruments
used for a surgical database.
One special case is that systems differ as to which ‘nominalisation’ they wish to use to encapsulate
particular information — whether to record the “fracture of the femur” or the “femur which is
fractured”. Applications also vary as to which of various dualities they wish to regard as primary —
e.g. whether to record “the ulcer” or “the process of ulceration”. The terminology server provides a
number of special purpose functions to deal with the technical issues and can respond to requests
such as:

• Transform this concept entity into an alternative nominalisation or an alternative form within
one of the recognised dualities.

• Provide a volatile, local or global reference for this concept entity.
• Encapsulate these concept entities according to a given format for an application as a set of

references or a set of external expressions.

Published in the Proceedings of IMIA WG6, Geneva, May 1994

8

3.2.5. What other extrinsic information has been attached to this concept besides the
indefeasible terminological knowledge?

Strictly speaking, the CORE Model contains only concrete conceptual knowledge which is
indefeasible and true ‘by definition’. However, a major function of the CORE model is to provide a
framework with which to organise other, more general information. Holding such information and
retrieving the most specific information in a certain category available — e.g. concerning drug
interactions, clinical procedures or diagnostic methods— is so useful that additional operations are
provided to support these functions directly. There are three primary operations:

• Find the most specific information in a given category about a concept entity.
• Find all of the information in a certain category about a concept entity and all of its parents.
• Find all the children of a particular concept entity such that a particular piece of extrinsic

information holds.

3.3 Things the Terminology Server can be Told
One of GALEN’s major goals it to support local extensions and flexible development within an
overall coherent framework provided by the CORE Model. Local sites and applications must
therefore be able to add information to the Terminology Server in a number of different ways. These
functions are still under development as we gain experience with using and developing the
Terminology Server, and the different types of knowledge it contains.
3.3.1. To extend the existing model
Local site may need to extend the model itself to fit their needs in a number of different ways. The
goal is that many changes can be made locally without prior reference to the central management of
the CORE Model. Some of those changes may eventually be incorporated into the global model and
distributed more widely; others may remain strictly local.

• By giving new local names to existing or potential concept entities. Adding local names does
not increase the range of things which can be expressed by the model, but it can make the model
much easier to use by simplifying what would otherwise be complex expressions. New local
names can always be given without reference to the central co-ordinators.

• By adding new primitive concept entities. The range of primitive concept entities may not
include things which are important locally. For example, a surgical system might not include
names for all of the surgical instruments used at a particular site. New detailed concept entities
in existing categories can normally be provided locally but need to be notified to the co-
ordinators so that any potential conflicts with other users working in the same area can be
monitored and reconciled where necessary. New major categories require more careful control
and co-ordination.

• By adding new attributes and associated sanctions so that new things can be said. As with
adding new primitive concept entities, the range of attributes may not support sufficient detail
for local use. Detailed extension within the overall framework can normally take place locally.
More global changes require central co-ordination.

• By adding new sanctioning statements so that existing attributes and concept entities can be used
in new ways. It is often the case that the sanctions in the CORE model are too specific for local
use and may have to be extended. However, the feeling that the sanctions need to be relaxed
often indicates misunderstandings concerning the intended use of the model. Therefore, except
where sanction are being extended trivially to cover new primitives, changes to sanctions need to
be made with care and notified to the co-ordinators.

• By adding new statements of conceptually necessary facts. Making a conceptually necessary
statement about a concept entity may cause that entity to be classified in an additional way, or
even cause two entities which were previously distinct to coalesce into a single entity. As in the
previous examples, local changes which simply increase the available detail can be made locally
but need to be notified to the central Co-ordinator. More drastic changes must be carefully
monitored. Any changes which cause two entities to coalesce need to be verified centrally.

Published in the Proceedings of IMIA WG6, Geneva, May 1994

9

3.3.2. To add to or modify the mappings to external representations in the Code Conversion
module

Many of the changes to the Terminology Server involve adding to an existing external representation
or adding a complete new external representation. The status of these changes depends on the status
of the external representation. Addition of a complete local external representation — a local coding
system or database schema is obviously a local matter. Changes to the mapping to ICD or SNOMED
need to be made with great care and probably indicate errors which should be notified centrally.
3.3.3. To add to or modify the linguistic information in the Multilingual Module
The structure of concept entities maintained by the Concept Module within the Terminology Server is
language-independent. The Multilingual Module maintains the data and the functionality required to
map any concept entity into (potentially) any natural language. Local users may want to add to the
translations in the Multilingual Module or change details about the preferred use of language locally.
These changes can be made completely locally without affecting the other users of the Terminology
Server. However, major linguistic developments may be of much wider interest and should probably
be notified to the central co-ordinators.
3.3.4. To add or modify the additional extrinsic information attached to concept entities.
As discussed in Section 2.2, an important facility the Terminology Server offers is to annotate the
conceptual model with extrinsic information. The Terminology Server provides facilities for adding
such annotations, and a series of operations to find such annotations from any concept entity (e.g. one
sanctioned but never before seen) using the conceptual classification maintained by the Concept
Module within the Terminology Server.

3.4 Global Operations on the Model
In addition to operations on individual concept entities and expressions, there are operations which
can be performed on the model as a whole. Normally the operations are performed either after
making changes to the model or centrally a part of the overall maintenance function for the CORE
Model. These functions are still under development as our experience with the Terminology Server,
and the amounts of knowledge held within it grow.
3.4.1. Coherence checking
Total checking of the CORE Model is probably computationally intractable. However, a wide range
of checks can be performed both on individual concept entities and on the model as a whole. Global
checking may only be practical at central computing sites with large computing resources.
3.4.2. Providing information on the editorial status of items
The Terminology Server maintains information on the editorial status of the model and on the
background and expected usage of the concept entities in it. These are currently maintained as
special meta annotations and text comments; the range of facilities is growing rapidly as experience
with the model grows.
3.4.3. Managing updates
There is a great deal of ‘housekeeping’ to be done to manage the integration, distribution, and
acceptance of updates and the notifications between various users of the Terminology Server and the
CORE Model. The Terminology Server requires functions to manage these changes both centrally
and in each co-operating centre. The best means, organisationally and technically, are under vigorous
investigation.
3.4.4. Local coding schemes
One of the important features of the Terminology Server is to be able to ‘compile out’ sections of the
conceptual model in a form recognisable to existing applications. This is equivalent to building a
‘local coding scheme’ dynamically, and makes the functionality of the Terminology Server more
widely available. Whilst it is not possible to take advantage of all the facilities of the Terminology
Server by using such local coding schemes, it does make the knowledge available to a wider range of
applications. Furthermore any data collected using such a 'local scheme' can always be referred back
to the Terminology Server with which it remains consistent, if additional analyses are required.

Published in the Proceedings of IMIA WG6, Geneva, May 1994

10

4. The Terminology Server Architecture
GALEN’s approach is to divide the tasks and information usually summarised under the heading of
‘terminology’ into several semi-independent pieces, to develop well defined techniques for dealing
with each, and then to present all of the services addressing these tasks through a uniform
interface — the Terminology Server’s Applications Programming Interface. The overall architecture
is shown in two different levels of detail in figures 1 and 2.

4.1 High Level Architecture
Applications

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Terminology Server

API

requests from applications

network replies from
 Terminology Server

Figure 1: The high level architecture of the Terminology Server.
The Terminology Server provides a networked resource for applications.

The Terminology Server provides a uniform applications programming interface (API) to its
modules. It provides a common query language so that applications can transparently make complex
requests involving more than one module , and provides a uniform means of specifying the forms of
input supplied and output requested.
The Terminology Server’s applications programming interface is designed in such a way that new
modules can easily use it as a means to export their services to the network. This is appropriate
where a module’s function is so closely tied to the other services of the Terminology Server that
applications developers find it convenient to have them bundled together.

4.2 Internal Architecture of the Terminology Server
Figure 2 presents an overview of the internal architecture of the Terminology Server. Externally, the
Terminology Server presents a modularised view of terminology to external applications. This
pattern of modularisation is echoed in its internal architecture. The overall task of managing
terminology has been modularised into different aspects - conceptual, linguistic, coding, and extrinsic
- which are implemented by separate modules within the Terminology Server. The Terminology
Server combines these modules, adds reference and coercion mechanisms, and exports individual
module services, via the API, to applications. The Terminology Server's reference management
makes it easy for external applications to reference and store concept entities, for example as part of a
patient record system. The Terminology Server's coercion mechanism provides efficient ways of
combining multiple module services and relieves applications of needing to know how specific
requests are handled.
A flexible interface has been developed so that individual modules may 'export' their services, via the
API, to external applications, so additional functionality can be made available very quickly.
Maintaining modularity within the Terminology Server provides the additional advantage in software
engineering terms of allowing different development groups to proceed with developments and
enhancements in which they are expert, with the confidence that integration into the Terminology
Server is straightforward.

Published in the Proceedings of IMIA WG6, Geneva, May 1994

11

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

network connection

 API: applications programming interface

Reference Management

Essential Modules

CORE
Model

lexicons

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

extrinsic data code store

Coercion Management

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

Module Interface

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

Additional Modules

Concept
Module

Extrinsics
Module

Multilingual
Module

Code

Module
Conversion

Figure 2: An overview of the internal architecture of the Terminology Server. The
Coercion Management Layer performs coercion on a request's inputs and
outputs, and provides facilities for specifying how such coercion should take
place. The Reference Management layer mediates between the external
references by which applications may refer to concept entities, and the
internal representation of concept entities which is managed by the Concept
Module.

The central task of concept modelling is addressed by the ‘Concept Module’ which interprets the
‘Concept Reference’ (CORE) Model2. The CORE Model serves as an interlingua amongst medical
nomenclatures, vocabularies, and the terminological aspects of database schemata. When performing
conversions all terms from external coding systems, nomenclatures, database schemata or other
external representations are first converted into the CORE model and classified. Any other
processing requested is performed on the CORE Model representation. If a response is required in a
form other than an expression from CORE Model itself, then the result is converted into the required
output forms (i.e. ‘projected’ onto the output schemata). A basic assumption is that the CORE model
will be at least as detailed as the union of the supported external representations. The goal is that
translation amongst n external representations requires maintaining only n mappings to and from the
CORE model rather than n(n-1)/2 2-way mappings between all possible pairs of representations.
The Multilingual Module provides lexicons and grammatical information for expressing, and
eventually understanding, phrases in natural languages. The goal is that external representations need
not supply their own translations to various natural languages but can depend on the Multilingual
module to translate the CORE Model expansion of their representation. (It is also, however,
necessary to support official translation of particular coding schemes via individual mappings from
external representations to their official translations.) The concept entities within the Concept
Module are language-independent; the Multilingual Module maintains and presents linguistic

2 Sometimes known in early documents as the ‘Terminology Engine’ and ‘COding REference’ model, respectively.

Published in the Proceedings of IMIA WG6, Geneva, May 1994

12

interpretations of these concept entities. A minimally functional Terminology Server must contain at
least a Concept Module, and a Multilingual Module to provide a linguistic interpretation. Further
functionality is added, as described, by adding a Code Conversion Module and Extrinsic Information
Module.
The Code Conversion Module maintains the external representations themselves, along with special
information related to their structure and browsing, e.g. information on the cross referencing in
SNOMED or the dagger-asterisk mechanism and exclusions in ICD-9/10. The Code Conversion
Module also provides the functionality concerned with resolving ambiguities and conflicts when
there is not an immediate one-to-one correspondence between the GALEN CORE Model and the
target external representation or when there — for example when the expansion of a term from one
external coding system has no direct representation in a different external coding system.
The Extrinsic Information Module provides a repository in which applications or sites can store
detailed information about the clinical criteria for using concepts in the Terminology Server. These
definitions are ‘hung onto’ the classification structure of the CORE Model but are not part of it.
Different clinical linguistic groups have different criteria for diagnosing diseases such as rheumatoid
arthritis or schizophrenia. The concept model is not intended to be a diagnostic decision support
system, much less a normative model of care for Europe. However, one of the expected uses of the
Terminology Server is the support of applications that wish to test or enforce such conventions
locally.

5. The CORE Model: Requirements for Re-use — avoiding application specific
decisions

Much of the success of the Terminology Server will depend on the adequacy of the CORE Model and
the formalism in which it is represented, the GRAIL Kernel. The GRAIL Kernel is described in
detail elsewhere [6, 18, 19] , but two considerations in its design should be re-iterated.

• The CORE Model aims at application-independence and re-use. This means that the information
in the CORE Model held in the Terminology Server will usually be greater and more detailed
than needed by any single client application. Client applications must be able to address the
Terminology Server in different ways appropriate to their own situation. Wherever possible,
users should be protected from detail that does not affect them.

• The Terminology Server does not provide a complete reasoning system. Applications are
expected to provide additional inference or other processing capabilities. What is provided is a
service for classifying and harmonising the concepts and terminology used.

Making the CORE Model application independent means avoiding application specific decisions.
This near tautology leads to an analysis of where application-specific decisions occur in knowledge
representation systems. That analysis leads to key features of The GRAIL Kernel:

• Constructs in the language which promote clean, homogeneous taxonomies which are
recombined through composition and generation, including constructs to co-ordinate part-whole
relations with subsumption, plus a modelling style which exploits this constructs.

• A view of the category-individual (class-instance) distinction which avoids arbitrary choices.
Choices concerning what level of detail should constitute an ‘instance’ such as those described
graphically by Brachman in [20] are avoided by restricting individuals only to concrete instances
in the real world and their properties. In this respect it is closely analogous to Sowa’s treatment
of types (corresponding to GRAIL categories) as lambda abstractions over individuals and hence
fundamentally different from them. GRAIL models the ‘level of specification’ required by
individual applications as explicit ‘external’ knowledge about those applications.

• Support for generation of implied concept entities, which means only that the basic model
(roughly equivalent to the ‘basis’ in Conceptual Graphs [21]) be represented explicitly. Other
concept entities are generated as needed. This allows the Terminology Server to behave as if it
contained an indefinitely large number of concepts while physically representing only a compact
model.

Published in the Proceedings of IMIA WG6, Geneva, May 1994

13

• Features which facilitate alternative encapsulations and which bridge the different levels of detail
required by different applications.

• Recognition that the model can never be complete, and that it therefore functions in an open
rather than a closed world with corresponding constructs and restrictions on the formalism.

• Restrictions on the range of constructs supported to those deemed ‘terminological’.

6. Discussion
6.1 A Terminology Service rather than a Terminology
The idea of a “Terminology Server” represents a new way to view the role of terminology in
information systems. Previously, terminologies have been static and used only during development
or ‘compile time’. A terminology was something which could be written down or at least stored in a
straight forward database. Any manipulation of the terminology was left to individual applications.
SNOMED-III, the READ Codes and ICD-9 all provide one degree or another of prescriptive advice
about how the coding system is to be used, but they are defined in terms of the structure rather than
the functions performed. In contrast a terminology server delivers terminological services, that
provide high level functionality to applications.
Used in this way we believe that the ‘terminology’ can become a potent integrating force helping to
mediate between different systems and different applications, providing a consistent linguistic service
for many different applications. The server also provides a way of encapsulating one aspect of the
variability and complexity of clinical data in forms more palatable to conventional information
services.
The idea of a terminology service rather than a terminology has several further ramifications.
6.1.1. Separation of responsibility and limitations
The idea of a Terminology Server embodies the separation of responsibility between the terminology
or concept-modelling functions and other functions in applications. Up to a point, this separation
reflects current practice — coding and classification systems are developed separately from the
medical records and hospital information systems in which they are used. However, this is a purely
static separation and the line between the application and the terminology may be blurred with many
values and functions being handled procedurally within the application.
Providing a separate Terminology Server requires that the nature of that service be well defined.
Potential client applications must know what they can and cannot ask of the Server. This requires
that the limitations of what is considered ‘terminological’ must be carefully defined. There is always
a tendency to increase the bounds of any technology, pushing it to the limits of what it can do rather
than establishing what it can do best. GALEN has attempted to be rigorous in limiting the
Terminology Server to a set of functions which involve indefeasible reasoning about the ‘intrinsic’
conceptual characteristics of concepts. While it has proved convenient to provide limited facilities to
record other ‘extrinsic’ characteristics which applications wish to organise using the CORE Model
hierarchies, the Terminology Server performs no inference with such extrinsic information. There is
a strong tradition for this division going back to Brachman and Levesque’s KRYPTON [22].
6.1.2. Mediation, Re-use and Knowledge Sharing
The GALEN Terminology Server is an important component in a strategy for mediation between
heterogeneous applications. It is not a complete mediation service — some differences may require
extensive computation for conversion, e.g. between different numerical scales and co-ordinate
systems. However, a large class of problems in mediating between medical information sources
concerns the semantic content of those sources.
Because of the ability to transform between different forms and re-encapsulate structures in different
ways, GALEN’s approach to knowledge sharing and re-use requires less rigid adherence to a single
standard than fixed coding systems such as ICD 9/10 [23], the Read Codes [3] , or even SNOMED
III [2]. Alternative representations which are appropriate to individual applications can be used.
Conversion can occur either dynamically at run time or the system can be used during development
to assist in static translations. On the other hand, to those willing to make that commitment during

Published in the Proceedings of IMIA WG6, Geneva, May 1994

14

development, the CORE model through the Terminology Server is intended to provide a source of
concepts which will make the independent development of coherent systems much easier.
Of other knowledge sharing efforts, the DARPA Knowledge Sharing Effort [11, 13, 24] focuses
primarily on translation between ontologies and the provision of standard ontologies during
development. It normally requires a minimal commitment in advance to a single shared ontology and
provides no support at run-time. The GALEN Terminology Server is perhaps more analogous to
some applications envisaged for Cyc [25-27] in which Cyc would provide a general substructure and
services to many applications. However, GALEN’s CORE Model is strictly limited to medical
conceptual knowledge, whereas Cyc’s knowledge base aspires to general common sense knowledge
of the world.
6.1.3. Distributed development
The ability to separate running applications across sites offers the potential to distribute development
effort across multiple centres. Distributed development remains a long term goal to be pursued.
However, achieving successful distributed development requires implementing sophisticated
strategies for notification, locking, and version maintenance which are still only in the planning
stages.
6.1.4. Architecture and Extensions
One of the successes of the project has been the development of an architecture into which new
modules and services can be easily incorporated. GALEN is experimental, and it is premature to
determine which services will be best packaged together. It is important to modularity that the
developers resist the temptation to extend the server without limit. On the other hand, when services
are encountered which are tightly coupled to the terminological functions they can be incorporated as
needed.

6.2 Evaluation
Ultimately, the Terminology Server will be judged by how well it supports applications,. There are
at least two broad areas for evaluation:

• Does the terminology server and model support individual applications effectively?
• Can the same terminology server and model support several communicating applications?

These questions can be further separated into two groups:
• Those which concern the idea of a Terminology Server and its functions per se;
• Those which concern the CORE Model and the facilities of the GRAIL Kernel modelling

language.
This paper has concentrated on the functions of the Terminology Server per se the key issue for
which must be whether the separation and architecture are convenient for the development of
applications, given an effective CORE Model.
The GALEN project itself contains applications to test the clinical effectiveness of the combined
Terminology Server and CORE Model, including clinical user interfaces, medical records and
knowledge based systems. Further collaborative developments are planned. Initial results are
promising, but definitive results will have to await further experience. (There are also a range of
procedures in place to evaluate the CORE Model itself.)

6.3 Current Status
GALEN is a long term project to demonstrate the feasibility of the approach both to the architecture
of the terminology engine and to the techniques of concept modelling. Current progress is promising
but does not yet constitute definitive evidence of that feasibility. As of June 1994, initial versions of
the Terminology Server have been implemented and applications for clinical user interfaces, medical
records and knowledge based systems are now being developed. Portions of the CORE Model have
been compiled for gastro-intestinal diseases, arthroscopy proceedings and findings, and urinary tract
and respiratory tract infections. A general framework for a model of anatomy has been developed
and the broad shallow model of anatomy is nearing completion. The concept of a client-server
architecture has been tested, and it has been shown that applications and the server can interact

Published in the Proceedings of IMIA WG6, Geneva, May 1994

15

successfully running on different machines linked across either local area networks or across the
Internet.

7. References
1. Lindberg D, Humphreys B, McCray A. The Unified Medical Language System. In: van Bemmel

J, ed. 1993 Yearbook of Medical Informatics. Amsterdam: Intermational Medical Informatics
Association, 1993: 41-53.

2. Côté R, Rothwell D. SNOMED-3.Chicago: College of American Pathologists, 1993
3. Read J. The Read Clinical Classification. In: NHS Centre for Coding and Classification,

Loughborough, UK, 1993:
4. Evans DA, Cimino J, Hersh WR, Huff SM, Bell DS, The Canon Group. Position Statement:

Towards a Medical Concept Representation Language. Journal of the American Medical
Informatics Association 1994;1 (in press).

5. Cimino JC, Hripscak G, Johnson S. Knowledge-based approaches to the maintenance of a large
controlled medical terminology. Journal of the American Medical Informatics Association
1994;1(1):35-50.

6. Rector A, Nowlan W, Glowinski A. Goals for Concept Representation in the GALEN project.
17th Annual Symposium on Computer Applications in Medical Care (SCAMC-93).
McGraw Hill, 1993: .

7. Rector A, Nowlan W, Kay S. Conceptual Knowledge: The Core of Medical Information
Systems. In: Lun K, Degoulet P, Pierre T, Rienhoff O, (ed). Seventh World Congress on Medical
Informatics, MEDINFO-92. Geneva: North-Holland Publishers, 1991: 1420-1426.

8. Rector A. Marking up is not enough. Methods of Information in Medicine 1993;32(4):272-273.
9. Lenat DB, Guha RV, Pittman K, Pratt D, Shepherd M. Cyc: toward programms with common

sense. Communications of the ACM 1990;33(8):30-49.
10. Lenat RGaDB. Re: CycLing paper reviews. Artificial Intelligence 1993;61(1):149-74.
11. McGuire JG, Kuokka D, Weber JC, Tenenbaum JM, Gruber TR, Olsen GR. SHADE:

Technology for knowledge based collaborative engineering. Jounral of Concurrent Engineering:
Applications and Research (CERA) 1993;1(2).

12. Neches R, Fikes R, Finin T, et al. Enabling Technology for Knowledge Sharing. AI Magazine
1991;(Fall 1991):37-54.

13. Patil RS, Fikes RE, Patel-Schneider PF, et al. The DARPA Knowledge Sharing Effort: Progress
Report. Principles of Knowledge Representation and Reasoning, Third International Confrence.
Cambridge MA: Morgan Kaufman, 1992: .

14. Musen M. Dimensions of knowledge sharing and reuse. Computers and Biomedical Research
1992;25:435-467.

15. Walther E, Eriksson H, Musen MA. Plug-and-Play: Construction of task-specific expert-system
shells using sharable context ontologies. AAAI Workshop on Knowledge Repreentation Aspects
of Knowledge Acquision. San Jose CA: , 1992: 191-198.

16. Schreiber A, van Heijst G, Lanzola G, Stefanelli M. Knowledge organisation in medical KBS
construction. In: Andreassen S, Engelbrecht R, Wyatt J, (ed). Fourth Conference on Artificial
Intelligence in Medicine Europe. Munich: IOS Press, 1993: 394-405.

17. Masarie Jr F, Miller R, Bouhaddou O, Giuse N, Warner H. An interlingua for electronic
interchange of medical information: using frames to map between clinical vocabularies.
Computers in Biomedical Research 1991;24(4):379-400.

18. Rector A, Nowlan W. The GALEN Representation and Integration Language (GRAIL) Kernel,
Version 1. In: The GALEN Consortium for the EC AIM Programme. (Available from Medical
Informatics Group, University of Manchester), 1993:

19. Rector AL, Nowlan W. A Reusable Application Independent Model of Medical
Terminology: GALEN’s GRAIL. KR-94. Berlin: Morgan Kaufmann, 1994: (in press).

Published in the Proceedings of IMIA WG6, Geneva, May 1994

16

20. Brachman RJ, McGuinness DL, Patel-Schneider PF, Resnick LA, Borgida A. Living with
Classic: When and how to use a KL-ONE-like language. In: Sowa J, ed. Principles of Semantic
Networks: Explorations in the representation of knowledge. San Mateo, CA: Morgan Kaufmann,
1991: 401-456.

21. Sowa J. Conceptual Structures: Knowledge Representation in Mind and Machine.New York:
John Wiley & Sons, 1985

22. Brachman R, Fikes R, Levesque H. An essential hybrid reasoning system; knowledge and
symbol level accounts of KRYPTON. International Joint Conference on Artificial Intelligence
(IJCAI-85). Morgan Kaufman, 1985: 532-539.

23. World Health Organisation. International Clasification of Diseases.Geneva: World Health
Organisation, 1989

24. Fikes R, Cutkosky M, Gruber T, Baalen jV. Knowledge Sharing Technology -- Project
Overview. In: Stanford University, Knowledge Sharing Laboratory, 1991:

25. Lenat DB, Guha RV. Building Large Knowledge-Based Systems: Representation and inferenc in
the Cyc Project.Reading, MA: Addison-Wesley, 1989:372.

26. Lenat D, Guha R. Ideas for applying Cyc. In: MCC, 1991:
27. Guha R, Lenat D. Cyc: a midterm report. AI magazine 1990;11(3):32-59.

