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Abstract: Structural vibration induced by low frequency elastic waves presents a great threat to
infrastructure such as buildings, bridges, and nuclear structures. In order to reduce the damage
of low frequency structural vibration, researchers proposed the structure of seismic metamaterial,
which can be used to block the propagation of low frequency elastic wave by adjusting the frequency
range of elastic wave propagation. In this study, based on the concept of phononic crystal, a ternary
seismic metamaterial is proposed to attenuate low frequency vibration by generating band gaps.
The proposed metamaterial structure is periodically arranged by cube units, which consist of rubber
coating, steel scatter, and soft matrix (like soil). The finite element analysis shows that the proposed
metamaterial structure has a low frequency band gap with 8.5 Hz bandwidth in the range of 0–20 Hz,
which demonstrates that the metamaterial can block the elastic waves propagation in a fairly wide
frequency range within 0–20 Hz. The frequency response analysis demonstrates that the proposed
metamaterial can effectively attenuate the low frequency vibration. A simplified equivalent mass–
spring model is further proposed to analyze the band gap range which agrees well with the finite
element results. This model provides a more convenient method to calculate the band gap range.
Combining the proposed equivalent mass–spring model with finite element analysis, the effect of
material parameters and geometric parameters on the band gap characteristic is investigated. This
study can provide new insights for low frequency vibration attenuation.

Keywords: seismic metamaterial; band gap; low-frequency vibration attenuation; equivalent mass–
spring model

1. Introduction

Transportation, construction, or earthquakes can induce the propagation of low fre-
quency elastic waves near structures [1]. The structural vibration and machine noise
generated by low frequency elastic wave can not only destroy civil infrastructure, but
also reduce the comfort level of residents [2,3]. Among all the negative impacts caused by
low frequency elastic waves, the damage to human society and environment induced by
seismic waves is the most destructive. Traditional approaches for seismic resistance, mostly
in the form of structural anti-seismic and seismic isolation, have certain limitations [4–7].
They often induce large movement of the structures which may not be acceptable. In other
words, they cannot take effect before the seismic wave reaches the structures to block the
seismic wave from the propagation path. Seismic metamaterials, with their inherent ability
to manipulate low frequency elastic wave propagation, provide a key route for overcoming
this challenge [8–13]. Based on the concept of phononic crystal, seismic metamaterials
can block the propagation of elastic waves in a certain frequency range, which is called
band gap [14–20]. Therefore, seismic metamaterial shows broad development prospects
for the low-frequency vibration attenuation induced by elastic wave [21–24]. Local res-
onance phononic crystal proposed by Liu et al. provided a new idea to design seismic
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metamaterial for low frequency vibration attenuation [25]. Chen et al. analyzed the band
gap characteristics of seismic metamaterial under different lattice types [26]. Ungureanu
et al. proposed a negative Poisson’s ratio structure, which also has a great attenuation
effect on low frequency vibration between 30 Hz and 50 Hz [27]. In addition, seismic
metamaterial shows broad application prospects in other fields. Huang et al. found that
the elastic wave metamaterial has more powerful energy barrier at low crack speeds, which
demonstrates that the seismic metamaterial has great application potential in improving
structural strength like resisting cracking [28]. Sadat et al. use the machine learning to
predict the band gap characteristic of phononic crystal, which demonstrates the utility of
machine learning for seismic metamaterial property discovery [29].

The experiment of seismic metamaterials can be divided into two types according
to the experimental scale. One is the full-scale outdoor experiment. The first large-scale
outdoor experiment of seismic metamaterials is the low-frequency vibration attenuation
experiment of the soil drilling array [30]. It successfully proves the feasibility of seismic
metamaterials at common scales. Liu et al. verified the vibration attenuation effect of
the single-row concrete pile by outdoor vibration test [31]. Colombi et al. took forest
as the seismic metamaterial and carried out seismic geophysics experiments [32]. Yan
et al. designed a 2D metamaterial foundation and verified its isolation effect on elastic
waves through the outdoor field tests [33]. Due to the strict requirement, the outdoor
experiment is not easy to realize. Therefore, the indoor equivalent experiment by reducing
the size of metamaterial has been carried out continuously. Witarto et al. carried out
the vibration attenuation test of 1D metamaterial foundation and Chen et al. carried
out the laboratory scale experiment for evaluating the vibration attenuation of layered
soil metamaterial [34,35]. The development of experimental methods contributes to the
verification of the vibration attenuation performance of seismic metamaterials.

The development of finite element analysis lays the foundation for the numerical
simulation of seismic metamaterials. Guo summarized the finite element models and
analysis methods of composite materials, which provides an important reference for the
constitutive model optimization of seismic metamaterials [36]. Khalid provides a simple
and effective estimation method for the free-edge interlaminar stress distribution under
composite load, which is an inspiration for the calculation of stress distribution of seismic
metamaterials under external load [37]; Lee et al. proposed a hybrid method of finite
element analysis and empirical modeling to obtain the dynamic stiffness of rubber bushing
in a wide excitation frequency and amplitude range, which provides an idea for the
calculation of the equivalent stiffness of the components of seismic metamaterials [38].
The finite element analysis methods are an important tool in obtaining the band gap and
evaluating the vibration attenuation performance of seismic metamaterials.

Based on the development of experiment methods and finite element analysis, many
seismic metamaterials with lower band gap frequency were designed to attenuate the
low-frequency vibration. Achaoui et al. designed a resonant array to obtain the band
gap frequency between 16 Hz and 21 Hz. They further created the ultra-low frequency
band gap by clamping the steel inclusions to a bed rock which lies underneath a soil
layer [39,40]. Miniaci et al. studied the band gap characteristic below 10 Hz of different
hollow-shaped seismic metamaterials [41]. Krödel et al. proposed a seismic metamaterial
with cylindrical tubes array to obtain the band gap between 4 Hz and 7 Hz [42]. In
order to attenuate vibration in a larger low-frequency range, Zeng et al. designed a
cylinder seismic metamaterial with rubber rings and realized a low frequency bandwidth
of 7 Hz [43]. Xu et al. realized the band gap range of 8–16 Hz by designing a H-shaped
seismic metamaterial [44]. In addition, some natural objects show the potential to be
precisely designed as seismic metamaterials. For example, Colombi et al. designed the
forests as wedge arrays to shield the low-frequency components of elastic wave by means
of wave reflection and modal transformation [32,45]. Although most of the above seismic
metamaterials can block the low-frequency elastic waves below 20 Hz, the bandwidth of
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the band gap is not large enough. Proposing an effective method to increase the seismic
metamaterial bandwidth in low-frequency range is still an important research topic.

In this study, we proposed a ternary seismic metamaterial to attenuate low frequency
vibration below 20 Hz. In Section 2, we present the structure model of the proposed
metamaterial and the dispersion analysis for band gap calculation in finite element method
(FEM). In Section 3, the band gap calculation and the frequency response analysis of the
metamaterial is carried out using FEM. In Section 4, we propose an equivalent mass–spring
model to theoretically analyze the band gap. In Section 5, we further investigate the effect
of geometric parameters and material parameters of the metamaterial on the band gap
distribution for band gap optimization. Conclusions are presented in Section 6.

2. Metamaterial Model and Dispersion Analysis

In this section, we propose the structure model of the seismic metamaterial and present
the dispersion analysis process for calculating the band gap characteristics.

The detailed structure of the proposed metamaterial is shown in Figure 1. The structure
of the metamaterial is a square lattice structure on the x-y plane with a fixed lattice constant
(Figure 1b). The metamaterial unit is composed of steel scatter, rubber inclusions, and soil
matrix from inside to outside as shown in Figure 1c. The steel scatter is formed by removing
four cuboids from a cube with side length ′a′ and the size of the cuboids is (L1 × L2 × a)
(Figure 1d). The rubber inclusion is coated on the surface of the steel scatter with uniform
thickness ‘d’ (Figure 1e). The soil matrix is a cube with side length of ′a + 4d′ except for
the internal steel block and rubber inclusion. The periodic Bloch boundary conditions are
applied on the soil matrix along x and y directions (Figure 1f).

Figure 1. Detailed structure of the proposed metamaterial (a) Metamaterial array; (b) Unit arrange-
ment; (c) Unit cell; (d) Steel scatter; (e) Rubber inclusion (including steel scatter inside); (f) Soil matrix
(including steel scatter and rubber inclusion inside); (g) Middle cross section on x-y plane (h) Middle
cross section on x-z plane.

Here, we give a dispersion analysis process for finite element analysis to obtain the
dispersion curve between frequency ω and wave vector k. We assume that the three
components of the metamaterial are isotropic and linear elastic materials. According to
the elastic dynamic theory, the elastic motion equation with respect to the displacement is
established [22,46].

ρ
∂2ui
∂t2 = ρfi + (λ + µ)

∂2uj

∂xj∂xi
+ µ

∂2ui
∂xj∂xj

(1)
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where λ and µ are the Lamé constant, ρ is the mass density, fi is the body force, t is the time,
ui is the displacement, xi is the position coordinates. i, j = 1, 2, 3.

For the square lattice structure of phononic crystal, the displacement solution u(X, t)
in Equation (1) can be described by the Floquet–Bloch theory [47], where the position vector
is X = [x1, x2]

T . Figure 2b is the direct lattice of the structure unit, where the direct lattice
base vector is (a1, a2). The corresponding translation vector is T = n1a1 + n2a2 with n1, n2
as positive integers. We set X0 as the coordinate of the metamaterial reference unit. The
position of any unit p in the lattice structure is

Xp = X0 + T = X0 + n1a1 + n2a2 (2)

where p = 1, 2, 3 . . . is the structure unit number. Figure 2c is the reciprocal lattice of the
structure unit and the base vector is (b1, b2). The wave vector k is defined as the translation
vector in reciprocal lattice space, which is expressed as k = kxb1 + kyb2 with kx, ky as
positive integers [46]. The direct lattice basis and reciprocal lattice basis should satisfy the
following relationship bi·aj = 2πδij, where δij is the Kronecker delta, i.e., δij = 1 if i = j
and δij = 0 if i 6= j. In our study, elastic wave field can be expressed as

ψ(r, t) = ψk(r)e−iωt (3)

where i =
√
−1 is the imaginary number, ω is the angle frequency, and r is the coordinate

vector [48]. According to the Bloch theory [49], the elastic wave field ψk(r) in square lattice
can be expressed as

ψk(r) = ψ̃k(r)eik·r (4)

where eik·r represents the plane wave. ψ̃k(r) is the periodic function of lattice, which
satisfies ψ̃k(r) = ψ̃k(r + T). Utilizing Equations (3) and (4), the displacement field u(X0, t)
can be expressed as

u(X0, t) = uk(X0)e−iωt = ũk(X0)ei(k·X0−ωt) (5)

where ũk(X0) is the magnitude of the Bloch displacement field at the position X0, ũk(X0)
should satisfy the translation invariance in lattice structure, i.e.,

ũk(X0) = ũk(X0 + T) (6)

Substituting Equation (6) into Equation (5), the displacement field at the position Xp
can be expressed as

u
(
Xp, t

)
= u(X0 + T, t) = ũk(X0 + T)ei(k·(X0+T)−ωt)

= ũk(X0)ei(k·X0−ωt)eik·T = u(X0, t)eik·T
(7)

Equation (7) represents the periodic displacement boundary condition of the meta-
material array. Considering the translation invariance in lattice structure, the change of
wave amplitude is independent of the position of the unit cell. Hence, in order to obtain
the dispersion relation between frequency ω and wave vector k, we only need to consider
its unit cell [50].
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Figure 2. (a) Metamaterial array; (b) The direct lattice structure; (c) The reciprocal lattice structure;
(d) The first irreducible Brillouin zone of the unit cell in the reciprocal lattice space.

In order to obtain the dispersion relation, we use the finite element software COMSOL
to calculate the eigenvalue Equation (8) [51–53].(

K−ω2M
)
·u = 0 (8)

where K and M are total stiffness matrix and mass matrix of the unit, respectively. The dis-
persion analysis is conducted by taking the wave vector k

(
kx, ky

)
along the first irreducible

Brillouin zone to calculate the eigenvalue of Equation (8). For the square lattice, the edge
of irreducible Brillouin zone is the triangle ΓXM in the reciprocal lattice space (Figure 2d).
The vertex coordinate is Γ = 0, 0, X =

(
π
c , 0
)
, M =

(
0, π

C
)
, where c = a + 4d is the lattice

constant [54,55]. For a given real value of wave vector k, the frequency ω is the eigenvalue
of Equation (8). The band gap characteristic can be obtained by analyzing the dispersion
relationship between wave vector k and frequency ω [56].

Since the dispersion curve is calculated in an infinite array of phononic crystal, and
the real structure scale in practical condition is usually finite, the band gap characteristics
cannot fully reveal the shielding effects of the metamaterial to elastic waves. Therefore, we
further carry out the frequency response analysis of the metamaterial structure in the finite
medium to verify its attenuation effect for low frequency vibration in the next section.

3. Band Gap and Frequency Response Analysis

In this section, we obtain the band gap characteristics of the metamaterial through
the FEM and explain the generation of the band gap. Based on the obtained band gap, we
further carry out the frequency response analysis of the metamaterial structure. The work
of this section is carried out by the finite element software COMSOL.
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3.1. Band Structure and Band Gap

In order to obtain the dispersion relationship of the proposed metamaterial, we use
FEM to conduct the modal analysis and plot the band structure diagram.

The process of the finite element analysis is followed.

(a) Finite element model and material properties

The unit cell of the proposed metamaterial is adopted as the finite element model as
shown in Figure 1c. The geometric parameters of each component in a unit cell can be read
from the Figure 1d–h. The side length of soil matrix is a + 4d = 2.5 + 4× 0.05 = 2.7 m.
The thickness of rubber d is 0.05 m. The notch sizes are L1 = 0.75 m, L2 = 0.3 m. The basic
material properties of metamaterials are shown in Table 1.

Table 1. Mechanical properties of materials [40,41].

Material Young’s Modulus E (GPa) Poisson’s Ratio ν Destiny ρ (kg/m3)

Steel 210 0.3 7850
Rubber 0.00012 0.468 1300

Soil 0.03 0.3 1800

(b) Boundary conditions

For the modal analysis of metamaterial structures, the Floquet–Bloch periodic bound-
ary conditions are applied on the model along the x and y directions to calculate the
characteristic frequency under different wave vectors k.

(c) The boundary of the first irreducible Brillouin Zone

To obtain the dispersion relationship between k and ω, The wave vector k is swept
along the boundary of the first irreducible Brillouin Zone (Γ-X, X-M, M-Γ) as shown in
Figure 2d.

(d) The band structure diagram

For every wave vector k, there are infinite eigenvalues, i.e., the values of characteristic
frequencies. Taking the values of characteristic frequencies below 25 Hz and the band
structure can be plotted in the range of 0–25 Hz as shown in Figure 3.

From Figure 3, The range of frequency without the dispersion curves along Γ-X-M-Γ
(all values of wave vector k) is called the omnidirectional band gap. There are three obvious
omnidirectional band gaps. The width of the first band gap is 1.603 Hz, ranging from
7.799 Hz to 9.402 Hz. The width of the second band gap is 5.543 Hz, ranging from 10.272 Hz
to 15.815 Hz. The width of the third band gap is 1.968 Hz, ranging from 18.622 Hz to
20.590 Hz. It is worth noting that the total width of the omnidirectional band gaps below
20 Hz reaches 8.524 Hz, accounting for 42.6% of the range of 0–20 Hz, which means that the
proposed metamaterial structure can block the elastic waves propagation in a fairly wide
frequency range within 0–20 Hz. In addition, the band gap characteristics of metamaterials
can be optimized by changing the geometric parameters and material parameters of unit
cell, and the effect of relevant parameters will be discussed in Section 5.

3.2. Vibration Mode Analysis

The generation of the band gap can be explained according to the coupling effect be-
tween the vibration mode of the structure unit cell and the elastic wave propagation [57–63].
In this section, we analyze the vibration modes of the unit cell in boundary frequencies of
band gaps to explain the starting and termination of each band gap.
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Figure 3. Band structure of the proposed metamaterial, the yellow bands represent three omnidirec-
tional band gaps. A, B, C, D, E, and F are six boundary points of three band gaps.

There are three omnidirectional band gaps in the band structure from Figure 3. Each
band gap has two boundary points at the starting frequency and the cut-off frequency,
respectively. There are six band gap boundary points A, B, C, D, E, and F in the band
structure diagram. Figure 4 is the vibration mode of metamaterial structure unit at six
band gap boundary points (the main views and the middle cross sections on x-z plane or
x-y plane), which are presented by the displacement field of the unit cell. The direction
and length of the arrow in the diagram represent the direction and magnitude of the
displacement at the starting position of this arrow.
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Figure 4. (a) Vibration mode of point A (main view and middle cross section on x-y plane; (b). Vibration
modes of point B (main view and middle cross section on x-z plane; (c). Vibration modes of point C
(main view and middle cross section on x-z plane; (d). Vibration modes of point D (main view and
middle cross section on x-y plane; (e). Vibration modes of point E (main view and middle cross section
on x-y plane; (f). Vibration modes of point F (main view and middle cross section on x-y plane.
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Mode A and mode B are the vibration mode at the starting frequency and cut-off
frequency of the first band gap, respectively. From the mode A, the steel scatter horizontally
vibrates along the x-direction, and the soil matrix has slight vibration along the opposite
direction. The vibration mode of the metamaterial unit cell shows the local resonance mode
of the steel scatter. Because of the large mass of the steel scatter, its resonance frequency is
low. When the frequency of elastic wave propagation is close to the resonance frequency
of the steel block, the steel block will generate resonance and strongly couple with the
plane mode of elastic wave propagation, localizing most of the energy of the elastic wave.
Therefore, the elastic wave stops propagating, and the band gap starts. From the vibration
mode of point B, the rubber vibrates longitudinally with the soil matrix, and the steel scatter
has a reverse slight vibration. The vibration mode is shown as the local resonance of the soil
matrix. Because of the low mass of the soil matrix, the coupling effect between the vibration
mode of unit cell and the longitudinal shear mode of the elastic wave propagation is weak.
Most of the energy of the elastic wave cannot be localized. The adjacent metamaterial units
vibrate on the same phase and the elastic wave can continue to propagate. Hence the first
band gap terminates. Mode C and mode D are the vibration mode at the starting frequency
and the cut-off frequency of the second band gap, respectively. From the vibration mode at
point C, the soil matrix shows longitudinal shear vibration mode. The vibration directions
on both sides of the soil matrix are opposite, and the displacement amplitudes are the
same. Shear effects on both sides of steel scatter offset each other and the total displacement
of the unit cell is 0, which lead to the total displacement of the metamaterial structure
to be 0. The elastic wave cannot propagate and the band gap starts. From the vibration
mode of point D, the soil matrix and rubber inclusion locally vibrate along the y-direction,
whose displacement along the x-direction is relatively small and the displacement of steel
block is mostly zero. In other words, the total displacement amplitude of the metamaterial
element is small. Furthermore, the mass of the soil matrix is small which causes the weak
coupling between the vibration mode of metamaterial unit and the plane mode of elastic
wave propagation. Therefore, most energy of elastic wave is retained and the elastic wave
can continue to propagate. Hence the band gap terminates at mode D. Mode E and mode F
are the vibration mode of the starting frequency and cut-off frequency of the third band
gap, respectively. In the vibration mode of point E, the soil matrix and rubber inclusion are
shown as torsional vibration mode, which has torque on the steel scatter. This vibration
mode does not lead to the horizontal movement of the metamaterial structure unit. The
total displacement of the metamaterial structure is 0, which means the elastic wave cannot
cause the horizontal vibration of the unit cell. The band gap starts at mode E. When the
frequency of elastic wave propagation increases to the frequency of mode F, the soil matrix
horizontally vibrates on the x-y plane. The low mass of the soil matrix causes the weak
coupling effect with the plane wave of the elastic wave. The elastic wave can continue to
propagate and the band gap terminates.

For the proposed metamaterial structure, it can be found that when the frequency is
low, the band gap mainly depends on the resonance frequency of the steel scatter. When the
frequency is high, the band gap is related to the vibration mode of the soil matrix. When
the total displacement of the unit cell on the x-y plane is 0, the band gap is generated; when
the unit cell generates translation on the x-y plane, the band gap terminates.

3.3. Frequency Response Analysis

In order to verify the vibration attenuation on low frequency elastic waves of the
proposed metamaterial structure, the frequency response of the finite array of the meta-
material is studied. In this section, we construct a FEM model of the frequency response
analysis as shown in Figure 5a. This model is composed of metamaterial array, perfect
matching layer (PML), and soil. Ten metamaterial units are arranged along the x-direction
according to the periodic constant ‘c’. Soil material with length of 5c is placed on the left
and right sides of the metamaterial array. In addition, the perfect matching layer (PML)
with a length of 0.5c along the x-direction is added to the left and right ends of the soil
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material to absorb redundant interfering waves. This additional area will not produce any
reflection of elastic waves. The material parameters of soil and metamaterial are the same
as the Table 1. The material parameters of PML are the same as the soil. The plane wave
with 100 MPa pressure amplitude is applied on the left side as the external excitation which
propagates along the positive x-direction. Floquet–Bloch periodic boundary conditions
along the y-direction are applied on the study model to achieve the infinite plane wave
sources and realize the structure periodicity.

Figure 5. (a) Diagram of finite length model for the frequency response analysis; (b) Band structure
diagram of the proposed metamaterial; (c) Frequency response curve of the metamaterial.

For a finite scale metamaterial array, the vibration attenuation effect is evaluated
by the frequency response factor (FRF) which is defined as the ratio between response
displacement µ1 and excitation displacement µ0, i.e., FRF = 20 log

(
µ1
µ0

)
[37,64]. Here, µ1 is

the maximum displacement at the ending point of the metamaterial array (point B), and
µ0 is the maximum displacement at the starting point of the metamaterial array (point A).
The frequency response analysis of elastic wave propagation in the range of 0–25 Hz is
carried out with the step size of 0.1 Hz. The relationship between FRF and the excitation
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frequency of plane wave is shown in Figure 5c. From Figure 5c, with the increasing of
transmission frequency, the FRF has three obvious attenuation sections. The frequency
ranges of these three attenuation zones well agree with the three omnidirectional band
gaps from the band structure diagram (Figure 5b). It is worth mentioning that the FRF
has a significant upward trend between 16 and 18.6 Hz, which is very close to the pass
band frequency range between the second band gap and the third band gap from the
band structure diagram. Therefore, the frequency response analysis demonstrates that the
proposed metamaterial structure can effectively attenuate the structural vibration caused
by low frequency elastic waves.

4. Equivalent Mass–Spring Model

In the previous sections, we investigate the band gap characteristic based on FEM.
However, FEM simulation usually cost much time. Here, we simplify the vibration mode of
boundary frequency of band gap into an equivalent mass–spring model and theoretically
calculate the band gap frequency range of the metamaterial structure.

4.1. Equivalent Model of Band Gap Boundary Vibration Modes

From Figure 6a, it can be found that the displacement of the steel scatter is along the
positive x-direction and the rubber inclusion moves slightly. The soil matrix shows small
displacement along the negative x-direction. From Figure 6b, it can be found that has the
displacement of the soil matrix is along the positive x-direction, and the rubber inclusion
moves slightly. The displacement of steel scatter is very small. These two vibration modes
are shown as the relative motion of steel scatter and soil matrix along the x-direction.
Since the width of rubber is very small, the rubber moves followed by the soil matrix
or steel block scatter. Thus, the rubber inclusion can be regarded as a spring connecting
the steel scatter and soil matrix. These two vibration modes in Figure 6 can be described
uniformly by a mass–spring–mass model (as shown in Figure 6c). In this model, m1 and
m2 are the equivalent masses and k is the equivalent stiffness of the spring. By solving the
characteristic frequencies of the equivalent model under corresponding vibration modes,
the start frequency and cut-off frequency of the band gap can be obtained. Next, we will
determine the value of m1, m2 and k to calculate the band gap frequency range.

Figure 6. Cont.
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Figure 6. (a) The x-y middle cross section of unit cell vibration mode at starting frequency of band
gap; (b) The x-y middle cross section of the unit cell vibration mode at cut-off frequency of band gap;
(c) The equivalent model that can be used to describe these two vibration modes.

4.2. Determination of Equivalent Mass and Equivalent Stiffness

(i) Equivalent mass m1, m2

From Figure 6a,b, it can be found that the vibration modes of the unit cell are symmet-
rical about the x-axis. Because the structure of the unit cell is also symmetrical about the
x-axis as shown in Figure 7a, only a half of the unit cell need to be considered as shown
in Figure 7b. Since the mass of rubber cannot be ignored compared with soil and steel,
the mass of rubber is needed to redistribute to the equivalent mass m1 and m2. As shown
in Figure 7c, the mass of rubber can be divided into mA and mB. Part A of rubber can
be represented as a spring connecting the steel and soil because the stiffness of spring is
mainly provided by the tension/compression deformation of this part when the soil and
steel move relatively. Part B of rubber can be represented as the soil, because the stiffness
provided by the deformation of this part is negligible and its displacement is very close
to the soil. Next, the mass of part A is distributed to m1 and m2. α is defined as the mass
ratio distributed into m1 to m2 from mA, which is represents by the distances from standing
point to m1 and m2 as shown in Figure 6c. In order to ensure that the mass of m1 and m2 is
fixed when the spring vibrates, the position of the stand point should be fixed. According
to the motion equation of mass–spring–mass model, the value of α should be α = m2

m1
.

Figure 7. (a) Middle cross section of unit cell on x-y plane; (b) A half of the middle cross section of
the unit cell on x-y plane, mcore and mhost is the mass of steel scatter and soil matrix, respectively;
(c). The process of dividing rubber into part A and part B.
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Based on the above analysis, the mass distribution process between the structure unit
cell and the mass–spring–mass model is shown in Figure 8.

Figure 8. Mass corresponding relationship between structure unit cell and mass–spring–mass model.

Based on Figure 8, the calculation process of equivalent mass m1 and m2 is

m1 = mcore + mA
α

1 + α
(9)

m2 = mhost + mB + mA
1

1 + α
(10)

α =
m2

m1
. (11)

Solving Equations (9)–(11), α can be calculated as

α =
mA + mB + mhost

mA + mcore
. (12)

From the Figure 7b, the rubber mass mA and mB are

mA = ρrubberd(a + 2L2 − 4d) (13)

mB = ρrubberd(a + 2L2 − 2d). (14)

The mass of steel scatter mcore and soil matrix mhost are

mcore = ρsteel(
a2

2
− 2L1L2) (15)

mhost = ρsoil(
(a + 2d)2

2
− (a + 2d)2

2
+ (2L1 − 4d)L2) (16)
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where ρsteel , ρsoil and ρrubber represent the density of steel, soil, and rubber, respectively—
i.e., 7850 kg

m3 , 1800 kg
m3 , and 1300 kg/m3. The geometric parameters are the same as that in

the finite element analysis: L1 = 0.75 m, L2 = 0.3 m, d = 0.05 m, a = 2.5 m.
Solving above equations, the value of m1, m2 and α are 17,489.0 kg, 2350.2 kg, and

0.1344, respectively.

(ii) Equivalent stiffness k

The rubber inclusion in part A can be regarded as many springs with length ‘d’ in
parallel connection. The equivalent stiffness k of the spring is

k =
c1(a− 4d + 2L2)

d
(17)

c1 = λ + 2µ (18)

where λ and µ are the Lamé constant of rubber. Solving Equations (17) and (18), the
equivalent stiffness can be calculated as 1.75 × 107.

4.3. Bandgap Boundary Frequencies

The vibration mode of the band gap at starting frequency (as shown in Figure 6a) is
mainly shown as the horizontal displacement of the steel scatter and the slight displacement
of the rubber inclusion. Because of the small displacement of soil matrix, only the vibration
of steel scatter and the rubber part A are needed to be considered. Therefore, the equivalent
mass m2 in the mass–spring–mass model can be further considered as a rigid wall with the
displacement of 0. The equivalent model at the starting frequency of the band gap can be
further simplified to the single mass–spring model shown in Figure 9a.

Figure 9. (a) Equivalent model of band gap at starting frequency. (b) Equivalent model of band gap
at cut-off frequency.

The characteristic frequency of the model is

f1 =

√
k

m1
(19)

The vibration mode of the band gap at cut-off frequency (as shown in Figure 6b) is
mainly shown as the horizontal displacement of the soil matrix and the slight displacement
of the rubber inclusion. Contrary to the vibration mode at the starting frequency, the
displacement of the steel scatter is very small which can be represented as a rigid wall.
Therefore, the equivalent model of band gap at cut-off frequency can be further simplified
to the single mass–spring model shown in Figure 9b.

The characteristic frequency of the model is

f2 =

√
k

m2
(20)
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According to the value of equivalent mass m1, m2 and equivalent stiffness k, the
starting frequency and cut-off frequency can be calculated as f1 = 7.555 Hz, f2 = 20.610 Hz.

The theoretical analysis range of band gap frequency is 7.555 Hz–20.610 Hz and the
bang gap range of finite element analysis is 7.799–20.590 Hz. These results agree well.
Therefore, the band gap frequency range of the metamaterial structure can be calculated
faster through the equivalent mass–spring model. It also can be found from Equations (19)
and (20) that the starting frequency and the cut-off frequency is very close to the resonance
frequencies of steel scatter and soil matrix, respectively. This phenomenon agrees with the
vibration mode analysis conclusion in Section 3.2.

5. Optimization of Band Gap Characteristics

The geometric parameters and material parameters of seismic metamaterial are im-
portant factors affecting the band gap characteristic [35,62–67]. In order to further study
the effect of these factors on the band gap characteristics and obtain the band gap with
lower frequency and larger bandwidth, we investigate the band gap characteristics using
the FEM and equivalent mass–spring model under different elastic modulus of the rubber
inclusion, different lattice constant of the metamaterial array and different filling ratio of
the steel scatter, respectively.

5.1. Effect of Lattice Constants of Metamaterial Arrays

We first analyze the relation between the distribution of the band gap and the lattice
constant of the metamaterial array by FEM. The lattice constants of the metamaterial unit
are set as 2.5, 3.1, 3.7, 4.3, 5.0, and 5.6 m, respectively. For the different lattice constant ‘a’,
the finite element simulation of the characteristic frequency of the metamaterial structure is
carried out and the band gap frequency ranges are obtained. Table 2 shows the band gap
characteristics under different lattice constants. The corresponding band gap distributions
is shown in Figure 10. We also adopt the equivalent mass–spring model to calculate the
starting frequency and the cut-off frequency of the band gaps. The theoretical analysis
results are compared with the FEM results as shown in Figure 11.

Table 2. Distribution of band gap under different lattice constants.

Lattice Constant
(m)

Number of Band
Gaps

Band Gap Range
(Hz)

Total Omnidirectional Band
Gap Width (Hz)

2 3 9.7–12.0; 13.2–20.0;
22.9–25.5 11.7

2.5 3 7.8–9.4; 10.2–15.8;
18.6–20.6 9.2

3.1 3 6.2–7.8; 8.4–13.0;
14.7–16.9 8.4

3.7 3 5.2–6.5; 6.8–10.9;
11.8–14.2 7.6

4.3 3 4.2–5.6; 5.9–9.4;
10.0–12.1 7.0

5 3 3.8–4.8; 5.3–8.0;
8.6–10.5 5.6
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Figure 10. Effect of lattice constant on band gap distribution.

Figure 11. Theoretical and FEM results of band gap ranges under different lattice constants.

From Figure 10, it can be found that the starting frequencies and cut-off frequencies
of band gaps decrease with the increasing of lattice constants. Since the filling ratio of the
scatter is unchanged, the mass of the scatter and the mass of the matrix will increase with the
increasing of lattice constants and their resonance frequencies will decrease. Therefore, the
starting frequency and the cut-off frequency become lower. Figure 11 shows the comparison
between the band gap frequency results of the equivalent mass–spring model and the FEM,
which agree well. It proves that it is reasonable to predict the band gap characteristics of
the metamaterial structure by using the equivalent mass–spring model within a certain
ranges of lattice constants.
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5.2. Effect of Elastic Modulus of Rubber Inclusion

Rubber inclusion is often used as spring in the band gap analysis of seismic metama-
terial, so it is necessary to study the effect of elastic modulus on band gap characteristic.
We analyze the effect of elastic modulus of rubber inclusion on the band gap distribution
through FEM simulation and equivalent mass–spring model. Except for the different elastic
modulus of rubber, the rest structural parameters and geometric parameters of metama-
terial are the same. The elastic modulus of rubber is set as 0.08, 0.12, 0.15, and 0.18 MPa,
respectively. Table 3 is the FEM results of band gap characteristics under different elastic
modulus of rubber, where the relation between elastic modulus of rubber inclusion and
band gap distribution is plotted in Figure 12. Figure 13 is the results comparison of band
gap characteristic between the FEM and the equivalent mass–spring model.

Table 3. Band gap distribution under different rubber elastic modulus.

Elastic Modulus of
Rubber (MPa)

Number of
Band Gaps

Band Gap Range
(Hz)

Total Omnidirectional Band
Gap Width (Hz)

0.08 3 6.5–8.3; 9.3–13.6;
16.8–17.8 7.1

0.12 3 7.8–9.4; 10.2–15.8;
18.6–20.6 9.2

0.15 3 8.5–10.7; 11.0–17.6;
20.4–23.3 12.7

0.18 3 9.3–11.5; 11.6–19.0;
21.2–24.5 12.9

Figure 12. Effect of elastic modulus of rubber on band gap distribution.
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Figure 13. Theoretical and FEM results of band gap ranges under different elastic moduli of rubber.

From Figure 12, it can be found that the frequency of the band gap and the total
bandwidth increase with increasing of the elastic modulus of the rubber. This phenomenon
is due to the increasing equivalent stiffness of the spring which leads to the increasing
resonance frequencies of the scatter and the matrix. When the elastic modulus of rubber
exceeds 0.15 MPa, the band gap between almost covers the frequency range of 10–20 Hz.
Therefore, increasing the elastic modulus of inclusions is an effective method to increase the
bandwidth. However, with the increasing of bandwidth the starting frequency is also rising,
which is not a favorable trend for the low frequency vibration attenuation. Researchers
can adjust the elastic modulus of rubber appropriately according to the required band gap
width and band gap frequency ranges. From Figure 13, the calculation results of band gap
boundary frequencies by the FEM and the equivalent mass–spring model reach agreement,
which indicates that in a certain range of rubber elastic modulus, the equivalent mass–
spring model is applicable to calculate the band gap characteristics of the metamaterial.

5.3. Effect of Filling Ratio of Steel Scatter

The band gap characteristics under different filling ratios of steel scatter are analyzed
by FEM and equivalent mass–spring model respectively. Filling ratio is the volume ratio
of scatter in seismic metamaterial. In our research, different filling ratio is realized by
changing the side length ‘a’ in steel scatter unit model (Figure 2d), which is set as 2, 2.1,
2.2, 2.3, 2.4, and 2.5 m, respectively. The thickness of the rubber inclusion remains 0.05 m,
and the lattice constant of the metamaterial remains 2.7 m. Thus, the corresponding filling
ratios are 0.2894, 0.3350, 0.3852, 0.4401, 0.5001, and 0.5652, respectively. The relationship
between the distribution of band gap and the filling ratio of steel scatter through FEM
is shown in Figure 14. Table 4 illustrates the FEM results of the band gap distribution
characteristics under different filling ratio of steel scatter. Figure 15 shows the comparison
between the calculation results of the equivalent mass-model and the FEM on the band gap
boundary frequency.
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Figure 14. Effect of the filling ratio of steel scatter on the band gap distribution.

Table 4. Band gap distribution under different scatter filling rates.

Filling Rate Number of
Band Gaps

Band Gap Range
(Hz)

Total Omnidirectional
Band Gap Width (Hz)

0.2894 1 11.5–13.2 1.7

0.3350 1 11.7–13.4 1.7

0.3852 1 11.8–13.3 1.5

0.4401 2 8.7–10.4; 13.0–14.7 3.4

0.5001 3 8.0–10.2; 12.4–15.8;
17.2–18.5 6.9

0.5652 3 7.8–9.4; 10.2–15.8;
18.6–20.6 9.2

Figure 15. Theoretical and FEM results of band gap ranges under different filling ratio of scatter.
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From Figure 14, it can be found when the filling ratio of the scatter is lower than
0.4, only one band gap can be formed, and the bandwidth of the first band gap is mostly
unchanged. When the filling ratio rises to 0.44, the second band gap appears. Until the
scatter filling ratio reaches 0.57, the third band gap is generated. In general, with increasing
of the scatter filling ratio, the number of band gaps increases and the total bandwidth also
increases. Figure 15 shows that when the filling ratio is small, the FEM results are greatly
different from the results of the equivalent mass–spring model. With the increasing of the
filling ratio, when the number of band gaps increases to three, the FEM results are almost
consistent with the theoretical results. This phenomenon is due to the vibration mode of
the metamaterial structure unit under low filling ratio cannot be accurately described as
the equivalent mass–spring model. Therefore, we think that the equivalent mass–spring
model is only applicable to describe the band gap characteristics with a certain range of
scatter filling ratio, which is generally higher than 0.5. In addition, increasing the filling
ratio of steel scatter will increase the total bandwidth but the starting frequency does not
increase, which is good for the vibration attenuation under low frequency.

Based on the above analysis, in order to obtain band gap characteristics with lower
frequency and larger bandwidth, researchers can optimize the band gap characteristics
by increasing the elastic modulus of inclusion, increasing the filling ratio of the scatter or
choosing proper lattice constant of the metamaterial unit.

6. Conclusions

In this study, we propose a ternary seismic metamaterial to attenuate structural vi-
bration induced by low-frequency elastic waves. Through FEM analysis, the band gap
characteristics are obtained, and the frequency response factor is calculated. Then an
equivalent mass–spring model is proposed to calculate the theoretical band gap frequency
range of the metamaterial structure. On this foundation, the optimization for the band
gap characteristics is investigated by changing the geometric parameters and material
parameters of the metamaterial components. According to the results and analysis, the
following conclusion can be drawn:

1. The proposed metamaterial structure can generate an omnidirectional band gap of
8.5 Hz width in the low frequency range of 0–20 Hz and the low frequency vibration
in the band gap range can be well attenuated.

2. The results of the proposed equivalent mass–spring model agree well with the FEM
results. This model provides a convenient method to obtain the band gap range.

3. The band gap with lower frequency and larger bandwidth can be obtained by appro-
priately increasing the filling ratio of the scatter, the elastic modulus of the inclusion,
or choosing the lattice constant of the metamaterial array.

This study can provide an important reference for the attenuation of low-frequency
vibration of infrastructure such as nuclear power plants.
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