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Abstract

The ability to recover robust spatial descriptions from sen-
sory information and to efficiently utilize these descrip-

tions in appropriate planning and problem-solving ac-
tivities are crucial requirements for the development of

more powerful robotic systems. Traditional approaches

to sensor interpretation, with their emphasis on geometric
models, are of limited use for autonomous mobile robots

operating in and exploring unknown and unstructured en-
vironments. In this paper, we present a new approach

to robot perception that addresses such scenarios using a

probabilistic tesselated representation of spatial informa-
tion called the Occupancy Grid. The Occupancy Grid is a
multi-dimensional random field that maintains stochastic

estimates of the occupancy state of each cell in the grid.
The cell estimates are obtained by interpreting incoming

range readings using probabilistic models that capture the

uncertainty in the spatial information provided by the sen-

sor. A Bayesian estimation procedure allows the incre-
mental updating of the map using readings taken from

several sensors over multiple points of view. We provide

an overview of the Occupancy Grid framework and illus-

trate its application to a number of problems in mobile
robot mapping and navigation. We argue that a number

of robotic problem-solving activities can be performed di-
rectly on the Occupancy Grid representation, and draw

some parallels between operations on Occupancy Grids
and related image processing operations.

1 Introduction

Two crucial requirements for the development of more
flexible and powerful robotic systems are the ability to

recover robust spatial descriptions of the surrounding

world using sensory information, and the ability to ef-

ficiently utilize these descriptions in appropriate planning

and problem-solving activities. Traditional approaches to
sensor interpretation in Robotics and Computer Vision

have largely relied on the recovery and manipulation of

geometric world models [6]. "Low-level" sensing proce-

dures extract geometric features such as line segments or

surface patches from the sensor data, while "high-level"
sensor modules use prior geometric models and heuris-

tic assumptions about the environment to constrain the

sensor interpretation process. The resulting deterministic

geometric descriptions of the environment of the robot are
subsequently used as the basis for other robotic activities,
such as obstacle avoidance, path-planning and navigation,

or planning of grasping and assembly operations. These

approaches, which we characterize as part of the Geomet-
ric Paradigm in Computer Vision, have, however, sev-
eral shortcomings [6]. Generally speaking, the Geometric

Paradigm leads to sparse and brittle world models; it re-

quires early decisions in the interpretation of the sensor
data for the instantiation of specific model primitives; it

does not provide appropriate mechanisms for handling the

uncertainty and errors intrinsic in the sensory information;
and it relies heavily on the accurateness and adequacy of

the prior world models and heuristic assumptions used.

As a result, these geometric approaches are of limited use

for complex scenarios such as those that arise in the use
of autonomous or semi-autonomouS vehicles for planetary

exploration. Such mobile robots have to be able to operate
in and explore unknown and unstructured environments,

while coping with unforeseen conditions.

More recently, a number of other methodologies have

started to be applied to robot perception tasks, with en-

couraging preliminary results. We have discussed else-
where [6, 4] the role of stochastic sensor models and repre-

sentation schemes in the development of robust robot sys-

tems operating in unstructured real-world environments.

In this paper, we review a new approach to robot per-

ception and world modelling that uses a probabilistic tes-

selated representation of spatial information called the Oc-

cupancy Grid [6, 4]. The Occupancy Grid is a multi-
dimensional random field that maintains stochastic esti-

mates of the occupancy state of each cell in the grid. The

cell estimates are obtained by interpreting incoming range

readings using probabilistic models that captm'e the uncer-

tainty in the spatial information provided by the sensors.

Bayesian estimation procedures allow the incremental up-

dating of the Occupancy Grid using readings taken from
several sensors over multiple points of view. As a re-

suit, the disambiguation of sensor data is performed not

through heuristics or prior models, but by higher sensing
rates and the use of appropriate sensing strategies.

In subsequent sections, we will provide an overview of
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theOccupancyGridformulationanddiscuss how the Oc-

cupancy Grid framework provides a unified approach to

a number of tasks in mobile robot perception and naviga-

tion. These tasks include range-based mapping, multiple
sensor integration, path-planning and obstacle avoidance,

handling of robot position uncertainty and other related

problems. We suggest that a number of robotic problem-

solving activities can be performed directly on the Oc-

cupancy Grid representation, precluding the need for the
recovery of deterministic geometric descriptions. We also

draw some parallels between operations on Occupancy
Grids and related image processing operations.

2 The Occupancy Grid Approach

The scenario under consideration in this paper involves a

mobile robot operating in unknown and unstructured en-

vironments, and carrying a complement of sensors that

provide range information directly (sonar, scanning laser
rangefinders) or indirectly (stereo systems). We will be

mainly concerned with the development of robust mecha-

nisms for robot perception and navigation. In this section,

we provide a brief outline of the Occupancy Grid formu-
lation, while in the succeeding sections we discuss several

applications of Occupancy Grids to mobile robot mapping

and navigation. More details can be found in [6, 4]; pre-
liminary experimental results were reported in [8, 5, 9, 3,
13].

2.1 The Occupancy Grid Representation

The Occupancy Grid is a multi-dimensional (typically 2D
or 3D) tesselation of space into cells, where each cell

stores a probabilistic estimate of its state. Formally, an
Occupancy Field O(x) can be defined as a discrete-state

stochastic process defined over a set of continuous spatial

coordinates x = (xl, xz .... ), while the Occupancy Grid is

defined over a discrete spatial lattice. Consequently, the
Occupancy Grid corresponds to a discrete-state (binary)

random field [19]. A realization of the occupancy Grid
is obtained by estimating the state of each cell from sensor
data.

More generally, the cell state could encompass a num-
bed" of properties, described using a random vector asso-

ciated with each lattice point of the random field, and

estimated accordingly. We refer to such general world
model representations, which are again instances of ran-
dom fields, as Inference Grids [6]. Since in our current

discussion we are mainly interested in spatial models for
robot perception, we will restrict ourselves to the estima-

tion of a single property, the occupancy state of each cell.

In the occupancy Grid, the state variable s(C) asso-
ciated to a cell C is defined as a discrete random vari-

able with two states, occupied and empty, denoted dec

and EMP. Since the states are exclusive and exhaustive,

P[s(C) = dec] + P[s(C) = EMP] = 1. Each cell has, there-

fore, an associated probability mass function that is esti-
mated by the sensing process.

2.2 Estimating the Occupancy Grid

To construct a map of the robot's environment, two pro-
cessing stages are involved. First, a sensor range mea-

surement r is interpreted using a stochastic sensor model.

This model is defined by a probability density function

(p.d.f.) of the form p(r [ z), where z is the actual distance

to the object being detected. Secondly, the sensor read-
ing is used in the updating of the cell state estimates of

the Occupancy Grid. For simplicity, we will derive the

interpretation and updating steps for an occupancy Grid
defined over a single spatial coordinate, and outline the
generalization to more dimensions.

In the continuous case, the random field O(x) is de-

scribed by a probability mass function defined for every

x and is written as O(x) = P[s(x) = occ](x), the probabil-
ity of the state of x being occupied. The probability of

x being empty is obviously given by P[s(x) = EMP](x) =

1 -- P[s(x) = OCC](x). The conditional probability of the
state of x being occupied given a sensor reading r will be

written as O(x [ r) = P[s(x) = occ I r](x). For the discrete

case, the Occupancy Grid corresponds to a sampling of

the random field over a spatial lattice. We will represent
the probability of a cell Ci being occupied as O(Ci) =

P[s(Ci) = occ](Ci), and the conditional probability given
a sensor reading r as O(Ci [ r) = P[s(C3 = OCt [ r](C3.
When only a single cell C/ is being referenced, we will

use the more succinct notation P[s(C_) = deC].

We now consider a range sensor characterized by a sen-
sor model defined by the p.d.f, p(r I z), which relates the
reading r to the true parameter space range value z. De-

termining an optimal estimate _ for the parameter z is a

straightforward estimation step, and can be done using

Bayes' formula and MAP estimates [2, 18]. Recovering a
model of the environment as a whole, however, leads to

a more complex estimation problem. In general, obtain-

ing an optimal estimate of the occupancy grid O(Ci [ r)
would require determining the conditional probabilities of
all possible world configurations. For the two-dimensional

case of a map with m x m cells, a total of 2m2 alternatives

are possible, leading to a non-trivial estimation problem.

To avoid this combinatorial explosion of grid configura-
tions, the cell states are estimated as independent random

variables. This is equivalent to assuming that the Occu-

pancy Grid is a Markov Random Field (MRb3 of order 0

[19], and can be relaxed using estimation procedures for
higher order MRFs [10, 12].

To determine how a sensor reading is used in estimating
the state of the cells of the Occupancy Grid, we start by
applying Bayes' theorem to a single cell Ci:

ets(Ci) = oct [ r] = ptr [ s(Ci) = OCC] P[s(Ci) = OCC] (1)
_--_ptr l s(Ci)] P[s(Ci)]
s(C_)

Notice that the p[r ] s(Ci)] terms that are required in this

equation do not correspond directly to tim sensor model
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p(r [ z), since the latter implicitly relates the range reading

to the detection of a single object surface. In other words,
the sensor model can be rewritten as:

p(r I z) = p[r I s(Ci) =occ A s(Ct) = F_,IP,k < i] (2)

To derive the distributions for p[r I s(Ci)], it is neces-

sary to perform an estimation step over all possible world
configurations. This can be done using Kolmogoroff's

theorem [15]:

ptr I s(c,) = occ] = _ (p[r I s(c,) =occ, _c,)] x

P[_c,) I s(c_)= occ]) (3)

where G-_c, ) = (s(Ct) = sl,... ,s(Ci-l) = si-l, s(Ci,1) =
sz.1,"', s(C,) = s,) stands for a specific grid configuration

with s(Ci) = occ, and {b-_c0 } represents all possible grid
configurations under that constraint. In the same manner,

pit I s(Ci) = EM]'] can be computed as:

p[r Is(Ci) = E_] = _ (p[r I s(ci) -- E_, a,_c,)] x

P[G_(c,) [ s(Ci) = EMP]) (4)

where G_(c,) is defined in a manner similar to G_c, ), above.
The configuration probabilities P[Ga(co [ s(Ci)] are de-

termined from the individual prior cell state probabilities.
These, in turn, can be obtained from experimental mea-
surements for the areas of interest, or derived from other

considerations about likelihoods of cell states. We have

opted for the use of non-informative or maximum entropy
priors [1], which in this case reduce to equal probability

assignments for the two possible states:

P[s(Ci) = OCt] = e[s(Ci) = EMP] = 1/2 (5)

Finally, Eq. 2 is used in the computation of the distri-
butions pit I s(Ci)]. The full derivation of these terms is

found in [6]; we only remark that because there are subsets
of configurations that are indistinguishable under a single

sensor observation r, it is possible to derive closed form

solutions of these equations for certain sensor models, and
to compute numerical solutions in other cases.

To illustrate the approach, consider the case of an ideal

sensor, characterized by the p.d.f, p(r I z) = 6(r-z), where
6 is the Kronecker delta. For this case, the following

closed form solution of Eq. 1 results (Fig. 1):

0 for x<r, xECi
P[s(Ci) = OCC I r] = 1 for x, • E Ci (6)

1/2 for x> r, xE Ci

which is an intuitively appealing result: if an ideal sensor

measures a range value r, the corresponding cell has oc-

cupancy probability 1; the preceding cells are empty and
have occupancy probability 0; and the succeeding cells

have not been observed and are therefore unknown, hav-

ing occupancy probability 1/2.

_s_)=occld
1

o.5

, ci
I >

SensorReading

Figure 1: Occupancy Probability Profile for an ideal sen-

sor, given a range measurement r.

As another example, consider a range sensor whose

measurements are corrupted by Gaussian noise of zero
mean and variance #z. The corresponding sensor p.d.f, is

given by:

1 /'-(r-.z)2"_
p(r[z) f_exp_, 2# 2 )

(7)

This equation can be used in the numerical evaluation of

Eqs. 3 and 4. A plot of a typical cell occupancy profile
obtained for this sensor from Eq. 1 is shown in Fig. 2.

To extend the derivation to two spatial dimensions, con-

sider the example of a range sensor characterized by Gaus-
sian uncertainty in both range and angle, given by the

variances #2 and ¢r2. In this case, the sensor p.d.f, can be

represented in polar coordinates as:

2_r#_'-----'_exp - \ #2 *_202 (8)

In this formula, the dependency of the random variable

r on z and 0 is decoupled, a reasonable assumption for a

first-order model of certain types of range sensors. Conse-
quently, the estimation of the two-dimensional Occupancy

Grid can be performed conveniently in polar coordinates
(p, _), using fundamentally the same formulation as above

(Eqs. 3 and 4) and applying Eq. 8 to recover the distri-

butions p[r I s(Cp,_)]. These in turn are used to obtain
the polar Occupancy Grid P[s(Cp,_) [ r]. To generate
the corresponding two-dimensional cartesian Occupancy

Grid, the polar grid can be scanned and resampled. The

results are similar to the 2D cartesian Occupancy Grid

shown in Fig. 3, obtained from a single sonar reading.

Similar derivations can be performed for 3D Occupancy
Grids.
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Figure 2: Occupancy Probability Profiles obtained from
a sensor with Ganssian distribution. The sensor model

p(r [ z) is shown superimposed (dashed line). Several
successive updates of the cell occupancy probabilities are

plotted, with the sensor positioned at x = 0.0 and with

r = 2.0. The grid was initialized with P[s(x) = 002] = 0.5.
The profiles show that the Occupancy Grid converges to-
wards the behaviour of the ideal sensor.

E(x.y) + O(t,y) [viewfrom(_0)]

Figure 3: Two-Dimensional Sonar Occupancy Grid. The

occupancy profile shown corresponds to a range measure-

ment taken by a sonar sensor positioned at the upper left,

pointing to the lower right. The plane shows the UN-
KNOWN level.

2.3 Updating the Occupancy Grid

Due to the intrinsic limitations of sensor systems, recov-

ering a description of the world from sensory informa-

tion is fundamentally an undcrconstralned problem. As

mentioned previously, this has historically been addressed

by the heavy use of prior models and simplifying heuris-
tic assumptions about the robot's environment. Within

the Occupancy Grid framework, this problem is handled

instead by the use of additional sensing to resolve sen-
sor ambiguity and uncertainty. Rather than relying on

a single observation to obtain an estimate of the Occu-

pancy Grid, information from multiple sensor readings

taken from different viewpoints is composed to improve

the sensor-derived map. This leads naturally to an em-
phasis on higher sensing rates and on the development of

adequate sensing strategies.

To allow the incremental composition of sensory in-

formation, we use the sequential UlXlating formulation of

Bayes' theorem [6]. Given the current estimate of the

state of a cell s(C), P[s(Ci) = occ l {r}d, based on obser-

vations {r}, = {rl,..., rt}, and given a new observation
r,+_, we can write:

P[s(Ci) = oct I {r}.l] =

= p[rm I s(Ci) =occ] P[s(Ci) ---ooc I {r}t]

,_._p[re+x I s(C_)] P[s(CD I {r},]
J(CO

(9)

In this formula, the previous estimate of the cell state,

P[s(CD = oct [ {r}d, serves as the prior and is obtained
directly from the Occupancy Grid. Tables for the sensor

model-derived terms p[rm [ s(CD] can be computed of-
fline and used in the updating procedure. The new cell

state estimate P[s(Ci) = oct [ {r}.d is subsequently
stored again in the map. An example of this Bayesian

updating procedure is shown in Fig. 2.

2.4 Sensor Integration

To increase the capabilities and the performance of robotic
systems in general, a variety of sensing devices are nec-

essary to support the different kinds of tasks to be per-

formed. This is particularly important for mobile robots,
where multiple sensor systems can provide higher levels

of fault-tolerance and safety. Additionally, qualitatively

different sensors have different operational characteristics

and failure modes, and can therefore complement each
other.

Within the Occupancy Grid framework, sensor integra-

tion can be performed using a formula similar to Eq. 9
for the combination of estimates provided by different sen-

sors [6]. This allows the updating of the same Occupancy

Grid by multiple sensors operating independently. Con-

sider two independent sensors Sx and $2, characterized by

sensor models Pl(r I z) and p2(r ] z). In this case, the

integration of readings rst and rs2, measured by sensors

S] and $2, respectively, can be done using:

P[s(Cz) =occ Irs,, rsJ =
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= p[rs= I s(Ci) = oct] P[s(Ci) = OCt I rs,] (10)

_p[rs_ I s(C_)]P[s(Ci) [ rs,]
,(c0

A different estimation problem occurs when separate

Occupancy Grids are maintained for each sensor system,

and integration of these sensor maps is performed at a

later stage by composing the corresponding cell probabil-

ity estimates. This requires the combination of probabilis-
tic evidence from different sources [1]. Consider the two

cell occupancy probabilities P1 = Ps, [s(Ci) = oct I {r}t,]

and P2 = Ps,[s(Ci) = occ I {r}_], obtained from sepa-
rate Occupancy Grids butt using sensors Sl and $2. The

general solution to this problem involves the use of a Su-

perbayesian approach [1]. It requires the definition of

probabilistic models of the formfs,(Ps_[s(Ci)] [ s(Ci)) for
each sensor, which serve to provide an evaluation of the

sensor performance. It can be shown [6] that for simple
linear models, the Superbayesian estimation procedure is

reduced to a probabilistic evidence combination method

known as the Independent Opinion Pool [1]. This method,
when applied to the combination of the two sensor-derived

estimates, Pl and P2, yields the simple formula [6]:

P] /'2
P[s(CI) = OCC [ P1, P2] = P1 P2 + (1 - P1) (1 - P2) (11)

Though this method is suboptimal in a Bayesian sense,

it provides a computationally simple updating procedure.

In previous work, described in [9, 13], the Independent
Opinion Pool approach was used to integrate Occupancy

Grids derived separately from two sensor systems, a sonar
array and a single-scanline stereo module, mounted on

a mobile robot. An example of the resulting maps is

presented in Section 3.2.

2.5 Incorporation of User-Provided Maps

Throughout this paper we are mainly concerned with sce-

narios where the robot is operating in unknown environ-

ments, so that no prior maps can be used. There are other
contexts, however, where such information /s available.

For example, mobile robots operating inside nuclear facil-
ities could access detailed and substantially accurate maps

derived from blueprints, while planetary rovers could take

advantage of global terrain maps obtained from orbiting

platforms. Such information can be represented using

symbolic and geometric models such as those described in

[11]. The incorporation of these high-level user-provided

maps can be done within the Occupancy Grid framework

using the same methodology outlined in the previous sec-
tions. To provide a common representation, the geometric

maps are scan-converted into an Occupancy Grid, with

occupied and empty areas being assigned the correspond-

ing probabilities. These user maps can subsequently be

used as priors for sensor maps, or can be treated sim-

ply as another source of information to be integrated with

sensor-derived maps.

2.6 Decision-Making

In certain contexts, it may be necessary to make discrete

choices concerning the state of a cell C. For that, the

optimal estimate is provided by the _ a posteriorf
(MAP) decision rule [2], which can be written in terms of

occupancy probabilities as:

c is occuP_ if P(s(c) =occ) > P(s(C)= s_e,)
c is _ if P(s(c) = occ) < P(s(c)= r_P) (12)
C is tn,a_ows if P(s(C)= occ)= P(s(C)= r_,)

Additional factors, such as the cost involved in making

different choices, can be taken into account by using other

decision criteria, such as minimum-cost estimates [18].

Depending on the specific application, it may also be of
interest to define an UNKNOWN band, as opposed to a sin-

gle thresholding value. As argued in [6], however, many
robotictasks can be performeddirectlyon the Occupancy

Grid, obviating the need to make discrete choices con-

cerning the state of individual cells. In path-planning, for
example, the cost of a path can be defined by a risk fac-

tor directly related to the corresponding cell probabilities

[8].

3 Using Occupancy Grids for Mobile Robot
Mapping

We will now proceed to illusWate the Occupancy Grid

approach by discussing some applications of Occupancy
Grids to autonomous mobile robots. In this section, we

summarize the use of Occupancy Grids in seusor-hased

mobile robot Mapping, while in Section 4 we provide an
overview of the use of Occupancy Grids in mobile robot

Navigation. The experimental results shown here have

been mostly obtained in operating environments that can

be adequately described by two-dimensional maps. We

have recently started to extend our work to the generation

and manipulation of 3D Occupancy Grids.

One possible flow of processing for sensor-derived mo-
bile robot mapping applications is outlined below and

summarized in Fig. 4. As the mobile robot explores and

maps its environment, the incoming sensor readings are in-
terpreted using probabilistic sensor models.The map of the

world that the robot acquires from a single sensor reading
is called a Sensor View. Various Sensor Views taken from

a single robot position can be composed into Local Sensor

Maps, which can be maintained separately for each sensor

type. A composite description of the robot's surroundings

is obtained through sensor integration of separate Local

Sensor Maps into a Robot View (as mentioned previously,

Robot Views can be generated directly from the different

sensors). As a result, the Robot View encapsulates the

information recovered at a single mapping location. As

the robot explores its surroundings, Robot Views taken

from multiple data-gathering positions are composed into

a Global Map of the environment. This requires relative

registration of the Robot Views, an issue that is addressed
in Section 4.
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Figure 4: A Framework for Occupancy Grid Based Robot
Mapping.

3.1 Sonar-Based Mapping

The Occupancy Grid representation was first developed in
the context of sonar-based mapping experiments [14, 8].
The specific limitations of sonar sensors and the desire

to recover robust and dense maps of the robot's environ-
ment precluded simple geometric interpretation methods

[8] and led to the investigation of tesselated probabilistic

representations. We developed an experimental system for

sonar-based mapping and navigation for autonomous mo-
bile robots called Dolphin [7, 8], and performed a number

of indoor and outdoor experiments [6]. Fig. 5 shows a

sonar map obtained during navigation down a corridor.

Preliminary results were encouraging: the resulting sonar

maps were robust and very useful for navigation. The cell

updating mechanisms are computationally fast, allowing a

high sensing to computation ratio. This led us to develop

the Occupancy Grid formulation further and to apply it to
other domains [6, 9, 13, 4].

3.2 Sensor Integration of Sonar and Scanline Stereo

The Occupancy Grid framework provides a straightfor-

ward approach to sensor integration. Range measurements

from each sensor are converted directly to the Occupancy

Figure 5: Sonar Mapping and Navigation Along a Cor-

ridor. Walls and open doors can be distinguished and
enough resolution is present that even wall niches can be

noticed in the map. The range readings taken from each

robot stop are drawn superimposed on the map.

Grid representation, where data taken from multiple views

and different sensors can be combined naturally. Sen-

sors are treated modularly, and separate sensor maps can
be maintained concomitantly with integrated maps, allow-

ing independent or joint sensor operation. We have per-
formed experiments in the integration of data from two

sensor systems: a sonar sensor array and a single-scanline
stereo module that provides h(rizontal depth profiles, both

mounted on a mobile robot. This allows the generation of

improved maps, taking advantage of the complementarity
of the sensors [9, 13]. A typical set of maps is shown in
Fig. 6.

4 Using Occupancy Grids for Robot Navi.

gation

For autonomous robot navigation, a number of concerns

have to be addressed. In this section, we briefly outline

the use of Occupancy Grids in path-planning and obstacle

avoidance, estimating and utxlating the robot position, and

incorporating the positional uncertainty of the robot into
the mapping process (Fig. 7).

4.1 Path-Planning and Obstacle Avoidance

In the Dolphin system, path-planning and obstacle avoid-

ance are performed using potential functions and an A*

search algorithm. The latter operates directly on the Occu-
pancy Grid, optimizing a path cost function that takes into

account both the distance to the goal and the occupancy
probabilities of the cells being traversed [8, 6].

4.2 Handling Robot Position Uncertainty

To desambiguate sensor information and recover accurate

and complete descriptions of the environment of opera-

tion of a robot, it is necessary to integrate sensor data

acquired from multiple viewing positions. To allow the
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Scanline Stereo Map:
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Integrated Sonar and Scanline Stereo Map:
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Figure 6: Sensor Integration of Sonar and Scanline

Stereo. Occupancy Grids generated separately for sonar

and scanline stereo, and jointly through sensor integra-

tion are shown. Occupied regions are marked by shaded

squares, empty areas by dots fading to white space, and
unknown spaces by + signs.

composition of these multiple views into a coherent model

of the world, accurate information concerning the relative

transformations between data-gathering positions is neces-

sary to allow precise regislration of the views for subse-

quent integration. For mobile robots that move around
in unstructured environments, recovering precise posi-

tion information poses major problems. Over longer dis-

tances, dead-reckoning estimates are not sufficiently reli-

I - I
.............................._,................................._.._.....e.._._.u. _!.._.._

I

I "- I

Figure 7: A Framework for Occupancy Grid-Based Robot

Navigation.

able; consequently, motion-solving methods that use land-
mark tracking or map matching approaches are usually ap-

plied to reduce the registration imprecision due to motion.

Additionally, the positional error is compounded over se-

quences of movements as the robot traverses its environ-
ment. This leads to the need for explicitly handling po-

sitional uncertainty and taking it into account when com-

posing sensor information.
To represent and estimate the robot position as the ve-

hicle explores its environment, we use the Approximate
Transformation (AT) framework [16]. A robot motion M,

defined with res]_ect to some coordinate frame, is repre-
sented as M =< M, _'u >, where/_ is the estimated (nom-

inal) position, and Eu is the associated covariance matrix

that captures the positional uncertainty. The parameters
of the robot motion are determined from dead-reckoning

and inertial navigation estimates, which can be composed

using the AT merging operation, while the updating of
the robot position uncertainty over several moves is clone

using the AT composition operation [16].

4.3 Motion-Soh,ing

For more precise position estimation, a multi-resolution
correlation-based motion-solving procedure is employed.

It searches for an optimal registration between the new

Robot View and the current Global Map, by matching the

corresponding Occupancy Grids before map composition

[14].
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4.4 Incorporating Positional Uncertainty into the

Mapping Process

After estimating the registration between the new Robot
View and the Global Map, the associated uncertainty is

incorporated into the map updating process as a blurring or

convolution operation performedon the Occupancy Grid.

We distinguish between World-Based Mapping and Robot-

Based Mapping [6, 4].

In World-Based Mapping, the motion of the robot is
related to the observer or world coordinate frame, and the

current Robot View is bltwred by the robot's positional un-

certainty prior to composition with the Global Map. If we

represent the Global Map by Ma, the current Robot View
by VR, the robot position by the AT R =< R, SR >, the

blurring operation by the symbol @ and the composition

of maps by the symbol _, we can express the world-based

mapping procedure as:

(13)

Since the global robot position uncertainty increases with

every move, the effect of this updating procedure is that
the new Views become progressively more blurred, adding
less and less useful information to the Global Map. Ob-

servations seen at the beginning of the exploration are

"sharp", while recent observations are "fuzzy". From the

point of view of the inertial observer, the robot eventually
"dissolves" in a cloud of probabilistic smoke.

For Robot-Based Mapping (Fig. 8), the registration un-

certainty of the Global Map due to the recent movement
of the robot is estimated, and the Global Map is blurred

by this uncertainty prior to composition with the current
Robot View. This mapping procedure can be expressed

as:

MG "- VR _ (Mc, _ R) (14)

A consequence of this method is that observations per-
formed in the remote past become increasingly uncer-

tain, while recent observations have suffered little blur-

ring. From the point of view of the robot, the immediate
surroundings (which are of relevance to its current nav-

igational tasks) are "sharp". The robot is leaving, so to

speak, an expanding "probabilistic trail" of weakening ob-

servations behind it (see Fig. 8).

It should be noted, however, that the local spatial re-

lationships observed within a Robot View still hold. So
as not to lose this information, we use a two-level spatial

representation, incorporating Occupancy Grids and Ap-

proximate Transformations. On one level, the individual
Views are stored attached to the nodes of an AT graph

(a stochastic map [17]) that describes the movements of

the robot. Coupled to this, a Global Map is maintained

that represents the robot's current overall knowledge of

the world (Fig. 9).

, k

, • \
N_ " . %

Robot Vlvw

Robot l_lh

Figure 9: Maintaining a Dual Representation. A stochas-

tic graph with the individual Robot Views is maintained

in conjunction with the Global Map.

5 Other Applications

In the previous sections, we have seen that Occupancy

Grids provide a unified approach to a number of issues
in Robotics and Computer Vision. Additional tasks that

can be addressed include the recovery of geometric de-

scriptions from Occupancy Grids [7, 8], incorporation of

user-provided maps, landmark recognition [8], prediction
of sensor readings from Occupancy Grids, detection of

moving objects using space-time filtering techniques, and
other problems. In our own work, we are starting to ex-

plore two issues: the generation of 3D Occupancy Grids
from depth profiles derived from laser scanners or stereo

systems, and the development of mapping and navigation

strategies that incorporate high-level user-provided maps
when these are available.

It should be noticed that several robotic tasks can be

performed on Occupancy Grids using operations that are

similar or equivalent to computations performed in the

image processing domain. Table 10 provides a qualitative
overview and comparison of some of these operations.

We finalize our discussion with an observation concern-

ing low-level versus high-level representations. It is in-
teresting to observe that in Robotics and Computer Vision

there has been historically a slow move from very high-

level (stylized) representations of blocks-world objects to
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Figure 10: An Overview of Operations on Occupancy

Grids and the Corresponding Image Processing Opera-
tions.

the recovery of simple spatial features in very constrained
real images; from there to the recovery of surface patches;

and recently towards "denser", tesselated representations

of spatial information. A parallel evolution from sparse,
high-level or exact descriptions to denser, lower-level and

sometimes approximate descriptions can be seen in some

other computational fields, such as Computer Graphics

and Finite Element Analysis.

6 Conclusions

We have reviewed in this paper the Occupancy Grid
framework and presented results from its application to

mobile robot mapping and navigation in unknown and un-
structured environments. The Occupancy Grid approach

supports agile and robust sensor interpretation methods,

incremental discovery procedures, composition of infer-
marion from multiple sensors and over multiple positions

of the robot, and explicit handling of uncertainty. Further-

more, the world models recovered using sensor data can be
used efficiently in robotic planning and problem-solving

activities. The results lead us to suggest that the Oc-

cupancy Grid framework provides an intermediate-level
spatial representation that has the characteristics of ro-

bustness and generality necessary for real-world robotic

applications.
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