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Abstract: One of the pillars of experimental science is sampling. Based on the analysis of samples,

estimations for populations are made. There is an entire science based on sampling. Distribution of

the population, of the sample, and the connection among those two (including sampling distribution)

provides rich information for any estimation to be made. Distributions are split into two main groups:

continuous and discrete. The present study applies to continuous distributions. One of the challenges

of sampling is its accuracy, or, in other words, how representative the sample is of the population from

which it was drawn. To answer this question, a series of statistics have been developed to measure

the agreement between the theoretical (the population) and observed (the sample) distributions.

Another challenge, connected to this, is the presence of outliers - regarded here as observations

wrongly collected, that is, not belonging to the population subjected to study. To detect outliers,

a series of tests have been proposed, but mainly for normal (Gauss) distributions—the most frequently

encountered distribution. The present study proposes a statistic (and a test) intended to be used

for any continuous distribution to detect outliers by constructing the confidence interval for the

extreme value in the sample, at a certain (preselected) risk of being in error, and depending on the

sample size. The proposed statistic is operational for known distributions (with a known probability

density function) and is also dependent on the statistical parameters of the population—here it is

discussed in connection with estimating those parameters by the maximum likelihood estimation

method operating on a uniform U(0,1) continuous symmetrical distribution.
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1. Introduction

Many statistical techniques are sensitive to the presence of outliers and all calculations, including

the mean and standard deviation can be distorted by a single grossly inaccurate data point. Therefore,

checking for outliers should be a routine part of any data analysis.

To date, several tests have been developed for the purpose of identifying outliers of certain

distributions. Most of the studies are connected with the Normal (or Gauss) distribution [1]. The first

paper that attracted attention on this matter is [2] and this was followed by studies that identified the

derivation of the distribution of the extreme values in samples taken from Normal distributions [3].

Then, a series of tests were developed by Thompson in 1935 [4], these were subjected to evaluation [5],

and revised [6,7].

For other distributions such as the Gamma distribution, procedures for detecting outliers were

proposed [8], revised [9], and unfortunately proved to be inefficient [10].

The first attempt to generalize the criterion for detecting outliers for any distribution can be found in [11],

but further research on this subject is scarce apart from a notable recent attempt by Bardet and Dimby [12].
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The Grubbs test is a frequently used test for detecting the outliers of a Normal distribution [7].

For a sample (x), the Grubbs’ test statistic takes the largest absolute deviation from the sample mean (x)

in units of the sample standard deviation (s) in order to calculate the risk of being in error (αG) when

stating that the most departed values from the mean (min(x), max(x) or both) are not outliers (see Table 1).

The associated probabilities of the observed (pG) are obtained from the Student t distribution [13].

Table 1. The Grubbs statistic.

Sample statistic (G) Associated probability (pG = 1-αG) Equation

G“min” =
x−min(x)

s αG = n·CDF“Student t”

(

−
√

n(n−2)

( n−1
G )

2−n
, n− 2

)

(1)

G“max” =
max(x)−x

s

G“all” = max(G“min”, G“max”) αG = 2n·CDF“Student t”

(

−
√

n(n−2)

( n−1
G )

2−n
, n− 2

)

(2)

One should note that the Grubbs test statistic produces a symmetrical confidence interval

(see Equations (1) and (2)). The Grubbs statistic as given in Table 1, is intended to be used with the

parameters of the population (µ and σ), which are determined using the central moments (CM) method

(µ̂ = x =
∑

x/n; σ̂ = s = (
∑

(x− x)2)
1/2
/n).

Here, a method is proposed for constructing the confidence intervals for the extreme values of any

continuous distribution for which the cumulative distribution function is also obtainable. The method

involves the direct application of a simple test for detecting the outliers. The proposed method is

based on deriving the statistic for the extreme values for the uniform distribution. Also, the proposed

method provides a symmetrical confidence interval in the probability space.

2. Materials and Methods

The Grubbs test (Table 1) is based on the fact that if outliers exist, then these are “localized” as the

maximum value and/or the minimum value in the dataset. Thus, the Grubbs test is essentially a sort of

order statistic [14].

Some introductory elements are required for describing the proposed procedure. When a sample

of data is tested under the null hypothesis that it follows a certain distribution, it is intrinsically

assumed that the distribution is known. The usual assumption is that we possess its probability

density function (PDF, for a continuous distribution) or its probability distribution function (PDF

for a discrete distribution). The discussion below relates to continuous distributions, although the

treatment of discrete distributions are similar to certain degree. Nevertheless, a major distinction

between continuous and discrete distributions in the treatment of data is made here; that is, a continuous

distribution is “dense”, e.g., between any two distinct observations it is possible to observe another

while in the case of a discrete distribution, this is generally not true.

Even when the PDF is known (possibly intrinsically), its (statistical) parameters may not necessarily

be known, and this raises the complex problem of estimating the parameters of the (population)

distribution from the sample; however, this issue is outside the scope of this paper. In general,

the estimation of the parameters of the distribution of the data is biased by the presence of the

outliers in the data, and thus, identifying the outliers along with the estimation of the parameters

of the distribution is a difficult task because two statistical hypotheses are operating. Assuming

that the parameters (“parameters”) of the distribution (of the PDF) are obtained using the maximum

likelihood estimation method (MLE, Equation (3); see [15]), there is some suggestion that the uncertainty

accompanying this estimation is transmitted to the process of detecting the outliers.

∏

PDF(X; “parameters”)→ max. ⇒
∑

ln (PDF(X; “parameters”))→ min. (3)



Symmetry 2019, 11, 835 3 of 15

It should be noted that Equation (3) is a simplified version of the MLE method, since the real use

of it requires and involves partial derivatives of the parameters; see Source code (MathCad language)

for the MLE estimations in the Supplementary Materials available online.

Either way (whether the uncertainty accompanying this estimation is transmitted to the process

of detecting the outliers or not), once an estimate for the parameters of the distribution is available,

a test (most desirably, a test based on a statistic) for detecting the presence of an outlier must provide

the probability of observing that (assumed) “outlier” as a randomly drawn value from the distribution.

What to do next with the probability is another statistical “trick”: to observe a value with a probability

less than an imposed “level” (usually 5%) is defined as an unlikely event, and therefore, the suspicion

regarding the presence of the outlier is justified. With regard to the statistical “trick” mentioned

above, the opinion of the author of this manuscript is that one “observation” is not enough. Actually,

there should be a series of observations, that come from a series of statistics, each providing a probability.

Then, the unlikeliness of the event can be safely ascertained by using Fisher’s “combining probability

from independent tests” method (FCS, Equation (4); see [16–18]:

−
∑

τ

i=1
ln (pi) ∼ χ

2(τ) → αFCS = 1−CDF
χ2(−

∑

τ

i=1
ln (pi); τ) (4)

where p1, . . . , pτ are probabilities from τ independent tests, CDFχ2 is the χ
2 cumulative distribution

function (see also up until Equation (6) below), and pFCS is the combined probability from

independent tests.

Taking the general case, for (x1, . . . , xn) as n independent draws (or observations) from a (assumed

known) continuous distribution defined by its probability density function, PDF (x; (πj)1≤j≤m) where

(πj)1≤j≤m are the (assumed unknown) m statistical parameters of the distribution, by way of integration

for a (assumed known) domain (D) of the distribution, we may have access to the associated cumulative

density function (CDF) CDF(x; (πj)1≤j≤m; PDF), simply expressed as (Equation (5)):

CDF(x; (πj)1≤j≤m) =

∫ x

inf(D)
PDF(x; (πj)1≤j≤m) (5)

where inf(D) was used instead of min(D) to include unbounded domains (e.g., when inf(D) = -∞; “inf”

stands for infimum, “min” stands for minimum). Please note that having the PDF and CDF does

not necessarily imply that we have an explicit formula (or expression) for any of them. However,

with access to numerical integration methods [19], it is enough to have the possibility of evaluating

them at any point (x).

Unlike PDF(x; (πj)1≤j≤m), CDF(x; (πj)1≤j≤m) is a bijective function and therefore, it is always

invertible (even if we do not have an explicit formula; let “InvCDF” be its inverse, Equation (6)):

if p = CDF(x; (πj)1≤j≤m), then x = InvCDF(p; (πj)1≤j≤m), and vice-versa (6)

CDF(x; (πj)1≤j≤m; “PDF”) is a strong tool that greatly simplifies the problem at hand: the problems

of analyzing any distribution function (PDF) are translated such that only one needs to be analyzed

(the continuous uniform distribution). That is, a series of observed data (xi)1≤i≤n is expressed through

their associated probabilities pi = CDF(xi; (πj)1≤j≤m) (for 1≤i≤n) and the analysis can be conducted on

the (pi)1≤i≤n series instead.

Since the analysis of the (pi)1≤i≤n series of probabilities is a native case of order statistics,

the discussion now turns to order statistics. The first studies in this area were by the fathers of modern

statistics, Karl Pearson [20] and Ronald A. Fisher [3] while the first order statistic applicable to any

distribution (not only the normal distribution) was first studied by Cramér and Von Mises (see [21,22]).
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An order statistic operating on probabilities ((pi)1≤i≤n) will sort the values (let (qi)1≤i≤n be the

series of sorted (pi)1≤i≤n values, Equation (7)) and will assess its departure from the continuous uniform

distribution (where it is assumed that SORT is a procedure that sorts ascending the values).

(qi)1≤i≤n ← SORT((pi)1≤i≤n) (7)

Since the assessment of the departure from the continuous uniform distribution cannot be

made directly, the use of a series of order statistics was proposed by several authors including:

Cramér and Von Mises [21,22], Kolmogorov-Smirnov [23–25], Anderson-Darling [26,27], Kuiper V [28],

Watson U2 [29], and the H1 Statistic [18]; see Equation (8). They remain in use today.

For instance, the Kolmogorov-Smirnov (KS) method (see Equation (8); the Kolmogorov-Smirnov

statistic) calculates the KSStatistic and later tests the value (from a sample) against the threshold of

a chosen significance level (usually 5%).

In order to have certain thresholds for a series of significance levels, these statistics can be derived

from Monte-Carlo (“MC”) simulations [30], and deployed for a large number of samples in order to

reflect, as best as possible, the state of the population.

KSStatistic =
√

n·max
1≤i≤n

(qi −
i−1
n , i

n−qi)

KVStatistic =
√

n·(max
1≤i≤n

(qi −
i−1
n ) + max

1≤i≤n
( i

n−qi))

ADStatistic = −n− 1
n ·

n
∑

i=1
(2i− 1)· ln(qi·(1− qn−i))

CMStatistic =
1

12n +
n
∑

i=1
( 2·i−1

2·n −qi)
2

WUStatistic = CMStatistic + ( 1
2 −

1
n

n
∑

i=1
qi)

2

H1Statistic = −
n
∑

i=1
qi· ln(qi) −

n
∑

i=1
(1− qi)· ln(1− qi)

(8)

3. Proposed Outlier Detection Statistic

A statistic was developed to be applicable to any distribution. For a series of probabilities

((pi)1≤i≤n) or (sorted probabilities, (qi)1≤i≤n) associated with a series of (repeated drawing) observations

((xi)1≤i≤n), the (ri)1≤i≤n differences are calculated as Equation (9):

ri =
∣

∣

∣pi − 0.5
∣

∣

∣, for 1 ≤ i ≤ n (9)

The statistic called “g1” (see below) was generated based on the formula given in Equation (9)

(given as Equation (10)).

g1 = max
1≤i≤n

ri (10)

It should be noted that Equations (9) and (10) provide the same result regardless of whether the

calculation is made on a sorted series of probabilities ((qi)1≤i≤n) or not (then it is made on (pi)1≤i≤n).

Regarding the name of this new proposed statistic (“g1”), when Equations (1) and (2) (G“min”,

G“max”, G“all”) and Equation (9) are compared, for a standard normal distribution N(x; µ=0,σ=1)

the equation defining G“all” becomes much more like Equation (9), with the difference being that in

Equation (2) the sample mean (x) is used as an estimate for the mean of the population (µ) and the

sample standard deviation (s) is used as an estimate for the standard deviation of the population (σ)

while Equation (9) basically expresses the same in terms of associated probabilities (pi = P(X ≤ xi) =

CDF“Normal”(xi; µ,σ), 0.5 = P(X ≤ µ) = CDF“Normal”(µ; µ,σ)).

Therefore, the proposed statistic very much resembles the Grubbs test for normality (and hence its

name). One difference is that in the Grubbs test sample statistics are used to calculate the sample G“all”

value (x and s), thereby reducing the degrees of freedom associated with the value (from n to n-2) while
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for the g1 value (and statistic) the degrees of freedom remain unchanged (n). The major difference

is actually the one that makes the proposed statistic generalizable to any distribution—the mean

used in the Grubbs test is replaced by the median—the beauty of this change is that for symmetrical

distributions (including a Normal distribution) these two coincide.

A further connection with other statistics must also be noted. If any sample is resampled by

extracting only the smallest and the largest of its values, then the Kolmogorov-Smirnov statistic for

those subsamples almost perfectly resembles (by setting n = 2 in Equations (8)–(1)) the proposed

“g1” statistic.

Since CDF is a bijective function (see Equation (6)), the proposed generalization of the Grubbs

test for detecting the outliers for Normal distribution into the “g1” statistic for detecting the outliers

for any distribution is a natural extension of it. The “g1” test associated with the “g1” statistic

will be able to operate in the probability space ((pi)1≤i≤n or (qi)1≤i≤n) instead of the observed space

((xi)1≤i≤n), the calculation formula (Equations (9) and (10)) is slightly different (to those given in

Equations (1) and (2)), and the probability associated with the departure will no longer be extracted

from the Student t distribution (as in Equations (1) and (2)). The change from mean (µ for G“all”) to

median (0.5 in Equation (9)) is a safe extension for any distribution type, since Equation (9) measures

(or accounts for) the extreme departures from the equiprobable point—having an observation y

(y← X) with y ≤ InvCDF“Any distribution”(0.5; “parameters”) and an observation z (z← X) with z ≥
InvCDF“Any distribution”(0.5; “parameters”) is equiprobable.

One way to associate a probability with the “g1” statistic is to do a Monte-Carlo (MC) simulation.

4. Simulation Study

A MC study was conducted. Two different strategies were developed in order to deal efficiently

with a very large amount of data, and specifically, to solve the order statistics problem (that is, first

sampling from the uniform distribution, and later using Equations (7)–(10). One of those alternatives

has been described in [14] and the other is described below. Table 2 shows the details of the conducted

MC study.

Table 2. Details of the MC simulation on “g1” outlier detection statistic.

Parameter Meaning Setting

n sample size of the observed from 2 to 12

m sample size of the MC simulation 108

p control points for the probability 999
resa internal resamples (repetitions) 10
repe external repetitions 7

For each sample size of the observed n in each run m samples (see Table 2) were generated from

the standard uniform continuous distribution (e.g., from the [0, 1] interval). The outlier detection

statistic “g1” was calculated (Equations (9) and (10)). From a large pool of sampled and resampled

data (m·resa·repe = 7·109 in Table 2, repetitions were joined (n, p, g1) as pairs from the p·n control

points, that is, where the probability was from 0.001 to 0.999 with a step of 0.001 for each n (from 2 to

12). The external repetitions (resa = 7 in Table 2) were joined together by taking the median (since the

median is a sufficiency statistic [31] for any order statistic such as in the extraction of (n, p, g1) pairs

from the p·n control points). The MC simulation was conducted with the configuration set as defined

in Table 2. The obtained data were recorded in separate files by sample size and analyzed as such.

The objective associated (with any statistic) is to obtain the cumulative distribution function (CDF,

Equation (5)), and thus by evaluating the CDF for the value of the statistic obtained from the sample

(Equations (9) and (10)) to obtain a probability for the sampling. Please note that only in the lucky

cases are we able to do this; Generally only the critical values (values corresponding to certain risks
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of being in error) or approximation formulas are available (see for instance [21,24,26,28,29]). Here,

the analytical CDF formula was obtained for the “g1” outlier detection statistic.

5. The Analytical Formula of CDF for g1

The “g1” statistic have a very simple calculation formula (see Equation (9)) and, as expected, its

CDF formula is also very simple (see Equation (11)). Thus, for a calculated sample statistic g1 (x← g1

in Equation (11)), the significance level (α← 1-p) is immediate (Equation (11), where P represents the

probability that the random variable X takes on a value less than or equal to x).

p = CDF“g1”(x; n) = P(X ≤ x) = (2·x)n, α = 1− p = 1− (2·x)n (11)

6. Simulation Results for the Distribution of the “g1” Statistic

The results of the simulation for n varying from 2 to 10 were sufficient to provide a clear indication

of the analytical formula for the CDF of “g1”. Descriptive statistics including Standard Error (SE,

the standard error formula is given as Equation (12)) between the expected probability (from MC

simulation) and the calculated probability (from Equation (11), p̂i ← (2·xi)
n ) and the highest positive

and highest negative departures are given in Table 3.

SE =

√

√

√

1

999

999
∑

i=1

(pi − p̂i)
2, pi =

i

1000
(12)

Table 3. Descriptive statistics for the agreement in the calculation of the “g1” statistic (Equation (10)

vs. Equation (11)).

n SE min(pi−p̂i) max(pi−p̂i)

2 2.9 × 10−6 −7.9 × 10−6 at p = 0.694 5.7 × 10−6 at p = 0.427

3 5.6 × 10−6 −1.2 × 10−5 at p = 0.787 1.6 × 10−6 at p = 0.118

4 2.2 × 10−6 −5.6 × 10−6 at p = 0.234 3.7 × 10−6 at p = 0.613

5 6.0 × 10−6 −1.2 × 10−5 at p = 0.546 2.3 × 10−6 at p = 0.080

6 3.5 × 10−6 −5.8 × 10−6 at p = 0.797 9.2 × 10−6 at p = 0.196

7 5.0 × 10−6 −9.6 × 10−6 at p = 0.777 3.8 × 10−6 at p = 0.035

8 4.2 × 10−6 −8.4 × 10−6 at p = 0.675 3.9 × 10−6 at p = 0.948

9 3.3 × 10−6 −9.1 × 10−6 at p = 0.269 7.9 × 10−6 at p = 0.689

10 2.8 × 10−6 −6.4 × 10−6 at p = 0.443 6.6 × 10−6 at p = 0.652

As can be observed in Table 3 the standard error (SE) slowly decreases beginning with n = 7, being

two orders of magnitude smaller (actually it is about 200 times smaller) than the step from the MC

experiment. Since the standard error alone is not proof that Equation (11) is the true CDF formula

for providing the probability for the g1 statistic, the smallest and the highest difference between the

observed and the expected probabilities are also given in Table 3. They substantiate that Equation (11)

is indeed the right estimate for the CDF of g1. For convenience, Figure 1 shows the value of the error in

each observation point (999 points corresponding to p = 0.001 up to p = 0.999 for each n from 2 to 12).
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Figure 1. Departures between expected and observed probabilities for g1 statistic (Equation (10)

vs. Equation (11)).

Regarding the estimation error (of the “g1” statistic) depicted in Figure 1, the “g1” statistic is

rarely bigger than 10−5, never bigger than 1.5·× 10−5 and tends to become smaller with the increase in

sample size (n). Using Equation (11), Figure 2 depicts the shape of the CDF“g1”(x;n).

With regard to the “g1” statistic (depicted in Figure 2), the domain for a variable distributed by

the “g1” statistic (see Equation (11)) has values between 0 and 0.5 with the mode at p = 0 (a vertical

asymptote at p = 0), a median of n−1·2−1/n (and having a left asymmetry decreasing with the increasing

of n and converging (for n→∞) to symmetry) and mean of 1/2(n+1).
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Figure 2. CDF“g1”(x;n) for n = 2 to n = 20.
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The expression of CDF“g1” is easily inverted (see Equation (13)).

CDF“g1”(x; n) = (2x)n → InvCDF“g1”(p; n) = n
√

p/2 (13)

7. from “g1” Statistic to “g1” Confidence Intervals for the Extreme Values

Equation (13) can be used to calculate the critical values of the “g1” statistic for any values of α

(α← 1-p) and n. The critical values of the “g1” statistic acts as the boundaries of the confidence intervals.

By setting the risk of being in error α (usually at 5%), then p = 1-α and Equation (13) can be used

to calculate the statistic associated with it (InvCDF“g1”(1-α;n) =
n√

1− α/2). By placing this value into

Equations (9) and (10), the (extreme) probabilities can be extracted (Equation (14)).

max
1≤i≤n

∣

∣

∣pi − 0.5
∣

∣

∣ =
n√

1− α/2. → pextreme(α) = 0.5 ± n√
1− α/2 (14)

One should note that the confidence interval defined by Equation (14) is symmetric.

In order to arrive at the confidence intervals for the extreme values in the sampled data (Equation (15))

it is necessary to use the inverse of the CDF (again), and for the distribution of the sampled data.

xextreme(α) = InvCDF“Distribution”(0.5± n√
1−α/2; “parameters”) (15)

To illustrate the calculation of the confidence intervals for the extreme values in the sampled data,

a series of 206 data was chosen from [32]. The data were tested against the assumption that it follows

a generalized Gauss-Laplace distribution (Equation (16), a symmetrical distribution), and later if there

were some observations suspected to be outliers. The steps of this analysis and the obtained results are

given in Table 4.

PDF“GL”(x;µ,σ, k) = c1σ
−1e−|c0z|k , c0 = (

Γ(3/k)

Γ(1/k)
)

1/2

, c1 =
kc0

2Γ(1/k)
, z =

x− µ
σ

(16)

The greatest departure from the median (0.5) for the 206 PCB dataset (Table 4) was 9.603

(CDF“GL”(9.603; µ = 6.47938, σ = 0.82828, k = 1.79106) = 0.9998). Due to the force of this deviation

from the median, 9.603 was suspected as being an outlier and was removed (it should be noted that in

a broader context, an outlier can be also seen as an atypical observation, correctly collected from the

population observation, as part of the data generation process and thus it may be maintained in the

sample but probably with a less weight). The same procedure (as in Table 4) can be applied to the

remaining data (205 observations). Then, InvCDF“g1”(1-0.05; 205) = 0.499875, pmin(n=205) = 0.0001251;

and pmax(n=205) = 0.9998749. The MLE estimates for the parameters of the Gauss-Laplace distribution

remain unchanged (µ = 6.47938, σ = 0.82828, k = 1.79106) and the removed observation (9.603) is still

not an outlier (xmax = InvCDF“GL”(0.9998749; µ = 6.47938, σ = 0.82828, k = 1.79106) = 9.7166 > 9.603).

Table 4. Distribution analysis for a series of 206 measurements for the octanol water partition coefficient

(Kow) of polychlorinated biphenyls expressed in logarithmic scale (log10(Kow))

Step Results

Dataset (given for convenience) 4.151; 4.401; 4.421; 4.601; 4.941; 5.021; 5.023; 5.150; 5.180; 5.295; 5.301; 5.311; 5.311; 5.335; 5.343; 5.404; 5.421; 5.447;
5.452; 5.452; 5.481; 5.504; 5.517; 5.537; 5.537; 5.551; 5.561; 5.572; 5.577; 5.577; 5.627; 5.637; 5.637; 5.667; 5.667; 5.671;
5.677; 5.677; 5.691; 5.717; 5.743; 5.751; 5.757; 5.761; 5.767; 5.767; 5.787; 5.811; 5.817; 5.827; 5.867; 5.897; 5.897; 5.904;
5.943; 5.957; 5.957; 5.987; 6.041; 6.047; 6.047; 6.047; 6.057; 6.077; 6.091; 6.111; 6.117; 6.117; 6.137; 6.137; 6.137; 6.137;
6.137; 6.142; 6.167; 6.177; 6.177; 6.177; 6.204; 6.207; 6.221; 6.227; 6.227; 6.231; 6.237; 6.257; 6.267; 6.267; 6.267; 6.291;
6.304; 6.327; 6.357; 6.357; 6.367; 6.367; 6.371; 6.427; 6.457; 6.467; 6.487; 6.497; 6.511; 6.517; 6.517; 6.523; 6.532; 6.547;
6.583; 6.587; 6.587; 6.587; 6.607; 6.611; 6.647; 6.647; 6.647; 6.647; 6.647; 6.657; 6.657; 6.671; 6.671; 6.677; 6.677; 6.677;
6.697; 6.704; 6.717; 6.717; 6.737; 6.737; 6.737; 6.747; 6.767; 6.767; 6.767; 6.797; 6.827; 6.857; 6.867; 6.897; 6.897; 6.937;
6.937; 6.957; 6.961; 6.997; 7.027; 7.027; 7.027; 7.057; 7.071; 7.087; 7.087; 7.117; 7.117; 7.117; 7.121; 7.123; 7.147; 7.151;
7.177; 7.177; 7.187; 7.187; 7.207; 7.207; 7.207; 7.211; 7.247; 7.247; 7.277; 7.277; 7.277; 7.281; 7.304; 7.307; 7.307; 7.321;
7.337; 7.367; 7.391; 7.427; 7.441; 7.467; 7.516; 7.527; 7.527; 7.557; 7.567; 7.592; 7.627; 7.627; 7.657; 7.657; 7.717; 7.747;
7.751; 7.933; 8.007; 8.164; 8.423; 8.683; 9.143; 9.603

For n = 206 calculate the
probability that the extreme
values contain an outlier by

using Equation (13)

At α = 5% risk being in error InvCDF“g1”(1-0.05; 206) = 0.498755
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Table 4. Cont.

Step Results

Calculate the critical
probabilities for the extreme

values by using
Equations (9) and (10)

g1 = 0.498755→ |0.5 - pmin/max| = 0.498755→ 1 - 2pmin/max = ± 0.99751→
pmin = 0.0001245; pmax = 0.9998755

Estimate the parameters of the
distribution fitting the dataset

(distribution: Gauss-Laplace; µ
- location parameter; σ - scale

parameter;
k - shape parameter)

Initial estimates (from a hybrid CM & MLE method): µ = 6.4806; σ = 0.83076; k = 1.4645;
MLE estimates (by applying eq.3): µ = 6.47938; σ = 0.82828; k = 1.79106;

Calculate the lower and the
upper bound for the extreme

values by using InvCDF of the
distribution fitting the

data (Equation (15))

InvCDF“GL”(0.0001245; µ = 6.47938, σ = 0.82828, k = 1.79106) = 3.2409
InvCDF“GL”(0.9998755; µ = 6.47938, σ = 0.82828, k = 1.79106) = 9.7178

Make the conclusion regarding
the outliers

Since the smallest value in the dataset is 4.151 (> 3.24) and the largest value is 9.603 (< 9.71), at 5% risk being
in error there are no outliers in the dataset on the assumption that data follows the Gauss-Laplace distribution

8. Proposed Procedure for Detecting the Outliers

The procedure for detecting the outliers should start with measuring the agreement between the

observed and estimated (Figure 3).

Figure 3 contains a statistical “trick”, namely, when there are no outliers the statistics measuring

the gap between the observation and the model (order statistics, Equation (6)) are in agreement

(their associated probabilities are not too far from each other). When outliers exist, the order statistics

are also sensitive to their presence. Since this is a separate subject, for further discussion please see the

series of papers beginning with [32–34].

 

 

α
μ σ
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n 
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(eq.3) K 

{π1, …, πm} 

Figure 3. The procedure for detecting outliers.

9. Second Simulation Assessing “Grubbs” and “g1” Outlier Detection Alternatives

Another MC study was designed to test the claim that the proposed method provides consistent

results. This second MC simulation is much simpler than the one used to derive the data for constructing

the outlier statistics (Figure 4).
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Figure 4. The procedure for testing the outlier statistics.

The data used here as a proof of the facts are from [7] and all cases involve a Normal distribution

(Distribution = Normal in Equation (15); PDF and CDF for Normal distribution in Equation (18);

a symmetrical distribution) with α = 5% risk being in error. The parameters of the Normal distribution

(µ and σ) are determined for each case, as well as the sample size (Equation (17)).

xextreme(α) = InvCDF“Normal”(0.5± 0.5· n√
1−α;µ, σ) (17)

PDF“Normal”(x;µ, σ) =
e
− (x−µ)2

σ2

σ
√

2π
, CDF“Normal”(x;µ, σ) =

∫ x

−∞
PDF“Normal”(t;µ, σ)dt (18)

For comparison, the same strategy for calculating the confidence intervals of the extreme values

for the Normal distribution with the Grubbs test statistic (Equation (2)) was used to provide an alternate

result (Equation (19)).

xcrit(α) = x±Gcrit(α) · s, Gcrit(α) =
n− 1
√

n

√

√

t2
G
(α)

n− 2 + t2
G
(α)

, tG = InvCDF“Student t”(
α

2n
, n− 2) (19)

The steps followed in this analysis are given in the Table 5.

Table 5. Comparison of the steps of the analysis and simulation for extreme values confidence intervals

(proposed method vs. Grubbs test)

Step Action (step 0 is setting the dataset; α← 0.05)

1 Estimate (with MLE, Equation (3)) parameters (µ, σ) of the Normal distribution; calculate the associated CDFs (Equation (18))

2 Calculate the order statistics, their associated risks being in error, FCS and pFCS (Equations (6) and (4))

3 For n and α calculate the confidence intervals for the extreme values by using (a) Equation (6) and (17) and (b) Equation (19)

4
Run the MC experiment (Figure 4) for K = 10000 (and then the expected number of outliers is 500) samples and count the
samples containing outliers for the existing method (Grubbs, Equation (19); with µ and σ from CM method) and for the

proposed method (g1, Equations (13)–(15) and (17); with µ and σ from the MLE method)

Results of the analysis using the steps given in Table 5 for the first dataset are given in Table 6.
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Table 6. Outlier analysis results for {568, 570, 570, 570, 572, 572, 572, 578, 584, 596} dataset.

Step Results (for α = 5%)

1 µ = 575.2; σ = 8.256 (MLE)→ CPs = {0.1916, 0.2644, 0.2644, 0.2644, 0.3492, 0.3492, 0.3492, 0.6328, 0.8568, 0.9941}

2

Statistic AD KS CM KV WU H1 FCS

Value 1.137 1.110 0.206 1.715 0.182 5.266 12.293

αStatistic 0.288 0.132 0.259 0.028 0.049 0.343 0.056

3 xcrit(5%) = 575.2 ± 2.29·8.7025; pextreme(5%) = 0.5 ± InvCDF“g1”(1-0.05; 10); xextreme(5%) = {552.086, 598.314}

4

Number of samples
containing outliers

Existing method
(Grubbs)

Proposed method (g1)

First run 1977 (19.77%) 510 (5.1%)

Second run 2009 (20.09%) 526 (5.26%)

In regard to the results given in Table 6:

At step 1, CPs are the cumulative probabilities ({p1, . . . , p10} in Figure 3) associated with the series

of the observations from the sample ({x1, . . . , x10} in Figure 3).

At step 2, the data passes the normality test (αFCS = 7% > 5% = α, see Figure 3).

Step 3 was made for n = 10 (see Figure 4). (a) The proposed method does not detect outliers in the

sample (552.086 < 568, 596 < 598.314); (b) Grubbs test detect 596 as being an outlier (596 > 595.13).

At step 4 (see Figure 4), since {510, 526} are comparable with 500 and {1977, 2009} are much greater

than 500, the results lead to the conclusion that the existing method produces type I errors by leading

to false positive detection of outliers in the samples while the proposed method does not.

10. Going Further with the Outlier Analysis

What if “596” is removed from the sample? The following table provides mirror-like results for

this scenario (Table 7).

Table 7. Outlier analysis results for {568, 570, 570, 570, 572, 572, 572, 578, 584} dataset.

Step Results (for α = 5%)

1 µ = 572.889; σ = 4.725 (MLE)→ CPs = {0.1504, 0.2705, 0.2705, 0.2705, 0.4254, 0.4254, 0.4254, 0.8603, 0.9907}

2

Statistic AD KS CM KV WU H1 FCS

Value 0.935 1.057 0.174 1.535 0.155 4.678 9.715

αStatistic 0.389 0.167 0.327 0.082 0.088 0.394 0.137

3 xcrit(5%) = 572.89 ± 2.215·5.011; pextreme(5%) = 0.5 ± InvCDF“g1”(1-0.05; 9); xextreme(5%) = {559.822, 585.956}

4

Number of samples
containing outliers

Existing method
(Grubbs)

Proposed method (g1)

First run 2341 (23.41%) 563 (5.63%)

Second run 2333 (23.33%) 543 (5.43%)

As can be observed in Table 7, the data is not in good agreement with normality (αFCS in Table 6 is

7%, while in Table 7 it is 16%) and there is no change in the accuracy of the classification ({563, 543}

comparable with 500, {2341, 2333} is much greater than 500; the existing method produces type I errors

by leading to false positive detection of outliers in the samples, while the proposed method does not).

When comparing the results given in Table 6 with the results given in Table 7 it should be noted that

both tests (Grubbs and the newly proposed g1) produce somewhat confusing results (see Table 8 for

side-by-side outcomes).
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Table 8. Side-by-side comparison of the analysis of the samples.

Sample
{568, 570, 570, 570, 572, 572,

572, 578, 584, 596}
{568, 570, 570, 570, 572, 572,

572, 578, 584}

At 5% risk being in error can the
hypothesis that the sample was drawn
from a normal distribution be rejected?

No (αFCS = 7%) No (αFCS = 15.8%)

Grubbs confidence interval for ‘no
outliers’ at 5% risk being in error

(555.27, 595.13)
596 is detected as being outlier

(561.79, 583.99)
584 is detected as being outlier

g1 confidence interval for ‘no outliers’ at
5% risk being in error

(552.08, 598.32)
no outliers

(559.82, 585.96)
no outliers

Table 8 highlights the fact that based on the {568, 570, 570, 570, 572, 572, 572, 578, 584} sample,

the g1 test may be interpreted as identifying 596 as being an outlier. This is not quite true because the

g1 test was not intended to be used in this way. That is, 596 is outside of the dataset, so at the time of

constructing the confidence intervals for the extreme values, the information regarding its observation

was missing.

Another trial was done, this time with 601 replacing 596 in the initial dataset (Table 9).

Table 9. Outlier analysis results for the {568, 570, 570, 570, 572, 572, 572, 578, 584, 601} dataset.

Step Results (for α = 5%)

1 From the CM method: µ = 575.7; σ = 10.067; from MLE method: µ = 575.7; σ = 9.550

2

Statistic AD KS CM KV WU H1 FCS

Value 1.267 1.109 0.225 1.774 0.198 5.411 13.652

αStatistic 0.241 0.132 0.226 0.018 0.035 0.254 0.034

3
Grubbs confidence interval for ’no outliers’ at 5% risk being in error: (552.647,598.753); 601 is an outlier

g1 confidence interval for ’no outliers’ at 5% risk being in error: (548.963, 602.437); no outliers

In a further trial, 604 replaced 596 in the initial dataset (Table 10).

Table 10. Outlier analysis results for the {568, 570, 570, 570, 572, 572, 572, 578, 584, 604} dataset.

Step Results (for α = 5%)

1 From the CM method: µ = 576.0; σ = 10.914; from MLE method: µ = 576.0; σ = 10.354

2

Statistic AD KS CM KV WU H1 FCS

Value 1.348 1.108 0.238 1.803 0.209 5.481 14.468

αStatistic 0.216 0.133 0.206 0.015 0.028 0.215 0.025

3
Grubbs confidence interval for ’no outliers’ at 5% risk being in error: (551.00, 601.00); 604 is an outlier

g1 confidence interval for ’no outliers’ at 5% risk being in error: (547.01, 604.99); no outliers

The conclusion is simple (see the results in the Tables 6, 7, 9 and 10): A test will hardly ever detect

an outlier for a small sample; it is more likely to reject the hypothesis of the sample drawn from the

distribution itself!

The same trick was used on a bigger sample and the results are shown in Table 11 (the dataset is

from Table 4).
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Table 11. Outlier analysis results for Table 4 dataset under the assumption of normal distribution.

Step Results (for α = 5%)

1 Table 5 Dataset; Normal distribution→ CM: µ = 6.481; σ = 0.831; MLE: µ = 6.481; σ = 0.829

2

Statistic AD KS CM KV WU H1 FCS

Value 0.439 0.484 0.049 0.952 0.047 104.2 1.276

αStatistic 0.812 0.965 0.886 0.852 0.743 0.641 0.973

3
Grubbs confidence interval for ’no outliers’ at 5% risk being in error: (3.492, 9.470); 9.603 is an outlier

g1 confidence interval for ’no outliers’ at 5% risk being in error: (3.444, 9.517); 9.603 is an outlier

4

Number of samples
containing outliers

Existing method
(Grubbs)

Proposed method (g1)

First run 637 (6.37%) 511 (5.11%)

Second run 630 (6.3%) 481 (4.81%)

On one hand, as the results in Table 11 prove, the proposed method correctly identifies the

confidence interval for the extreme values, while the existing method does not.

On the other hand, the results in Table 11 also show that the likelihood of identifying the

outliers increases with the sample size, making it perfectly possible to identify outliers with the

proposed method, although this is not the case in small samples. It is possible to detect the outliers in

small samples as well, but not when the parameters of the distribution are derived from the sample

data—only when the parameters of the distribution are known a priori or determined from other

samples (the results given in Tables 6–10 are proof of this).

11. Further Discussion

The obtained expression for CDF of “g1” (Equation (11)) reveals the domain of a random variable

distributed by the “g1” statistic ([0, 0.5]), which is consistent with the definition of “g1” (Equations (9) and (10)).

Independently of the shape of the theoretical distribution being tested (the generic case is

defined by Equation (5)), as defined by Equations (9) and (10), the newly proposed statistic “g1”

defines a symmetric confidence interval for the extreme values in samples in the probability space

(Equation (14)). Later, this symmetric confidence interval may be changed back into an asymmetrical

one when it is expressed in the domain of the theoretical distribution being tested (Equation (15)).

It should be recognized that “g1” uses a symmetrization strategy to obtain the confidence interval for

the extreme values in samples.

It might seem that the literature on robust statistics was ignored in this work, however, this is not

entirely true. In fact, a whole pool of robust statistics was used extensively in the study (see Equation (8)),

introduced as a tool in Table 5 and involved in the later calculations (Tables 6, 7 and 9, Tables 10 and 11).

Also, it should be noted that the substitution of the mean by the median is not a new idea; it is well known

in the field of robust statistics (for example, Watson U2 [29], the WUStatistic in Equation (8), uses it).

A short literature survey provides several of examples of current real applications that require

the proposed method. Thus, in signal processing, non-stationary, non-Gaussian, spiky signals are

usually regarded as outliers and thus discarded (see [35–38] as typical cases). In this context, it should

be noted that Mood’s median test is preferred to the Kruskal-Wallis test when outliers are present [39].

The identification of outliers is also recognized as an issue in the validation of protein structures,

and the current methods are revised in [40]. Other examples can be found in [41].

In the wider context, an alternate window-based strategy has been proposed in which outliers

are detected in each window by the Tukey method and labeled so that they can be excluded from the

realization of the process points to be used for model identification [42]. A contingency-based strategy

proposes maximization of true positive (TP) values and minimization of false negative (FN) and false

positive (FP) values [43]. Finally, another distribution testing procedure has been proposed in [44].
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12. Conclusions

A new method for detecting outliers was proposed in this paper. The method is applicable to

any continuous distribution at any risk being in error. It was proved that the method correctly detects

the outliers. For a normal distribution at 5% risk being in error, it was also shown that the proposed

method outperforms the classical Grubbs test for detecting the outliers.

Supplementary Materials: Details of the software used for deriving the results given in the figures and tables, algorithms
and source codes are given as supplementary material available online at http://www.mdpi.com/2073-8994/11/6/835/s1.
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