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In this paper we investigate the problem of testing the assumption of stationarity in locally stationary pro-
cesses. The test is based on an estimate of a Kolmogorov–Smirnov type distance between the true time
varying spectral density and its best approximation through a stationary spectral density. Convergence of a
time varying empirical spectral process indexed by a class of certain functions is proved, and furthermore
the consistency of a bootstrap procedure is shown which is used to approximate the limiting distribution
of the test statistic. Compared to other methods proposed in the literature for the problem of testing for
stationarity the new approach has at least two advantages: On one hand, the test can detect local alternatives
converging to the null hypothesis at any rate gT → 0 such that gT T 1/2 → ∞, where T denotes the sample
size. On the other hand, the estimator is based on only one regularization parameter while most alternative
procedures require two. Finite sample properties of the method are investigated by means of a simulation
study, and a comparison with several other tests is provided which have been proposed in the literature.

Keywords: bootstrap; empirical spectral measure; goodness-of-fit tests; integrated periodogram; locally
stationary process; non-stationary processes; spectral density

1. Introduction

Most literature in time series analysis assumes that the underlying process is second-order sta-
tionary. This assumption allows for an elegant development of powerful statistical methodology
like parameter estimation or forecasting techniques, but is often not justified in practice. In re-
ality, most processes change their second-order characteristics over time and numerous models
have been proposed to address this feature. Out of the large literature, we mention exemplarily
the early work on this subject by Priestley [25], who considered oscillating processes. More re-
cently, the concept of locally stationary processes has found considerable attention, because in
contrast to other proposals it allows for a meaningful asymptotic theory, which is essential for
statistical inference in such models. The class of locally stationary processes was introduced by
Dahlhaus [7] and particular important examples are time varying ARMA models.

While many estimation techniques for locally stationary processes were developed (see Neu-
mann and von Sachs [20], Dahlhaus, Neumann and von Sachs [10], Chiann and Morettin [5],
Dahlhaus and Polonik [11], Dahlhaus and Subba Rao [13], Van Bellegem and von Sachs [27]
or Palma and Olea [21] among others), goodness-of-fit testing has found much less attention al-
though its importance was pointed out by many authors. von Sachs and Neumann [29] proposed a
method to test the assumption of stationarity, which is based on the estimation of wavelet coeffi-
cients by a localised version of the periodogram. Paparoditis [22] and Paparoditis [23] used an L2
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distance between the true spectral density and its best approximation through a stationary spec-
tral density to measure deviations from stationarity, and most recently Dwivedi and Subba Rao
[15] developed a Portmanteau type test statistic to detect non-stationarity. However, besides the
choice of a window width for the localised periodogram which is inherent in essentially any
statistical inference for locally stationary processes, all these concepts require the choice of at
least one additional regularization parameter. For example, the procedure proposed in Sergides
and Paparoditis [26] relies on an additional smoothing bandwidth for the estimation of the local
spectral density. It was pointed out therein that it is the choice of this particular tuning parameter
that influences the results of the statistical analysis substantially.

Recently, Dette, Preuss and Vetter [14] proposed a test for stationarity which is based on an
L2 distance between the true spectral density and its best stationary approximation and which
does not require the choice of that additional regularization parameter. Roughly speaking, these
authors proposed to estimate the L2 distance considered by Paparoditis [22] by calculating inte-
grals of powers of the spectral density directly via Riemann sums of the periodogram. With this
idea, Dette, Preuss and Vetter [14] avoided the integration of the smoothed periodogram, as it was
done in Paparoditis [22] or Paparoditis [23]. In a comprehensive simulation study it was shown
that this method is superior compared to the other tests, no matter how the additional smoothing
bandwidths in these procedures are chosen.

Although the test proposed by Dette, Preuss and Vetter [14] has attractive features, it can only
detect local alternatives converging to the null hypothesis at a rate T −1/4, where T here and
throughout the paper denotes the sample size. It is the aim of the present paper to develop a test
for stationarity in locally stationary processes which is at first able to detect alternatives converg-
ing to the null hypothesis at the rate gT → 0 such that gT T 1/2 → ∞ and is secondly based on the
concept in Dette, Preuss and Vetter [14] for which no additional smoothing bandwidth is needed.
For this purpose, we employ a Kolmogorov–Smirnov type test statistic to estimate a measure of
deviation from stationarity, which is defined by

D := sup
(v,ω)∈[0,1]2

∣∣D(v,ω)
∣∣,

where for all (v,ω) ∈ [0,1]2 we set

D(v,ω) := 1

2π

(∫ v

0

∫ πω

0
f (u,λ)dλdu − v

∫ πω

0

∫ 1

0
f (u,λ)dudλ

)
(1.1)

and where f (u,λ) denotes the time varying spectral density. Note that the quantity D is identi-
cally zero if the process is stationary, that is, if f (u,λ) is does not depend on u. The consideration
of functionals of the form (1.1) for the construction of a test for stationarity is natural and was
already suggested by Dahlhaus [9]. In particular, Dahlhaus and Polonik [12] proposed an esti-
mator of this quantity which is based on the integrated (with respect to the Lebesgue measure)
pre-periodogram. However, in applications Riemann sums are used to approximate the integral
and therefore the approach proposed by these authors is not directly implementable. In particular,
it is pointed out in Example 2.7 of Dahlhaus [9] that the asymptotic properties of an estimator
based on Riemann approximation have been an open problem so far. See the discussion at the
end of Section 2 for more details.
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In Section 2, we introduce an alternative stochastic process, say {D̂T (v,w)}(v,w)∈[0,1]2 ,
which is based on a summation of the localised periodogram and serves as an estimate of
{D(v,w)}(v,w)∈[0,1]2 . The proposed statistic does neither require integration of the localised pe-
riodogram with respect to an absolutely continuous measure nor the problematic choice of a
second regularization parameter. Weak convergence of a properly standardized version of D̂T to
a Gaussian process is established under the null hypothesis, local and fixed alternatives, giving a
consistent estimate of D. The distribution of the limiting process depends on certain features of
the data generating process which are difficult to estimate. Therefore, the second purpose of this
paper is the development of an AR(∞) bootstrap method and a proof of its consistency. See Sec-
tion 3 for details. We also provide a solution of the problem mentioned in the previous paragraph
and prove weak convergence of a Riemann approximation for the integrated pre-periodogram
proposed by Dahlhaus [9], which is Theorem 2.2 in the following section. As a result, we obtain
two empirical processes estimating the function D defined in (1.1) which differ by the use of
localised periodogram and pre-periodogram in the Riemann approximations. In Section 4, we
investigate their finite sample properties by means of a simulation study. Although the estimator
based on the pre-periodogram does not require the specification of any regularization parameter
at all, it is demonstrated that it yields substantially less power compared to the statistic based on
the localised periodogram. Additionally, it is shown that the latter method is extremely robust
with respect to different choices of the window width which is used for the calculation of the
localised periodogram. Moreover, we also provide a comparison with the tests proposed in Pa-
paroditis [23], Dwivedi and Subba Rao [15] and Dette, Preuss and Vetter [14] and show that the
new proposal performs better in many situations. Finally, we present a data example, and for the
sake of a transparent presentation of the results all technical details are deferred to the Appendix.

2. The test statistic

Following Dahlhaus and Polonik [12], we define a locally stationary process via a sequence of
stochastic processes {Xt,T }t=1,...,T which exhibit a time varying MA(∞) representation, namely

Xt,T =
∞∑

l=−∞
ψt,T ,lZt−l , t = 1, . . . , T , (2.1)

where the random variables Zt are independent identically standard normal distributed random
variables. Since the coefficients ψt,T ,l are in general time dependent, each process {Xt,T }t=1,...,T

is typically not stationary. To ensure that the process shows approximately stationary behavior
on a small time interval, we impose that there exist twice continuously differentiable functions
ψl : [0,1] → R, l ∈ Z, such that

∞∑
l=−∞

sup
t=1,...,T

∣∣ψt,T ,l − ψl(t/T )
∣∣ = O(1/T ) (2.2)
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as T → ∞. Furthermore, we assume that the following technical conditions

∞∑
l=−∞

sup
u∈[0,1]

∣∣ψl(u)
∣∣|l| < ∞, (2.3)

∞∑
l=−∞

sup
u∈[0,1]

∣∣ψ ′
l (u)

∣∣ < ∞, (2.4)

∞∑
l=−∞

sup
u∈[0,1]

∣∣ψ ′′
l (u)

∣∣ < ∞ (2.5)

are satisfied, which are in general rather mild. See Dette, Preuss and Vetter [14] for a discussion.
Note that variables Zt with time varying variance σ 2(t/T ) can be included in the model by
choosing the coefficients ψt,T ,l in (2.1) appropriately.

Set

ψ
(
u, exp(−iλ)

) :=
∞∑

l=−∞
ψl(u) exp(−iλl).

Then the function

f (u,λ) = 1

2π

∣∣ψ(
u, exp(−iλ)

)∣∣2

is well defined and called the time varying spectral density of {Xt,T }t=1,...,T , see Dahlhaus [7].
It is continuous by assumption and can roughly be estimated by a local periodogram. To be
precise, we assume without loss of generality that the total sample size T can be decomposed as
T = NM , where N and M are integers and N is even. Furthermore, we define

IX
N (u,λ) := 1

2πN

∣∣∣∣∣
N−1∑
s=0

X�uT �−N/2+1+s,T exp(−iλs)

∣∣∣∣∣
2

,

which is the local periodogram at time u proposed by Dahlhaus [8]. Here, we have set
Xj,T = 0, if j /∈ {1, . . . , T }. This is the usual periodogram computed from the observations
X�uT �−N/2+1,T , . . . ,X�uT �+N/2,T . The arguments employed in the Appendix show that

E
(
IX
N (u,λ)

) = f (u,λ) + O(1/N) + O(N/T ),

and therefore the statistic IX
N (u,λ) is an asymptotically unbiased estimator for the spectral den-

sity if N → ∞ and N = o(T ). However, IX
N (u,λ) is not consistent just as the usual periodogram.

We now consider an empirical version of the function D(v,ω) defined in (1.1), that is,

D̂T (v,ω) := 1

T

�vM�∑
j=1

�ωN/2�∑
k=1

IX
N (uj , λk) − �vM�

M

1

T

M∑
j=1

�ωN/2�∑
k=1

IX
N (uj , λk), (2.6)
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where the points

uj := tj

T
:= N(j − 1) + N/2

T
, j = 1, . . . ,M,

define an equidistant grid of the interval [0,1] and

λk := 2πk

N
, k = 1, . . . ,

N

2
,

denote the Fourier frequencies. It follows from the proof of Theorem 2.1 in the Appendix that
for every v ∈ [0,1] and ω ∈ [0,1] we have

E
(
D̂T (v,ω)

) = 1

T

�vM�∑
j=1

�ωN/2�∑
k=1

f (uj , λk)

− �vM�
M

1

T

M∑
j=1

�ωN/2�∑
k=1

f (uj , λk) + O(1/N) + O
(
N2/T 2)

= D(v,ω) + O(1/N) + O(N/T ),

where the latter identity is due to the approximation error of the Riemann sum. This error can be
improved, if we replace D(v,ω) by its discrete time approximation, that is,

DN,M(v,ω) := D

(�vM�
M

,
�ωN/2�

N/2

)

for which the representation

E
(
D̂T (v,ω)

) = DN,M(v,ω) + O(1/N) + O
(
N2/T 2) (2.7)

holds. The approximation error of the Riemann sum in (2.7) becomes smaller due to the choice
of the midpoints uj . The rate of convergence will be T −1/2 later on, so we need the O(·)-terms to
vanish asymptotically after multiplication with

√
T . Therefore, we define an empirical spectral

process by

ĜT (v,ω) := √
T

(
1

T

�vM�∑
j=1

�ωN/2�∑
k=1

IX
N (uj , λk) − �vM�

M

1

T

M∑
j=1

�ωN/2�∑
k=1

IX
N (uj , λk) − DN,M(v,ω)

)

and assume

N → ∞, M → ∞,
T 1/2

N
→ 0,

N

T 3/4
→ 0. (2.8)
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Our first result specifies the asymptotic properties of the empirical process (ĜT (v,ω))(v,ω)∈[0,1]2 ,
both under the null hypothesis and under a fixed alternative. The null hypothesis of stationarity
is formulated as

H0 :f (u,λ) is independent of u, (2.9)

which is a little different from genuine second-order stationarity, since it only means that the
coefficients ψt,T ,l in (2.1) can be approximated by time independent terms ψl . Thanks to the
continuity of the time varying spectral density, the alternative corresponds to the property that
there is some λ such that u 	→ f (u,λ) is not a constant function. Finally, the symbol ⇒ denotes
weak convergence in [0,1]2.

Theorem 2.1. Suppose we have a locally stationary process as defined in (2.1) with independent
and standard normal innovations Zt . Furthermore assume that the assumptions (2.2)–(2.5) and
(2.8) are satisfied. Then as T → ∞ we have

(
ĜT (v,ω)

)
(v,ω)∈[0,1]2 ⇒ (

G(v,ω)
)
(v,ω)∈[0,1]2 , (2.10)

where (G(v,ω))(v,ω)∈[0,1]2 is a Gaussian process with mean zero and covariance structure

Cov
(
G(v1,ω1),G(v2,ω2)

)
= 1

2π

∫ 1

0

∫ πmin(ω1,ω2)

0

(
1[0,v1](u) − v1

)(
1[0,v2](u) − v2

)
f 2(u,λ)dλdu.

Under the null hypothesis, we have DN,M(v,ω) = 0 for all N,M ∈ N and for all v,ω ∈ [0,1].
Therefore, we obtain

(√
T D̂T (v,ω)

)
(v,ω)∈[0,1]2 ⇒ (

G(v,ω)
)
(v,ω)∈[0,1]2,

which yields

√
T sup

(v,ω)∈[0,1]2

∣∣D̂T (v,ω)
∣∣ D−→ sup

(v,ω)∈[0,1]2

∣∣G(v,ω)
∣∣ (2.11)

under the null hypothesis (2.9). An asymptotic level α test is then obtained by rejecting the null
hypothesis of stationarity whenever

√
T sup(v,ω)∈[0,1]2 |D̂T (v,ω)| exceeds the (1 −α)% quantile

of the distribution of the random variable sup(v,ω)∈[0,1]2 |G(v,ω)|. On the other hand, under the
alternative there is a pair (v,ω) such that D(v,ω) �= 0. The fact that DN,M converges uniformly
to D together with Theorem 2.1 yields consistency of this test. Note also that under the null
hypothesis H0 the covariance structure of the limiting process in Theorem 2.1 simplifies to

Cov
(
G(v1,ω1),G(v2,ω2)

) = min(v1, v2) − v1v2

2π

∫ πmin(ω1,ω2)

0
f 2(λ)dλ (2.12)
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and depends on the unknown spectral density f . In order to avoid the estimation of the inte-
gral over the squared spectral density, we propose to approximate the quantiles of the limiting
distribution by an AR(∞) bootstrap, which will be described in the following section.

An alternative estimator for the time varying spectral density is given by

JT (u,λ) := 1

2π

∑
k : 1≤�uT +1/2±k/2�≤T

X�uT +1/2+k/2�X�uT +1/2−k/2� exp(−iλk),

which is called the pre-periodogram (see Neumann and von Sachs [20]). As for the usual peri-
odogram, it is asymptotically unbiased, but again not consistent. Based on this statistic, we define
an alternative process by

Ĥ 1
T (v,ω) := √

T

(
1

T 2

�vT �∑
j=1

�ωT/2�∑
k=1

JT (j/T ,λk,T )

(2.13)

− �vT �
T 3

T∑
j=1

�ωT/2�∑
k=1

JT (j/T ,λk,T ) − D(v,ω)

)
,

where the Fourier frequencies become λk,T = 2πk/T now. Convergence of the finite dimen-
sional distributions of the process (H 1

T (v,ω))(v,ω)∈[0,1]2 to the ones of the limiting process
(G(v,ω))(v,ω)∈[0,1]2 has already been shown in Dahlhaus [9]. Tightness can be shown using
similar arguments as given in the Appendix for the proof of Theorem 2.1, which are not stated
here for the sake of brevity. As a consequence, we obtain the following result.

Theorem 2.2. If the assumptions of Theorem 2.1 are satisfied, then as T → ∞ we have

(
Ĥ 1

T (v,ω)
)
(v,ω)∈[0,1]2 ⇒ (

G(v,ω)
)
(v,ω)∈[0,1]2,

where (G(v,ω))(v,ω)∈[0,1]2 is the Gaussian process defined in Theorem 2.1.

Because the use of Ĥ 1
T (v,ω) instead of ĜT (v,ω) does not require the choice of the quantity

N , which specifies the number of observations used for the calculation of the local periodogram,
it might be appealing to construct a Kolmogorov–Smirnov type test for stationarity on the basis of
this process. However, we will demonstrate in Section 4 by means of a simulation study that for
realistic sample sizes the method which employs the pre-periodogram is clearly outperformed by
the approach based on the local periodogram. Our numerical results also show that the use of the
local periodogram is not very sensitive with respect to the choice of the regularization parameter
N either, and therefore we strictly recommend to use the latter approach when constructing a
Kolmogorov–Smirnov test.

Remark 2.3. The convergence of a modified version of the process (2.13) to the limiting Gaus-
sian process (G(v,ω))(v,ω)∈[0,1]2 of Theorem 2.1 was shown in Dahlhaus and Polonik [12],
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where the Riemann sum over the Fourier frequencies was replaced by the integral with respect
to the Lebesgue measure. More precisely, these authors considered the process

(
Ĥ 2

T (v,ω)
)
(v,ω)∈[0,1]2 := 1

2π
√

T

(�vT �∑
j=1

∫ πω

0
JT (j/T ,λ)dλ

− v

T∑
j=1

∫ πω

0
JT (j/T ,λ)dλ − D(v,ω)

)
(v,ω)∈[0,1]2

instead of (H 1
T (v,ω))(v,ω)∈[0,1]2 and proved its weak convergence. This is a rather typical re-

sult, as many other asymptotic results are only shown for the integral (instead of the sum over
the Fourier coefficients) over the local periodogram or the pre-periodogram; see, for example,
Dahlhaus [8] or Paparoditis [23]. The transition from these results to analogue statements for
the corresponding Riemann approximations is by no means obvious. For example, although it is
appealing to assume that

∫ π

0
IX
N (u,λ)dλ = 2π

N

N/2∑
k=1

IX
N (u,λk) + O(1/N)

holds because of the Riemann approximation error, this identity is in general not valid, as the
derivative ∂IX

N (u,λ)/∂λ is not uniformly bounded in N . A demonstrative explanation of this
fact is that IX

N (u,λk1) and IX
N (u,λk2) are asymptotically independent whenever k1 �= k2. Thus

in general asymptotic results for integrated local periodogram or pre-periodogram cannot be
directly transferred to the corresponding Riemann approximations. These difficulties were also
explicitly pointed out in Example 2.7 of Dahlhaus [9]. Note further that asymptotic tightness has
neither been studied for an integrated nor for a summarized local periodogram in the literature
so far.

Remark 2.4. Suppose that we are in the situation of local alternatives, that is, we have

fT (u,λ) = f (λ) + gT k(u,λ) (2.14)

for some deterministic sequence gT and an appropriate function k such that (2.14) defines a time
varying spectral density. Note that a locally stationary process with this specific spectral density
can easily be constructed through the equation

Xt,T =
∫ π

−π

exp(iλt)AT (t/T ,λ)dξ(λ),

where ξ is an orthogonal increment Gaussian process and AT (u,λ) is a function such that
fT (u,λ) = |AT (u,λ)|2. See Dahlhaus [8].

A careful inspection of the proofs in the Appendix shows that (2.10) with centering term
DN,M(v,ω) = 0 and asymptotic covariance (2.12) also holds in the case where gT = o(1/

√
T ).
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Moreover, if gT = 1/
√

T an analogue of Theorem 2.1 can be obtained where the centering term
DN,M(v,ω) in the definition of ĜT (v,ω) is replaced by

DN,M,k(v,ω) = 1

2π
√

T

(∫ �vM�/M

0

∫ 2π�ωN/2�/N

0
k(u,λ)dλdu

− �vM�
M

∫ 2π�ωN/2�/N

0

∫ 1

0
k(u,λ)dudλ

)
,

which is the original DN,M but with T −1/2k(u,λ) playing the role of f (u,λ). In this case,
the appropriately centered process converges weakly to a Gaussian process {G(v,ω)}(v,ω)∈[0,1]2

with covariance structure given by (2.12) as well. A similar comment applies to the process Ĥ 1
T

defined in (2.13). This means that the tests based on the processes ĜT and Ĥ 1
T can detect alter-

natives converging to the null hypothesis at any rate gT → 0 such that gT T 1/2 → ∞. In contrast,
the proposal of Dette, Preuss and Vetter [14] is based on an L2 distance between f (u,λ) and∫ 1

0 f (v,λ)dv and is therefore only able to detect alternatives converging to the null hypothesis
at a rate T −1/4.

Remark 2.5. In Theorems 2.1 and 2.2, we assume the existence of second order derivatives for
the approximating functions ψl(u). Nevertheless, it is straightforward to show that our test also
detects fixed alternatives in which the ψl(u) admit a finite number of points of discontinuity. We
furthermore conjecture that the constraints in Theorems 2.1 and 2.2 can be weakened to some
kind of condition on the total variation of ψl(u) as in Definition 2.1 in Dahlhaus and Polonik [12].

3. Bootstrapping the test statistic

To approximate the limiting distribution of sup(v,ω)∈[0,1]2 |G(v,ω)|, we will employ an AR(∞)

bootstrap approximation, which was introduced by Kreiß [17]. To ensure consistency of the
bootstrap procedure described later, we have to consider the stationary process Yt with spectral
density λ 	→ ∫ 1

0 f (u,λ)du first, which coincides with Xt,T in case the latter process is stationary.
We have to impose the following main assumption.

Assumption 3.1. We assume that the spectral density λ 	→ ∫ 1
0 f (u,λ)du is strictly positive and

that the process Yt has an AR(∞) representation, that is,

Yt =
∞∑

j=1

ajYt−j + ZAR
t , (3.1)

where (ZAR
j )j∈Z denotes a Gaussian white noise process with some variance σ 2 > 0 and the

sequence (aj )j∈N of coefficients satisfies
∑∞

j=1 |aj | < ∞ and

1 −
∞∑

j=1

aj z
j �= 0 for |z| ≤ 1. (3.2)
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Note that (Yt )t∈Z possesses an MA(∞) representation

Yt =
∞∑

l=−∞
ψlZt−l , (3.3)

where the Zt are the same as in (2.1) and the ψl are some appropriately defined constants.
The random variables ZAR

t in (3.1) do not necessarily coincide with the Zt from (3.3), even
though this could be ensured by assuming that the MA(∞) representation in (3.3) corresponds
to the Wold representation of Yt . See, for example, Kreiss, Paparoditis and Politis [19] for a
comprehensive illustration.

We have to introduce a second class of stationary processes, namely (Y AR
t (p))t∈Z for arbitrary

integer p, which is the process defined through

Y AR
t (p) =

p∑
j=1

aj,pY AR
t−j (p) + ZAR

t (p), (3.4)

where

(a1,p, . . . , ap,p) := argmin
b1,p,...,bp,p

E

(
Yt −

p∑
j=1

bj,pYt−j

)2

(3.5)

and (ZAR
t (p))t∈Z is a Gaussian white noise process with mean zero and variance

σ 2
p = E

(
Yt −

p∑
j=1

aj,pYt−j

)2

.

In other words, Y AR
t (p) corresponds to the best AR(p) model which can be fitted to the pro-

cess Yt . Lemma 2.2 in Kreiss, Paparoditis and Politis [19] ensures that for growing p

p∑
k=1

(1 + k)|ak,p − ak| → 0, (3.6)

thus the process Y AR
t (p) becomes ‘close’ to the process Yt .

The bootstrap procedure now works by fitting an AR(p) model to the observed data
X1,T , . . . ,XT,T , where the parameter p = p(T ) increases with the sample size T . To be pre-
cise, we first calculate an estimator (â1,p,T , . . . , âp,p,T ) for

(a1,p,T , . . . , ap,p,T ) = argmin
b1,p,T ,...,bp,p,T

E

(
Xt,T −

p∑
j=1

bj,p,T Xt−j,T

)2

(3.7)
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and then simulate a pseudo series X∗
1,T , . . . ,X∗

T ,T according to the model

X∗
t,T = Xt,T ; t = 1, . . . , p,

X∗
t,T =

p∑
j=1

âj,p,T X∗
t−j,T + Z∗

j ; p < t ≤ T .

Here, the quantities Z∗
j denote independent and normal distributed random variables with mean

zero and variance

σ̂ 2
p := 1

T − p

T∑
t=p+1

(ẑt − zT )2, (3.8)

where zT := 1
T −p

∑T
t=p+1 ẑt and

ẑt := Xt,T −
p∑

j=1

âj,p,T Xt−j,T for t = p + 1, . . . , T ,

thus σ̂ 2
p is the standard variance estimator of the error process ẑt . We now define the statistic

Ĝ∗
T (v,ω) in the same way as ĜT (v,ω) where the original observations X1,T , . . . ,XT,T are re-

placed by the bootstrap replicates X∗
1,T , . . . ,X∗

T ,T . To assure that this procedure approximates
the limiting distribution corresponding to the null hypothesis both under the null hypothesis and
the alternative, we need the following technical conditions:

Assumption 3.2.

(i) p = p(T ) ∈ [pmin(T ),pmax(T )], where pmax(T ) ≥ pmin(T )
T →∞−−−−→ ∞ and

p3
max(T )

√
log(T )√

T
= O(1). (3.9)

(ii) The estimators for the AR parameters defined by (3.7) satisfy

max
1≤j≤p

|âj,p,T − aj,p| = O
(√

log(T )/T
)
, (3.10)

uniformly with respect to p ≤ p(T ).
(iii) The estimate σ̂ 2

p defined in (3.8) converges in probability to σ 2 > 0.

All assumptions are rather standard in the framework of an AR(∞) bootstrap; see, for exam-
ple, Kreiß [18] or Berg, Paparoditis and Politis [3]. Thanks to (3.9), assumption (3.10) is, for
example, satisfied for the least squares or the Yule–Walker estimators; see Hannan and Kava-
lieris [16]. The latter condition is extremely important, as it implies that X∗

t,T shows a similar
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behavior as the AR(p) process Y AR
t (p) and is therefore also ‘close’ to Yt in a similar sense

as (3.6). Therefore, we can expect that statistics based on the bootstrap replicates behave in the
same way as those based on a stationary process. Precisely, we obtain the following result which
implies consistency of the bootstrap procedure described above.

Theorem 3.3. Suppose that the assumptions of Theorem 2.1 hold and that furthermore Assump-
tions 3.1 and 3.2 are satisfied. Then as T → ∞ we have conditionally on X1,T , . . . ,XT,T

(
Ĝ∗

T (v,ω)
)
(v,ω)∈[0,1]2 ⇒ (

G̃(v,ω)
)
v∈[0,1],ω∈[0,1],

where (G̃(v,ω))(v,ω)∈[0,1]2 denotes a centered Gaussian process with covariance structure

Cov
(
G̃(v1,ω1), G̃(v2,ω2)

) = min(v1, v2) − v1v2

2π

∫ πmin(ω1,ω2)

0

(∫ 1

0
f (u,λ)du

)2

dλ.

We now obtain empirical quantiles of sup(v,ω)∈[0,1]2 |G(v,ω)| by calculating D̂∗
T ,i :=

sup(v,ω)∈[0,1]2 |Ĝ∗
T ,i(v,ω)| for i = 1, . . . ,B where Ĝ∗

T ,1(v,ω), . . . , Ĝ∗
T ,B(v,ω) are the B boot-

strap replicates of ĜT (v,ω). The null hypothesis is then rejected, whenever

√
T sup

(v,ω)∈[0,1]2

∣∣D̂T (v,ω)
∣∣ >

(
D̂∗

T

)
T ,�(1−α)B�, (3.11)

where (D̂∗
T )T ,1, . . . , (D̂

∗
T )T ,B denotes the order statistic of D̂∗

T ,1, . . . , D̂
∗
T ,B . The test has asymp-

totic level α because of Theorem 3.3 and is consistent within the class of alternatives satisfy-
ing Assumptions 3.1 and 3.2. This follows, since conditionally on X1,T , . . . ,XT,T each boot-
strap statistic sup(v,ω)∈[0,1]2 |Ĝ∗

T (v,ω)| converges to a non-degenerate random variable, while√
T sup(v,ω)∈[0,1]2 |D̂T (v,ω)| converges to infinity by Theorem 2.1. We finally point out that

similar results can be shown for the statistic which is obtained by replacing the localised peri-
odogram in D̂T by the pre-periodogram. The technical details are omitted for the sake of brevity,
but the finite sample performance of this alternative approach will be investigated in the follow-
ing section as well.

4. Finite sample properties

4.1. Choosing the parameter

We first comment on how to choose the parameters N and p in concrete applications. Although
the proposed method does not show much sensitivity with respect to different choices of both
parameters, we select p throughout this section as the minimizer of the AIC criterion dating
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back to Akaike [1], which is defined by

p̂ = argmin
p

1

T

T/2∑
k=1

(
log

(
f

θ̂(p)
(λk,T )

) + IX
T (λk,T )

f
θ̂(p)

(λk,T )

)
+ p/T

in the context of stationary processes. See also Whittle [30] and Whittle [31]. Here, f
θ̂(p)

is

the spectral density of a stationary AR(p) process with the fitted coefficients and IX
T is the

usual stationary periodogram. Therefore, we focus in the following discussion on the sensitivity
analysis of the test (3.11) with respect to different choices of N , and we will see that the particular
choice of that tuning parameter has typically very little influence on the outcome of the test.

4.2. Bootstrap approximation

Let us illustrate now how well the proposed bootstrap method approximates the distribution of the
statistic

√
T sup(v,ω)∈[0,1]2 |D̂T (v,ω)| under the null hypothesis. For this purpose, we simulate

observations from the stationary AR(1) model

Xt,T = 0.5Xt−1,T + Zt , t = 1, . . . , T , (4.1)

for T = 128. In particular, we generate 1000 versions of this process and calculate each time
the test statistic

√
T sup(v,ω)∈[0,1]2 |D̂T (v,ω)|, both for N = 16 and N = 8. These outcomes

can be used to estimate the exact distribution of the test statistic. In a next step, we choose
randomly 10 series from the 1000 replications of (4.1), for which we calculate another 1000
bootstrap approximations each. Based on these bootstrap replications, we estimate the density
of the corresponding bootstrap approximations of the test statistic as well. The plots comparing
these densities are given in Figure 1 where the dotted line corresponds to the estimated exact
density while the dashed lines show the 10 estimated densities of the bootstrap approximations.

4.3. Size and power of the test

In this section, we investigate the size and power of the test (3.11) and the analogue based on the
pre-periodogram. We also compare these methods with three other tests for stationarity, which
recently have been proposed in the literature. All reported results are based on 200 bootstrap
replications and 1000 simulation runs under the null hypothesis while we use 500 simulation
runs under the alternative. To study the approximation of the nominal level, we simulate AR(1)

processes

Xt = φXt−1 + Zt , t ∈ Z, (4.2)

and MA(1) processes

Xt = Zt + θZt−1, t ∈ Z, (4.3)

for different values of the parameters φ and θ , where the Zt are independent and standard
normal distributed random variables throughout the whole section. The corresponding results
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Figure 1. Estimated densities of the distribution of the statistic
√

T sup(v,ω)∈[0,1]2 |D̂T (v,ω)| under the
null hypothesis. The dotted line is the estimated exact density while the solid lines corresponds to the
estimated densities of the bootstrap approximations. Left panel: N = 8; right panel: N = 16.

are depicted in Tables 1 and 2, respectively, and we observe a precise approximation of the
nominal level in the AR(1) case for φ ∈ {−0.5,0,0.5,0.9} and in the MA(1) case for θ ∈
{−0.9,−0.5,0.5,0.9} even for very small samples sizes. Furthermore, if T gets larger, the re-
sults are basically not affected by the choice of N in these cases. For φ = −0.9, the nominal level
is underestimated for our choice of T , but at least if T grows the approximation of the nominal
level becomes more precise.

Table 1. Rejection probabilities of the test (3.11) under the null hypothesis. The data was generated ac-
cording to model (4.2)

φ = −0.9 φ = −0.5 φ = 0 φ = 0.5 φ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 0.021 0.069 0.025 0.060 0.035 0.086 0.050 0.099 0.044 0.108
128 16 8 0.022 0.063 0.031 0.077 0.042 0.081 0.034 0.092 0.050 0.099
128 8 16 0.020 0.066 0.030 0.076 0.038 0.083 0.055 0.102 0.038 0.081
256 32 8 0.028 0.078 0.040 0.086 0.051 0.106 0.053 0.111 0.051 0.111
256 16 16 0.016 0.063 0.038 0.089 0.044 0.085 0.045 0.080 0.033 0.085
256 8 32 0.022 0.068 0.036 0.083 0.051 0.098 0.050 0.102 0.051 0.105
512 64 8 0.020 0.073 0.054 0.103 0.052 0.084 0.042 0.090 0.039 0.112
512 32 16 0.023 0.070 0.046 0.083 0.044 0.090 0.049 0.092 0.038 0.080
512 16 32 0.029 0.067 0.038 0.079 0.056 0.098 0.052 0.099 0.048 0.101
512 8 64 0.025 0.070 0.050 0.102 0.047 0.101 0.051 0.112 0.054 0.105
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Table 2. Rejection probabilities of the test (3.11) under the null hypothesis. The data was generated ac-
cording to model (4.3)

θ = −0.9 θ = −0.5 θ = 0.5 θ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 0.024 0.073 0.027 0.060 0.045 0.091 0.045 0.096
128 16 8 0.033 0.071 0.037 0.085 0.043 0.087 0.029 0.076
128 8 16 0.028 0.063 0.031 0.071 0.050 0.102 0.028 0.085
256 32 8 0.047 0.085 0.033 0.081 0.040 0.074 0.042 0.080
256 16 16 0.044 0.095 0.031 0.080 0.043 0.083 0.035 0.076
256 8 16 0.029 0.074 0.034 0.081 0.059 0.112 0.038 0.076
512 64 8 0.038 0.084 0.041 0.087 0.052 0.106 0.041 0.089
512 32 16 0.047 0.091 0.043 0.073 0.047 0.094 0.050 0.100
512 16 32 0.036 0.085 0.044 0.082 0.050 0.093 0.050 0.087
512 8 64 0.051 0.094 0.040 0.078 0.070 0.116 0.037 0.080

To study the power of the test (3.11), we simulate data from the following four models which
all correspond to the alternative of non-stationary processes. In particular, we consider

Xt,T = (1 + t/T )Zt , (4.4)

Xt,T = −0.9

√
t

T
Xt−1,T + Zt , (4.5)

Xt,T =

⎧⎪⎨
⎪⎩

0.5Xt−1 + Zt , if 1 ≤ t ≤ T

2
,

−0.5Xt−1 + Zt , if
T

2
+ 1 ≤ t ≤ T ,

(4.6)

Xt,T = Zt + 0.8 cos
(
1.5 − cos(4πt/T )

)
Zt−q, (4.7)

where we display the results for the last model for different q ∈ N. Note that due to Remark 2.5
the alternative (4.6) also fits into the theoretical framework. The corresponding rejection proba-
bilities are reported in Table 3 and we observe a reasonable behavior of the procedure in the first
three considered cases, whereas power is rather low for the alternative (4.7). Similar to the null
hypothesis we observe robustness with respect to different choices of N , and even for the choice
M = 32, N = 8, which appears to be implausible in view of (2.8), the results are satisfying. It
might be of interest to compare these results both with the pre-periodogram approach from Theo-
rem 2.2 and with other tests for the hypothesis of stationarity which have been recently suggested
in the literature. In particular, we consider the tests of Paparoditis [23], Dwivedi and Subba Rao
[15] and Dette, Preuss and Vetter [14].

In Table 4, we present the rejection frequencies for the test based on the pre-periodogram as
defined in (2.13). Recall that the use of the pre-periodogram does not require the specification
of the value N , which specifies the number of observations for the calculation of the local peri-
odogram. This makes its use attractive for practitioners. However, the results of the simulation
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Table 3. Rejection probabilities of the test (3.11) for several alternatives

(4.4) (4.5) (4.6) (4.7) q = 1 (4.7) q = 6

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 0.286 0.444 0.186 0.328 0.168 0.270 0.046 0.098 0.052 0.104
128 16 8 0.686 0.772 0.396 0.546 0.308 0.466 0.090 0.154 0.072 0.130
128 8 16 0.624 0.758 0.382 0.578 0.410 0.548 0.082 0.144 0.080 0.136
256 32 8 0.958 0.974 0.672 0.814 0.742 0.912 0.110 0.186 0.102 0.166
256 16 16 0.942 0.978 0.698 0.814 0.640 0.806 0.118 0.202 0.098 0.166
256 8 32 0.944 0.970 0.760 0.868 0.672 0.808 0.118 0.210 0.086 0.144

study show that compared to the local periodogram the use of the pre-periodogram yields to a
substantial loss of power for all four alternatives. In particular for alternatives of the form (4.6),
the test cannot be recommended.

In Table 5, we show the corresponding rejection probabilities for the test proposed in Dette,
Preuss and Vetter [14], which is the only of the remaining methods depending on one regulariza-
tion parameter only. These authors proposed to estimate the L2 distance

∫ 1

0

∫ π

0

(
f (u,λ) −

∫ 1

0
f (v,λ)dv

)2

dλdu

using sums of the (squared) periodogram. In order to provide a fair comparison between the
two methods, we also employ the AR(∞) bootstrap to the corresponding test to generate critical
values. It turns out that without a bootstrap the method of Dette, Preuss and Vetter [14] is much
more sensitive with respect to different choices of N . We observe that the new method also
outperforms the test proposed by Dette, Preuss and Vetter [14] in the alternatives (4.4) and (4.5).
In most cases the differences are substantial. On the other hand, for the alternative (4.6) the
procedure of Dette, Preuss and Vetter [14] has larger power if T = 64 and T = 128, but for
T = 256 the novel method performs better in this case as well. Nevertheless, the new approach
is clearly outperformed by the proposal of Dette, Preuss and Vetter [14] for the alternative (4.7).

Table 4. Rejection probabilities of the test based on the pre-periodogram for several alternatives

(4.4) (4.5) (4.6) (4.7) q = 1 (4.7) q = 6

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

64 0.188 0.340 0.080 0.202 0.022 0.056 0.024 0.076 0.044 0.102
128 0.552 0.702 0.216 0.392 0.036 0.116 0.038 0.086 0.052 0.098
256 0.938 0.968 0.580 0.734 0.080 0.176 0.062 0.150 0.088 0.132
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Table 5. Rejection probabilities of the test proposed by Dette, Preuss and Vetter [14] for several alternatives
(quantiles obtained by AR(∞) bootstrap)

(4.4) (4.5) (4.6) (4.7) q = 1 (4.7) q = 6

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 0.116 0.196 0.188 0.232 0.250 0.344 0.244 0.350 0.056 0.116
128 16 8 0.106 0.160 0.256 0.330 0.370 0.552 0.490 0.584 0.226 0.336
128 8 16 0.168 0.268 0.220 0.286 0.432 0.566 0.398 0.516 0.072 0.126
256 32 8 0.378 0.498 0.282 0.412 0.746 0.922 0.740 0.836 0.532 0.670
256 16 16 0.208 0.368 0.276 0.410 0.618 0.794 0.716 0.816 0.342 0.444
256 8 32 0.224 0.338 0.300 0.418 0.582 0.744 0.620 0.760 0.104 0.178

In Table 6, we show the rejection frequencies for the method which was proposed in Paparo-
ditis [23]. This concept basically works by estimating

sup
v∈[0,1]

∫ π

−π

(
f (v,λ)∫ 1

0 f (u,λ)du
− 1

)2

dλ

via a smoothed local periodogram, which requires the choice of a smoothing bandwidth besides
the window length N . We choose the uniform kernel function, and as recommended by the
author we select the bandwidth via the cross validation criterion of Beltrão and Bloomfield [2].
To provide a fair comparison, we also use the AR(∞) bootstrap to obtain critical values. For
the alternatives (4.4)–(4.6) the proposal of Paparoditis [23] yields substantial less power than the
approach proposed in this paper, whereas for the alternative (4.7) no clear picture can be drawn.
For q = 1, the method of Paparoditis [23] performs better, while there is no significant difference
in the performance if q = 6. In any case, Paparoditis [23] is clearly outperformed by the approach
of Dette, Preuss and Vetter [14] for (4.7).

Table 6. Rejection probabilities of the test proposed by Paparoditis [23] for several alternatives (quantiles
obtained by AR(∞) bootstrap)

(4.4) (4.5) (4.6) (4.7) q = 1 (4.7) q = 6

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

64 8 8 0.054 0.126 0.050 0.122 0.078 0.170 0.058 0.104 0.034 0.064
128 16 8 0.150 0.242 0.158 0.262 0.112 0.198 0.128 0.218 0.082 0.140
128 8 16 0.066 0.154 0.120 0.254 0.166 0.270 0.080 0.170 0.034 0.066
256 32 8 0.304 0.424 0.248 0.380 0.298 0.448 0.288 0.428 0.102 0.180
256 16 16 0.234 0.344 0.276 0.404 0.258 0.374 0.288 0.420 0.120 0.174
256 8 32 0.126 0.226 0.240 0.374 0.298 0.376 0.158 0.266 0.050 0.106
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Table 7. Rejection probabilities of the test proposed by Dwivedi and Subba Rao [15] for several alternatives
(quantiles obtained by AR(∞) bootstrap)

(4.4) (4.5) (4.6) (4.7) q = 1 (4.7) q = 6

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

64 0.174 0.266 0.056 0.100 0.082 0.164 0.072 0.120 0.046 0.098
128 0.274 0.386 0.058 0.114 0.122 0.208 0.126 0.206 0.092 0.162
256 0.604 0.716 0.128 0.210 0.174 0.276 0.234 0.340 0.174 0.272

Finally, we compare our approach to that proposed in Dwivedi and Subba Rao [15]. These
authors suggested a Portmanteau type test by estimating

T

m∑
r=1

∣∣cT (r)
∣∣2

,

where cT (r) is the covariance of the process at lag r . For the estimation of cT (r), the authors
require the choice of a smoothing bandwidth, and again we use the cross validation criterion and
the uniform kernel function. Dwivedi and Subba Rao [15] also have to choose the maximal lag
m ∈ N up to which they want to estimate cT (r), and we pick m = 5 in the simulations. As in the
other examples, we employ the AR(∞) bootstrap, and the results are given in Table 7. A com-
parison with our method yields a result similar to the approach of Paparoditis [23]. Our approach
performs better for the alternatives (4.4)–(4.6) while the proposal of Dwivedi and Subba Rao
[15] yields a higher power in model (4.7). Again it is clearly outperformed in this case by the test
proposed in Dette, Preuss and Vetter [14].

4.4. Data example

As an illustration, we consider T = 257 observations of weekly egg prices at a German agricul-
ture market between April 1967 and March 1972. A plot of the data is given in Figure 2, and
following Paparoditis [23] the first order difference �t = Xt − Xt−1 of the observed time series
are analyzed. Although several stationary models were proposed in the literature to fit this data
(cf. Paparoditis [23]), the new test rejects the null hypothesis with p-value 0.006 if we choose
N = 32 or N = 16, and with p-value 0.001 if we choose N = 8. These results demonstrate
again that the choice of N does not have too much influence on the outcome, and that even the
somewhat implausible choice of N = 8 yields a p-value similar to the others.

Note that in Paparoditis [23] a longer version of the above time series was analyzed, namely
1201 observations of weekly egg prices between April 1967 and May 1990. However, we obtain
a p-value of exactly 0 even if we choose 106 bootstrap replicates in this case, which is why we
consider the first 257 datapoints only. Paparoditis [23] rejects the null hypothesis of stationarity
at level 5% if the whole dataset is used, but his approach yields a p-value of 0.1834 if it is applied
to the first 257 observations of the time series only, and therefore the hypothesis of stationarity
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Figure 2. Left panel: Weekly egg prices at a German agriculture market between April 1967 and
March 1972. Right panel: First order difference of the weekly egg prices.

cannot be rejected at a reasonable size using his method. Roughly the same p-value, namely
0.189, can be observed if the approach of Dwivedi and Subba Rao [15] is employed.

Appendix: Proofs

A.1. Proof of Theorem 2.1

Throughout the proof, we set yj = (vj ,ωj ) ∈ [0,1]2 for j = 1, . . . ,K and K ∈ N. To show weak
convergence we follow Theorems 1.5.4 and 1.5.7 in van der Vaart and Wellner [28] and prove
the following two claims:

(1) Convergence of the finite dimensional distributions, that is,

(
ĜT (yj )

)
j=1,...,K

D−→ (
G(yj )

)
j=1,...,K

. (A.1)

(2) Stochastic equicontinuity, that is,

∀η, ε > 0 ∃δ > 0: lim
T →∞P

(
sup

y1,y2∈[0,1]2 : d2(y1,y2)<δ

∣∣GT (y1) − GT (y2)
∣∣ > η

)
< ε, (A.2)

where d2(y1, y2) = √
(v1 − v2)2 + (w1 − w2)2.

Proof of (A.1). The claim follows from similar arguments as given in the proof of Theorem 3.1
in Dette, Preuss and Vetter [14]. For the sake of brevity and because we will use similar arguments
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in the proof of (A.2), we will sketch how the assertions

E
(
ĜT (v,ω)

) T →∞−−−−→ 0, (A.3)

Cov
(
ĜT (y1), ĜT (y2)

) T →∞−−−−→ 1

2π

∫ 1

0

∫ πmin(ω1,ω2)

0

(
1[0,v1](u) − v1

)(
1[0,v2](u) − v2

)
(A.4)

× f 2(u,λ)dλdu

can be shown. Note that we have

ĜT (v,ω) = 1√
T

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)I
X
N (uj , λk) − √

T DN,M(φv,ω,M,N )

=: GT (φv,ω,M,N )

with

φv,ω,M,N(u,λ) :=
(

I[0,�vM�/M](u) − �vM�
M

)
I[0,2π�ωN/2�/N](λ)

for u,λ ≥ 0 and

DN,M(φ) := 1

2π

∫ 1

0

∫ π

0
φ(u,λ)f (u,λ)dλdu.

In order to simplify some technical arguments, we also define

φv,ω,M,N(u,λ) := φv,ω,M,N (u,−λ)

for u ≥ 0, λ < 0 and obtain from (2.2)

E

(
1

T

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)I
X
N (uj , λk)

)

= 1

T

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)

× 1

2πN

N−1∑
p,q=0

∞∑
l,m=−∞

ψl

(
tj − N/2 + 1 + p

T

)
ψm

(
tj − N/2 + 1 + q

T

)

× E(Ztj −N/2+1+p−mZtj −N/2+1+q−l )

× exp
(−iλk(p − q)

)(
1 + O(1/T )

)
.
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A Taylor expansion now yields that this term becomes

1

T

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)
1

2πN

×
N−1∑

p,q=0

∞∑
l,m=−∞

ψl(uj )ψm(uj )

× E(Ztj −N/2+1+p−mZtj −N/2+1+q−l )

× exp
(−iλk(p − q)

)(
1 + O(1/T ) + O

(
N2/T 2)).

See Dette, Preuss and Vetter [14] for details. Since E(ZiZj ) = 0 for i �= j , we obtain the equation
p = q + m − l which shows that the above expression equals

1

2πNT

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)

×
∞∑

l,m=−∞

N−1∑
q=0

0≤q+m−l≤N−1

ψl(uj )ψm(uj ) exp
(−iλk(m − l)

)

+ O(1/T ) + O
(
N2/T 2)

= 1

2πNT

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)

×
∞∑

l,m=−∞
|l−m|≤N−1

N−1∑
q=0

0≤q+m−l≤N−1

ψl(uj )ψm(uj ) exp
(−iλk(m − l)

)

+ 1

2πNT

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)

×
∞∑

l,m=−∞
|l−m|≥N

N−1∑
q=0

0≤q+m−l≤N−1

ψl(uj )ψm(uj ) exp
(−iλk(m − l)

)

+ O(1/T ) + O
(
N2/T 2).
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Dropping the extra condition 0 ≤ q + m − l ≤ N − 1, the second term is bounded by

C

∞∑
l,m=−∞
|l−m|≥N

sup
u

∣∣ψl(u)
∣∣ sup

u

∣∣ψm(u)
∣∣ ≤ 2C

∞∑
m=−∞

sup
u

∣∣ψm(u)
∣∣ ∞∑

l=−∞
|l|≥N/2

sup
u

∣∣ψl(u)
∣∣

≤ 4C
∑∞

m=−∞ supu |ψm(u)|∑∞
l=−∞ |l| supu |ψl(u)|

N
(A.5)

= O(1/N)

for some C ∈ R and the order follows from (2.3). Using (2.3) and (A.5) in the same way again,
the first quantity above can be shown to be equal to

1

2πT

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)

∞∑
l,m=−∞

ψl(uj )ψm(uj ) exp
(−iλk(m − l)

) + O(1/N),

and therefore we obtain

E

(
1

T

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)I
X
N (uj , λk)

)

= 1

T

M∑
j=1

N/2∑
k=1

φv,ω,M,N(uj , λk)f (uj , λk) + O(1/N)

+ O
(
N2/T 2) + O(1/T )

= DN,M(φv,ω,M,N ) + O(1/N) + O
(
N2/T 2) + O(1/T ),

where the order of the Riemann approximation follows from the specific choice of the mid-
points uj . This together with (2.8) yields (A.3).

To prove (A.4), we use symmetry arguments and obtain

T cum

(
1

T

M∑
j1=1

N/2∑
k1=1

φv1,ω1,M,N (uj1 , λk1)I
X
N (uj1 , λk1),

1

T

M∑
j2=1

N/2∑
k2=1

φv2,ω2,M,N (uj2 , λk2)I
X
N (uj2, λk2)

)

= 1

4T

1

(2πN)2

M∑
j1,j2=1

N/2∑
k1,k2=−�(N−1)/2�

φv1,ω1,M,N (uj1 , λk1)φv2,ω2,M,N (uj2 , λk2)
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×
N−1∑

p1,p2,q1,q2=0

∞∑
m1,m2,l1,l2=−∞

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp
(−iλk1(p1 − q1)

)
exp

(−iλk2(p2 − q2)
)

× cum(Ztj1 −N/2+1+p1−m1Ztj1−N/2+1+q1−l1 ,

Ztj2−N/2+1+p2−m2Ztj2−N/2+1+q2−l2)

× (
1 + O

(
N2/T 2) + O(1/T )

)
in the same way as above. Because of

cum(Ztj1 −N/2+1+p1−m1Ztj1−N/2+1+q1−l1,Ztj2−N/2+1+p2−m2Ztj2 −N/2+1+q2−l2)

= cum(Ztj1 −N/2+1+p1−m1Ztj2−N/2+1+q2−l2) cum(Ztj2 −N/2+1+p2−m2Ztj1−N/2+1+q1−l1)

+ cum(Ztj1 −N/2+1+p1−m1Ztj2−N/2+1+p2−m2) cum(Ztj1−N/2+1+q1−l1Ztj2−N/2+1+q2−l2),

the calculation of the highest order term in the variance splits into two sums and we only consider
the first one (the second sum is treated completely analogously), which equals

1

4T

M∑
j1,j2=1

N/2∑
k1,k2=−�(N−1)/2�

φv1,ω1,M,N (uj1 , λk1)φv2,ω2,M,N (uj2 , λk2)
1

(2πN)2

×
∞∑

m1,m2,l1,l2=−∞

N−1∑
q1,q2=0

0≤q2+m1−l2+tj2 −tj1≤N−1

0≤q1+m2−l1+tj1 −tj2≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp
(−i(λk1 − λk2)(q2 − q1 + tj2 − tj1)

)
× exp

(−iλk1(m1 − l2) − iλk2(m2 − l1)
)

= 1

4T

M∑
j1,j2=1

N/2∑
k1,k2=−�(N−1)/2�

φv1,ω1,M,N (uj1 , λk1)φv2,ω2,M,N (uj2 , λk2)
1

(2πN)2

×
∞∑

m1,m2,l1,l2=−∞
(+)

N−1∑
q1,q2=0

0≤q2+m1−l2+tj2 −tj1≤N−1

0≤q1+m2−l1+tj1 −tj2≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp
(−i(λk1 − λk2)(q2 − q1 + tj2 − tj1)

)
× exp

(−iλk1(m1 − l2) − iλk2(m2 − l1)
)

× (
1 + O(1/N)

)
,
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where
∑

(+) means that summation is only performed over those indices x, y ∈ {m1,m2, l1, l2}
such that |x −y| < N , and the O(1/N)-term follows with (A.5). Assume that j1 has been chosen.
Then j2 must be equal to j1, j1 −1 or j1 +1, as all other combination of j1 and j2 vanish, because
of the condition 0 ≤ q2 + m1 − l2 + tj2 − tj1 ≤ N − 1 and the fact that the summation is only
performed with respect to the indices satisfying |x − y| < N . If j2 equals j1 − 1 or j1 + 1, it
follows from the conditions on q1 and q2 that for chosen mi and li , there are at most |m2 − l1|
possible choices for q1 and at most |m1 − l2| possible choices for q2. It therefore follows with
(2.3) that the terms with j2 ∈ {j1 − 1, j1 + 1} are of order O(1/N).

Therefore, we only have to consider the case j1 = j2, and the above expression is

1

4T

M∑
j1=1

N/2∑
k1,k2=−�(N−1)/2�

φv1,ω1,M,N (uj1 , λk1)φv2,ω2,M,N (uj1 , λk2)

× 1

(2πN)2

∞∑
m1,m2,l1,l2=−∞

(+)

N−1∑
q1,q2=0

0≤q2+m1−l2≤N−1
0≤q1+m2−l1≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp
(−i(λk1 − λk2)(q2 − q1)

)
(A.6)

× exp
(−iλk1(m1 − l2) − iλk2(m2 − l1)

)
× (

1 + O(1/N)
)
.

Observing

1

N

N−1∑
q=0

exp
(−i(λk1 − λk2)q

) =
{

1, k1 − k2 = lN with l ∈ Z,
0, else,

it follows that for fixed m1, l2 and k1 �= k2 we have∣∣∣∣∣
N−1∑
q2=0

0≤q2+m1−l2≤N−1

exp
(−i(λk1 − λk2)q2

)∣∣∣∣∣ =
∣∣∣∣∣

N−1∑
q2=0

q2+m1−l2<0
or

q2+m1−l2>N−1

exp
(−i(λk1 − λk2)q2

)∣∣∣∣∣

≤ |m1 − l2|,
which implies∣∣∣∣∣ 1

(2πN)2

N−1∑
q1,q2=0

0≤q2+m1−l2≤N−1
0≤q1+m2−l1≤N−1

exp
(−i(λk1 − λk2)(q2 − q1)

)∣∣∣∣∣ ≤ |m1 − l2||m2 − l1|/(2πN)2. (A.7)
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By using (2.3) and (A.7), it can now be seen that all terms with k1 �= k2 are of the order O(1/N),
and similar arguments as used in the calculation of the expectation yield that (A.6) equals

1

4π

∫ 1

0

∫ πmin(ω1,ω2)

0

(
1[0,v1](u) − v1

)(
1[0,v2](u) − v2

)
f 2(u,λ)dλdu

+ O(1/N) + O
(
N2/T 2). �

Proof of (A.2). Note that

FT := {
φv,ω,M,N ;v,ω ∈ [0,1]} = {

φv,ω,M,N ; (v,ω) ∈ PT

}
,

where

PT :=
{

0,
1

M
,

2

M
, . . . ,

M − 1

M
,1

}
×

{
0,

2

N
,

4

N
, . . . ,1 − 2

N
,1

}

(recall that N is assumed to be even throughout this paper). We define

ρ2(φ) :=
(∫ 1

0

∫ π

0
φ2(u,λ)dλdu

)1/2

,

and F 2
T is the set of functions, which can be expressed as a sum or a difference of two elements

in FT . The main task is to prove the following theorem.

Theorem A.1. There exists a constant C ∈ R such that for all φ ∈ F 2
T :

E
(∣∣ĜT (φ)

∣∣k) ≤ (2k)!Ckρ2(φ)k ∀k ∈ N even.

Stochastic equicontinuity follows then by similar arguments as given in Dahlhaus [6], which
is why we will only sketch the main steps and refer to his work for most details. The first con-
sequence of Theorem A.1 regards the existence of a constant C1 ∈ R such that for all g,h ∈ FT

and η > 0:

P
(∣∣ĜT (g) − ĜT (h)

∣∣ > ηρ2(g − h)
) ≤ 96 exp

(
−

√
η

C1

)
.

A straightforward modification of the chaining lemma in Chapter VII.2 of Pollard [24] then
yields that for a stochastic process (Z(v))v∈V , whose index set V has a finite covering integral

J (δ) =
∫ δ

0

[
log

(
48N(u)2

u

)]2

du (A.8)

for all δ and which satisfies

P
(∣∣Z(v) − Z(w)

∣∣ > νd(v,w)
) ≤ 96 exp

(
−

√
ν

C1

)
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for a semi-metric d on V and a constant C1 ∈ R, there exist a dense subset V ∗ ⊂ V such that

P
(∃v,w ∈ V ∗ with d(v,w) < ε and

∣∣Z(v) − Z(w)
∣∣ > 26C1J

(
d(v,w)

)) ≤ 2ε.

In (A.8), N(u) is the covering number which is defined as the smallest number m ∈ N for which
there exist z1, . . . , zm ∈ V with mini d(z, zi) ≤ u for all z ∈ V . By using yi = (vi,ωi), we obtain

P
(

sup
y1,y2∈PT : d2(y1,y2)<δ

∣∣ĜT (v2,w2) − ĜT (v1,w1)
∣∣ > η

)

≤ P
(

sup
f,g∈FT : ρ2(f,g)<ε(δ)

∣∣ĜT (f ) − ĜT (g)
∣∣ > η

)

for a certain sequence ε(δ)
δ→0−−−−→ 0 by continuity. The right-hand side of this inequality equals

P
(

sup
f,g∈FT : ρ2(f,g)<ε(δ)

∣∣ĜT (f ) − ĜT (g)
∣∣ > η,η ≥ 26C1JT

(
ε(δ)

))

+ P
(

sup
f,g∈FT : ρ2(f,g)<ε(δ)

∣∣ĜT (f ) − ĜT (g)
∣∣ > η,η < 26C1JT

(
ε(δ)

))

≤ 2ε(δ) + P
(
η < 26C1JT

(
ε(δ)

))
,

where JT (δ) is the corresponding covering integral of FT . Note that η < 26C1JT (ε(δ)) is not
random and that JT (δ) can be bounded by J (δ), which is the covering integral of

⋃∞
i=1 Fi (which

is finite for every δ). Because of J (ε(δ))
δ→0−−−−→ 0, we have η > 26C1J (δ) whenever δ is suffi-

ciently small and obtain

P
(

sup
f,g∈FT : ρ2(f,g)<ε(δ)

∣∣ĜT (f ) − ĜT (g)
∣∣ > η

)
< 2ε(δ),

which implies the stochastic equicontinuity.

Proof of Theorem A.1. We show

∣∣cuml

(√
T D̂T (φ)

)∣∣ ≤ (2l)!C̃lρ2(φ)l ∀l ∈ N, (A.9)

where

D̂T (φ) := 1√
T

ĜT (φ) + DN,M(φ).

Since DN,M(φ) is constant, this implies

∣∣cuml (ĜT )
∣∣ ≤ (2l)!Clρ2(φ)l ∀l ∈ N
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for some C, and then it follows as in Dahlhaus [6] that

E
(∣∣ĜT (φ)

∣∣k) =
∣∣∣∣∣

∑
{P1,...,Pm}
Partition of

{1,...,k}

{
m∏

j=1

cum|Pj |
(
ĜT (φ)

)}∣∣∣∣∣

≤ ρ2(φ)kCk
∑

{P1,...,Pm}
Partition of

{1,...,k}

m∏
j=1

(
2|Pj |

)!

≤ (2k)!Ck2kρ2(φ)k,

since we only consider the case where k is even. This yields the assertion.
In order to prove (A.9), we assume without loss of generality that l is even, as the case for odd

l is proved in the same way. The lth cumulant of
√

T D̂T (φ) is given by

1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,...,kl=−�(N−1)/2�

φ(uj1 , λk1) · · ·φ(ujl
, λkl

)
1

(2πN)l

×
N−1∑

p1,q1,p2,...,pl ,ql=0

∞∑
m1,n1,m2,...,ml,nl=−∞

ψm1(uj1) · · ·ψnl
(ujl

)

× cum(Ztj1 −N/2+1+p1−m1Ztj1−N/2+1+q1−n1 , . . . ,

Ztjl −N/2+1+pl−ml
Ztjl −N/2+1+ql−nl

)

× exp
(−iλk1(p1 − q1)

) · · · exp
(−iλkl

(pl − ql)
)

× (
1 + O

(
N2/T 2) + O(1/T )

)
,

where both O(·)-terms follow as in the proof of (A.3). We define Yi,1 := Ztji −N/2+1+pi−mi
and

Yi,2 := Ztji −N/2+1+qi−ni
for i ∈ {1, . . . , l}. Theorem 2.3.2 in Brillinger [4] yields

cuml

(√
T D̂T (φ)

) =
∑

ν

VT (ν)
(
1 + O

(
N2/T 2) + O(1/T )

)
,

where the sum runs over all indecomposable partitions ν = ν1 ∪ · · · ∪ νl with |νi | = 2 (1 ≤ i ≤ l,
due to Gaussianity) of the matrix

Y1,1 Y1,2
...

...

Yl,1 Yl,2

(A.10)
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and

VT (ν) := 1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,...,kl=−�(N−1)/2�

φ(uj1 , λk1) · · ·φ(ujl
, λkl

)

× 1

(2πN)l

N−1∑
p1,...,ql=0

∞∑
m1,...,nl=−∞

ψm1(uj1) · · ·ψnl
(ujl

)

× cum
(
Yi,k; (i, k) ∈ ν1

) · · · cum
(
Yi,k; (i, k) ∈ νl

)
× exp

(−iλk1(p1 − q1)
) · · · exp

(−iλkl
(pl − ql)

)
.

We now fix one indecomposable partition ν̃ and assume without loss of generality that

ν̃ =
l−1⋃
i=1

(Yi,1, Yi+1,2) ∪ (Yl,1, Y1,2).

Because of cum(Zi,Zj ) �= 0 for i �= j , we obtain the following l equations:

q1 = pl + n1 − ml + tjl
− tj1 , (A.11)

qi+1 = pi + ni+1 − mi + tji
− tji+1 for i ∈ {1, . . . , l − 1} (A.12)

and therefore only l variables (namely pi for i ∈ {1, . . . , l}) of the 2l variables p1, q1,p2, . . . , ql

are free to choose and must satisfy the following conditions:

0 ≤ pi + ni+1 − mi + tji
− tji+1 ≤ N − 1 for i ∈ {1, . . . , l − 1}, (A.13)

0 ≤ pl + n1 − ml + tjl
− tj1 ≤ N − 1. (A.14)

Using the identities (A.11) and (A.12), we obtain that VT (ν̃) equals

1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,...,kl=−�(N−1)/2�

φ(uj1 , λk1) · · ·φ(ujl
, λkl

)
1

(2πN)l

×
N−1∑

p1,p2,...,pl=0

∞∑
m1,n1,...,ml,nl=−∞

(A.13), (A.14)

ψm1(uj1) · · ·ψnl
(ujl

) exp
(−iλk1(p1 − pl)

)

×
l−1∏
i=1

exp
(−iλki+1(pi+1 − pi)

)
× exp

(−iλk1(ml − n1 + tj1 − tjl
)
)

×
l−1∏
i=1

exp
(−iλki+1(mi − ni+1 + tji+1 − tji

)
)
.
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We rename the mi,ni (mi is replaced by ni and ni is replaced with mi−1 where we identify l + 1
with 1 and 0 with l). Then (A.13) and (A.14) become

0 ≤ pi + mi − ni + tji
− tji+1 ≤ N − 1 for i ∈ {1, . . . , l − 1}, (A.15)

0 ≤ pl + ml − nl + tjl
− tj1 ≤ N − 1 (A.16)

and after a factorisation in the arguments of the exponentials we obtain that VT (ν̃) is equal to

1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,...,kl=−�(N−1)/2�

φ(uj1 , λk1) · · ·φ(ujl
, λkl

)
1

(2πN)l

×
N−1∑

p1,p2,...,pl=0

∞∑
m1,n1,...,ml,nl=−∞

(A.15), (A.16)

ψm1(uj2) · · ·ψnl
(ujl

)

×
l−1∏
i=1

exp
(−i(λki

− λki+1)pi

)
exp

(−i(λkl
− λk1)pl

)
× exp

(−iλk1(nl − ml + tj1 − tjl
)
)

×
l−1∏
i=1

exp
(−iλki+1(ni − mi + tji+1 − tji

)
)
.

We see that one can divide the sum with respect to pi,mi, ni into a product of two sums, namely
one sum with respect to all pi,mi, ni with even i and the same sum with odd i. Analogously, we
divide (A.15) and (A.16) into

0 ≤ pi + mi − ni + tji
− tji+1 ≤ N − 1 for i ∈ {1,3,5, . . . , l − 3, l − 1} (A.17)

and

0 ≤ pi + mi − ni + tji
− tji+1 ≤ N − 1 for i ∈ {2,4,6, . . . , l − 4, l − 2}, (A.18)

0 ≤ pl + ml − nl + tjl
− tj1 ≤ N − 1. (A.19)

After applying the Cauchy–Schwarz inequality we obtain that VT (ν̃) is bounded by

{
1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,...,kl=−�(N−1)/2�

φ(uj1 , λk1)
2φ(uj3, λk3)

2 · · ·φ(ujl−1 , λkl−1)
2 1

(2πN)l

×
∣∣∣∣∣
N−1∑
p1=0

exp
(−i(λk1 − λk2)p1

) N−1∑
p3=0

exp
(−i(λk3 − λk4)p3

) · · · (A.20)
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×
N−1∑

pl−1=0

exp
(−i(λkl−1 − λkl

)pl−1
)

×
∞∑

m1,n1,m3,n3,...,ml−1,nl−1=−∞
(A.17)

ψm1(uj2)ψn1(uj1)ψm3(uj4)ψn3(uj3) · · ·

× ψml−1(ujl
)ψnl

(ujl−1)

×
∏

a∈{1,3,...,l−1}
exp

(−iλka+1(na − ma + tja+1 − tja )
)∣∣∣∣∣

2}1/2

× {the same term with even pi,mi, ni}1/2.

We only consider the first term in (A.20), which is equal to

JT := 1

2lT l/2

M∑
j1,...,jl=1

N/2∑
k1,...,kl=−�(N−1)/2�

φ(uj1 , λk1)
2φ(uj3 , λk3)

2 · · ·φ(ujl−1 , λkl−1)
2

(A.21)

× 1

(2πN)l

∣∣KT (u1, . . . , ul, λk1 , . . . , λkl
)
∣∣2

with KT (u1, . . . , ul, λk1, . . . , λkl
) being defined implicitly. We have

1

(2πN)l

N/2∑
k2,k4,...,kl=−�(N−1)2�

∣∣KT (u1, . . . , ul, λk1, . . . , λkl
)
∣∣2

= 1

(2πN)l

N−1∑
p1,p3,...,pl−1=0

N−1∑
p̃1,p̃3,...,p̃l−1=0

∞∑
m1,n1,m3,n3,...,ml−1,nl−1=−∞

(A.17)

∞∑
m̃1,ñ1,m̃3,ñ3,...,m̃l−1,ñl−1=−∞

˜(A.17)

exp
(−iλk1(p1 − p̃1)

)
exp

(−iλk3(p3 − p̃3)
) · · · exp

(−iλkl−1(pl−1 − p̃l−1)
)

× ψm1(uj2)ψn1(uj1) · · ·ψml−1(ujl
)ψnl−1(ujl−1)ψm̃1(uj2)ψñ1(uj1) · · ·

× ψm̃l−1(ujl
)ψñl−1(ujl−1)

×
N/2∑

k2,k4,...,kl=−�(N−1)/2�
exp

(−iλk2(p̃1 − p1 + n1 − m1 + m̃1 − ñ1)
)

× exp
(−iλk4(p̃3 − p3 + n3 − m3 + m̃3 − ñ3)

) · · ·
× exp

(−iλkl
(p̃l−1 − pl−1 + nl−1 − ml−1 + m̃l−1 − ñl−1)

)
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and because of the well-known identity

1

N

N/2∑
k=−�(N−1)/2�

exp(−iλkt) =
{

1, t = lN with l ∈ Z,
0, else,

it follows that for every i only one of the pi and p̃i can be chosen freely if the mi,ni are fixed.
Furthermore, we can show with the same arguments as in the proof of (A.4) that because of
(A.17) and (2.3) we only have to consider the cases with ji = ji+1 for every odd i and that all
other terms are of order O(1/N). This implies

1

(2πN)l

N/2∑
k2,k4,...,kl=−�(N−1)/2�

∣∣KT (u1, . . . , ul, λk1, . . . , λkl
)
∣∣2 ≤ 1

(2π)l

( ∞∑
m=−∞

|ψm|
)2l

with |ψ | := supu |ψ(u)|, and since we only need to sum over ji with odd i in (A.21), it follows

JT ≤ 1

T l/2(4π)l

( ∞∑
m=−∞

|ψm|
)2l( M∑

j=1

N/2∑
k=1

φ(uj , λk)
2

)l/2(
1 + O(1/N)

)
.

We obtain the same upper bound for the second factor in (A.20) and this implies

cuml

(√
T D̂T (φ)

) ≤
∑
ν

1

(4π)l(2π)l/2

( ∞∑
m=−∞

|ψm|
)2l(∫ 1

0

∫ π

0
φ2(u,λ)dλdu

)l/2

× (
1 + O

(
N2/T 2) + O(1/N)

)

≤ (2l)!2l 1

(4π)l(2π)l/2

( ∞∑
m=−∞

|ψm|
)2l(∫ 1

0

∫ π

0
φ2(u,λ)dλdu

)l/2

× (
1 + O

(
N2/T 2) + O(1/N)

)
≤ (2l)!C̃lρ2(φ)l,

where the last inequality follows because of N/T → 0 and 1/N → 0 and since (2l)!2l is an
upper bound for the number of indecomposable partitions of (A.10) (see Dahlhaus [6]). �

A.2. Proof of Theorem 3.3

A consequence of assumption (2.3) and
∫ 1

0 f (u,λ)du > 0 for all λ ∈ [−π,π] together with
Lemma 2.1 of Kreiss, Paparoditis and Politis [19] is that

∞∑
j=1

j |aj | < ∞ (A.22)
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holds, and Lemma 2.3 in Kreiss, Paparoditis and Politis [19] implies that there exists a p0 ∈ N

such that for all p ≥ p0 the AR(p) process defined through (3.4) has an MA(∞) representation

Y AR
t (p) =

∞∑
l=0

ψAR
l (p)ZAR

t−l (p). (A.23)

Furthermore, (3.10) together with Lemma 2.3 in Kreiss, Paparoditis and Politis [19] imply that
there exist a p′

0 ∈ N, such that for all p ≥ p′
0 the fitted AR(p) process has an MA(∞) represen-

tation

X∗
t,T =

∞∑
l=0

ψ̂AR
l (p,T )Z∗

t−l , (A.24)

and we assume without loss of generality that T and p(T ) are sufficiently large to ensure the
existence of such a representation.

Recall the proof of Theorem 2.1. In case the process is stationary, all the terms of order
O(N2/T 2) and O(1/T ) vanish, as they are due to certain approximation errors which do not
appear for ψt,T ,l = ψl(u) = ψl . For a fixed p and T , the process of interest (A.24) is now indeed
a stationary one and therefore the proof of Theorem 3.3 works in the same way as the previous
one, if the remaining terms (which are the ones of order OP (1/N)) are a oP (T −1/2) for the
bootstrap process as well. Even more precisely, we only need the terms of order OP (1/N) to be
a oP (T −1/2) in the calculation of the expectation, while it would suffice that they are a oP (1) in
the calculation of the higher order cumulants. A detailed look at the proof of Theorem 2.1 reveals
that these terms are up to a constant of the form

(
∑∞

m=0 |ψm|)q1(
∑∞

l=0 l|ψl |)q2

N

with q1, q2 ∈ N. For example, if the process is stationary we obtain from (A.5) an upper bound
for |E(D̂T (u,λ))| via

C

∑∞
m=0 |ψm|∑∞

l=0 l|ψl |
N

= O(1/N)

for some C ∈ R, so an upper bound for the expectation of the bootstrap analogue D̂∗
T (u,λ) of

D̂T (u,λ) is given by

C

∑∞
m=0 |ψ̂AR

m (p,T )|∑∞
l=0 l|ψ̂AR

l (p,T )|
N

.

Therefore, it needs to be shown that

√
T

∑∞
m=0 |ψ̂AR

m (p,T )|∑∞
l=0 l|ψ̂AR

l (p,T )|
N

= oP (1)
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holds to obtain
√

T E
(
D̂∗

T (u,λ)
) = oP (1).

Because of (3.10), we can use the following bound from the proof of Theorem 3.1 in Berg,
Paparoditis and Politis [3] for the difference between ψ̂AR

l (p,T ) and ψAR
l (p) which is uniform

in p(T ) and in l ∈ N:∣∣ψ̂AR
l (p,T ) − ψAR

l (p)
∣∣ ≤ p(1 + 1/p)−lOP (

√
logT/T ). (A.25)

With (A.25), we obtain

∞∑
l=0

∣∣ψ̂AR
l (p,T ) − ψAR

l (p)
∣∣ = OP

(
p2

max(T )
√

logT/T
)

and
∞∑
l=0

l
∣∣ψ̂AR

l (p,T ) − ψAR
l (p)

∣∣ = OP

(
p3

max(T )
√

logT/T
)

using properties of the geometric series, which yields

∞∑
l=0

∣∣ψ̂AR
l (p,T )

∣∣ ≤ OP

(
p2

max(T )
√

logT/T
) +

∞∑
l=0

∣∣ψAR
l (p)

∣∣
and

∞∑
l=0

l
∣∣ψ̂AR

l (p,T )
∣∣ ≤ OP

(
p3

max(T )
√

logT/T
) +

∞∑
l=0

l
∣∣ψAR

l (p)
∣∣.

Lemma 2.4 of Kreiss, Paparoditis and Politis [19] now implies that

∞∑
l=1

(1 + l)
∣∣ψAR

l (p) − ψl

∣∣ ≤ C̃

∞∑
l=p+1

(1 + l)|al | (A.26)

for another constant C̃ ∈ R, where the al are the coefficients of the AR(∞) representation in
(3.1). Note that we implicitly assumed in (A.26) that the ψl are the coefficients of the Wold
representation of the process Yt defined in (3.1), since this particular bound only holds for this
special MA representation. However, since the proof of Theorem 2.1 does not depend at all on
the kind of MA representation, we can assume without loss of generality that the ψl are the
coefficients of the Wold representation, and then (A.26) together with (2.3) and (A.22) yields

∞∑
l=0

l
∣∣ψAR

l (p)
∣∣ ≤ C̄
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for C̄ ∈ R. Therefore, we obtain with (3.9)( ∞∑
m=0

∣∣ψ̂AR
m (p,T )

∣∣)p1
( ∞∑

l=0

l
∣∣ψ̂AR

l (p,T )
∣∣)p2

= OP (1)

for p1,p2 ∈ N, which yields the assertion.
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