LA-UR-OY “HZ2 =1t

Approved for public release;
distribution is uniimited.

Title: | A Test Methodology for Determining Space-Readiness of
Xilinx SRAM-Based FPGA Designs

Author(s): | Heather Quinn, Paul Graham, Keith Morgan, Michael Caffrey,
and Jim Krone

Intended for: | Aytotestcon 2008
Salt Lake City, UT
9/8-11/2008

Los Alamos

USRS I T S ———

Los Alamos National Laboratory, an affimative action/equal opportunity employer, is operated by the Los Alamos National Security. LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article. the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

A Test Methodology for Determining
Space-Readiness of Xilinx SRAM-based FPGA
Designs

Heather Quinn. Paul Graham, Keith Morgan, Michael Caffrey, and Jim Krone
ISR-3 Space Data Systems, Los Alamos National Laboratory, Los Alamos, NM, 87545 USA

Abstract - Using reconfigurable, static random-access memory
(SRAM) hased field-programmable gate arrays (FPGAs) for space-
hased computation has heen an exciting area of research for the
past decade. Since both the circuit and the circuit’s state is stored
in radiation-1olerant memory, both could be alreved by the harsh
space radiation enviromment. Both the circuit anel the circuit’s state
can be protected by triple-modular redundancy (TMR), but applving
TMR 16 FPGA nser designs is often an error-prone process. Faulty
application of TMR could cause the FPGA user circuit to owput
incorrect data. This paper will describe a three-tiered methodology
Jor testing FPGA user designs for space-readiness. We will describe
the standard approach 1o testing FPGA user designs using a particle
accelerator, as well as two methods using fault injection and a model-
ing tool. While accelerator testing is the current “gold stundard” for
pre-lawnch resting, we believe the use of jault injection and modeling
toals allows for easy, cheap and uniforie access for discovering errors
early in the design process.

Keywords: Field programmable gate arrays. Reliability testing.
Reliability estimation, Failure analysis, Space technology

1. Introduction

Field-programmable gate array (FPGA) technology, such
as the Xilinx Virtex family of devices, has made inroads
into space-based platforms over the past decade [1]. [2].
These devices have programmable logic and routing that are
used to implement user circuits and are well-suited for the
digital signal processing algorithms that are often used in
space. Unlike the radiation-hardened anti-fuse 'PGAs that
can be programmed once. the radiation-tolerant devices can
programmed an unlimited number of times. The ability to re-
configure the device to implement new circuits makes FPGAs
interesting to the space community. Unlike other hardware
devices that have the circuit fabricated into the silicon, new
circuits can be implemented on an FPGA while on orbit.
Therefore, reconfiguration can extend the usable lifetime of
the system by changing the FPGA's user circuit to meet
changing mission and science goals. We have also found that
reconfiguration opens up many avenues for pre-launch testing
of the user circuits.

Document release number: [LA-UR-D8-XXXX. This work was funded
by the Department of Energy through the Deployable Adaptive Processing
Systems and Sensor-Oriented Processing and Newtworking projects, the Cibola
Flight Experiment project at Los Alamos National Lahoratory. NASA through
the Reconfigurable Hardware in Orbit project under AIST contract #NAGS-
13516, and the Air Force Rescarch Laboratory under the FPGA Mission
Assurance Center.

Unfortunately, many reconfigurable FPGAs implement logic
in SRAM-based technology that is susceptible to radiation-
induced faults, called single-event upsets (SEUs), that can
affect the programmable logic and routing or affect the entire
device. The best practices for FPGA-based spacecraft design
encourages the use of triple-modular redundancy (TMR) in
the user circuit to mask SEUs on the FPGA und on-line
reconfiguration of the programming data, called scrubbing,
to remove errors. Given the space constraints in this paper,
we will focus on issues regarding user circuits. Not only
is applying TMR an error-prone process, but sometimes the
designers are unable to apply “full” TMR to the user circuit
due to device size constraints. The user circuit needs to
be tested pre-launch to determine whether it is working as
expected, including whether output errors from SEUs can be
tolerated, how to respond to output errors, and whether the
availability requirements are met.

The current “gold standard™ for pre-launch testing of user
circuits is radiation experiments at a particle accelerator. For
these tests the designer has the choice of using either a proton
or a heavy ion accelerator, as these radiation sources are the
most likely ionized particles to cause problems with the user
circuit. Fully space-qualifying a design could take days worth
of time and thousands of dollars at an accelerator. Given
enough time and money, the experiments will be able to
exercise all of the possible radiation-induced failure modes and
find all of the problems with a user design. Since radiation-
induced faults are statistical in nature, it may be too expensive
to get good test coverage and difficult to understand how the
errors correlate to faults in the user design. Therefore. we feel
the best use of particle accelerators is as a final, pre-launch
validation of the user design. Fault injection and modeling
tools are much better at providing feedback about the design
to the designer. We have both a fault injection tool (the single-
event upset emulator) and a modeling tool (the Scalable Tool
for the Analysis of Reliable Circuits) that can be used by
FPGA designers to augment radiation experiments.

In this paper we will present a three-tiered methodology in
this paper that uses all of these technologies for discovering
errors in the system before launch. The rest of the paper is
organized as follows. Section 3 will introduce the STARC
modeling tool. which will help designers identify problems
in implementing TMR in user circuits during the design
stage. Section 4 will cover fault injection, which will help
designers do more in depth, hardware-based testing of user

designs. Finally, Section 5 will cover the final validation of
user circuits at a particle accelerator. Given the disparate nature
of these three topics, the related work for these topics will be
covered in the individual sections. The paper completes with a
comparison of these three methodologies in Section 6. Before
continuing. though, we will explain in better detail the types
of design flaws we are testing for in Section 2.

2. Background

By using all three methodologies in conjunction. designers
should be able to determine how radiation-induced faults
affect the system. In a partially TMR-protected systems, errors
could stem from the untriplicated logic or from placement-
related issues caused by how the circuit 1s implemented on the
FPGA. In a fully TMR-protected systems, the errors should
be confined to specific types of placement-related issues, as
long as TMR has been successtully applied. These scenarios
will be discussed below.

In user circuits where TMR has been only partially applied.
there are a two areas where SEUs can affect the system:
untriplicated logic and the programmable routing network.
First of all. all untriplicated logic could cause output errors
to manifest when the logic is corrupted with an SEU. Errors
in the logic can some times be logically masked by the data
the circuit 15 executing. For example, Figure 1(a) shows a
programmable logic element, called a lookup table (LUT), that
is implementing a 4-input AND function. If the one bit that
defines the “true” condition is upset, the result is a constant-
zero function. For most inputs, the output of the function
would still be correct. If the data in the system never exercises
the one input combination that causes the error to manifest,
the error will be logically masked. Errors that manifest from
untriplicated logic can only be fixed by changing the design.
Therefore, the amount of these errors in the system are mostly
immutable to how the user circuit is placed on the device by
the design flow tools, although the location of thesc errors
might change.

LUT
1—2—0000
l—F3_000001
1-10[0]0]0
1 X910 01

O=F1*F2*F3*F4
(a) Original 4-input AND
Function

LUT
1—H0T0]0[0
lF_30 ofofo] o o
1=olo]o[o Confiourat
1_4_0 ololo oufiguration

Bit SEU
O=0 (constant zero)
(b) Upset 1.UT Function (Constant “0")
Fig. 1. LUT Upset Example
A second set of errors in partially TMR-protected designs
stem from the programmable routing network. While errors

in untriplicated logic cause the functionality of the circuit to
change, errors in the routing network often sever the flow
of data through the circuit. For example, an error in the
routing network can cause an input to a LUT to float. Unlike
untriplicated logic, some of the errors in the routing network
can be influenced by the design flow tools that determine how
the user circuit is placed and routed on the device. Within
blocks of untriplicated logic, the design flow tools will affect
the the number of sensitive bits in the routing network that
cause the design to manifest output errors. Some times the
logic in a design might be completely triplicated, but some or
all of the input signals might not be. In particular, triplicating
clock and reset signals can causc circuits to have problems
with timing and signal skew. In the older devices, sometimes
it wasn’t possible to triplicate these signals. In these systems
the number of sensitive bits in the clock and reset trees can
be directly influenced by the placement tools. While SEUs
in the programmable routing along the main trunks of the
clock and reset trees are very likely to affect the entire circuit,
SEUs in the leaves of these trees will often be masked if
only one module in the TMR-protected design is affected. To
some degree. SEUs in these areas can be directly affected by
placement. although complete elimination of SIUs in these
areas by rerunning the placement tools is not possible. With
cither set of the errors being caused by the routing network,
the number of sensitive bits will be affected by the design flow
tools and rerunning the designs through the design flow tools
should be avoided after testing has started, since the number
of sensitive bits and their location will change.

In fully TMR-protected user circuits, no single-bit SEUs
should cause output errors unless TMR was not applied
properly. With the newer devices, though. multiple bit upsets
(MBUs), where a single ionizing particle causes multiple
SEUs, have become more common [3]. Under these circum-
stances, we have observed MBU-induced TMR defeats when
the multiple errors manifest across two or more TMR modules
[4]. These TMR defcats appear to be strongly influenced by
placement issues. Since the design flow tools are not optimized
for TMR-protected circuits, it is possible that all three modules
can by proximally located on the device. As MBUs cause
clusters of tightly-located faults on the device. the TMR
defeats tend to occur in regions where the modules neighbor
each other. Therefore, faults of this type are considered a
placement-related issue.

Good testing should help designers ascertain errors that have
been caused by untriplGiven the disparate nature of these three
topics, the related work for these topics will be coverced in the
individual sections. icated logic, placement-related issues, and
the application of TMR. With our three approaches to testing,
we have varying degrees of coverage of these problems. The
modeling tool, STARC, can be used to ascertain problems with
the application of TMR and identifying untriplicated logic,
but currently does not address placement-related issues. Since
the modeling tool works at the design level, tying reliability
problems back to the design is trivial. The fault injectioun
tool. the SEU Emulator, and accelerator testing can ascertain
problems in all three areas. but tying the errors back to
the design is « laborious, manual process. As stated above,

fault auribution with accelerator testing is much harder than
with fauit injection. Since all three testing styles have their
strengths and weaknesses, using them in conjunction is the
best approach.

3. Modeling Tools

Reliability analysis is traditionally done with modeling
tools. For designers of many types of systems. these tools
allow the designers to focus on creating accurate models of
their systems, instead of focusing on how to calculate the
reliability. FPGA user circuit designs, though, already have
an accurate model of the circuit — the hardware description
of the circuit. Therefore. with the right modeling tool, the
reliability analysis of the FPGA user circuit can be done during
the design phase when fixing design flaws in the user circuit
is relatively cheaper.

Traditionally, circuit reliability has been determined using
purely analytical approaches |5] or techniques that mode!
Boolean networks as probabilistic systems [6]-]9]. These
modeling techniques represent circuits as probabilistic transter
matrices, stochastic Petri-nets, Markov chains or Bayesian
networks. The combinatorics-based analytical approaches have
been found to be error-prone and computationally complex for
the analysis of large designs. Similarly, a number of limitations
have been identified for many modeling-based approaches.
First of all. model and mput data set creation greatly increase
the time commitment of using these tools. Transforming
circuits into intermediate probabilistic system models is an
additional, computationally complex task. Calculating the cir-
cuit reliability also grows exponentially with circuit size and
the number of input vector sets and the computation can take
prohibitively long to finish. The exception to these problems
is the SETRA tool |10] that directly addresses the state space
issues as well as automated mode! generation.

For these reusons. the traditional tools are not well-suited
for the size of designs used in most FPGA systems. All of
these limitations have led to the development of the STARC
tool, which specitically addresses the limitations of model
creation, input data sets and computation complexity with
these solutions:

» Uses the industry-standard Electronic Design Interchange
Format (EDIF) representation of a circuit as the input
model,

s Does not use input vector sets.

« Uses memoization to reduce the computational complex-
ity. and

« Uses combinatorial reliability calculations.

By using the EDIF circuit representation, the designer can
assess the reliability of a circuit during the design process,
even if the design is not complete. the design doesn’t work, or
the hardware hasn’t even been bought. Without the use of input
vector sets reliability is determined through the probability
of device or input failure and is not dependent on specific
input data sets. Since the calculation is not dependent on the
input data set, the reliability of sub-circuits are determined
by type. such as a two-bit adder, and memoized for reuse.
In this manner. large-scale circuits are analyzed in a fraction

of the time required by traditional approaches, making design
exploration more worthwhile.

There are a few disadvantages to this approach. First,
since EDIF does not contain information about the routing
and the placement on the device, routing is currently being
statistically estimated from case studies of routing placement.
Furthermore. currently there is no way to assess placement-
related issues, such as MBU-induced TMR defeats. We are
currently working on a solution for this limitation for designs
that have gone all the way through the design flow tools.
Second. without input vector sets logic masking cannot be
taken into account, and STARC estimates the worst case
failure rate. While this value may be lower than the value
determined by other tools [1], STARC provides a useful lower
bound on the circuit’s reliability. Furthermore, the scalability
gained from not using mput vector sets would most likely be
compromised if input vector sets are used.

One of the advantages of using the EDIF circuit representa-
tion is that hierarchy in the circuit should be preserved. as
long as the hierarchy is not removed during the synthesis
process. Since designers tend to create complex circuits by
creating less complex sub-circuits, maintaining this structure
can be very useful. There are many advantages of calculating
the reliability hierarchically. In particular, STARC can readily
exploit memoization if there is a high degree of sub-circuit
reuse. By exploiting sub-circuit reuse the state space and
the computation grows polynomially instead of exponentially.
This hierarchical nature allows circuits to be examined at the
highest level of abstraction or the most minute level of detail.
STARC automatically determines the appropriate level of the
hierarchy that needs to be explored.

During hierarchical exploration, dependency graphs for each
primary output at each level of the hierarchy is determined.
The dependency graph has all of the sub-circuits between
the output and the reachable inputs. Since not all logic or
inputs are reachable from every output, this technique removes
unrelated logic from the reliability calculation. Once the de-
pendency graph for an owtput is determined, the reliability can
be calculated. In unmitigated designs, the cross-section is the
total area of the dependency graph: -1(O) — (321", A(C)).
where A(X) is the sensitive area of X (where X is either a
wire or a cell) and C' = {Cy...., (), } is the set of cells that
can be reached from output wire O. The reliability of basic
architectural elements, such as LUTs and user flip-flops. are
pre-determined and are statically loaded when STARC starts.

STARC was designed to help designers find problems in
TMR-protected circuits by detecting imbalances between the
modules and by finding all unprotected logic. For mitigated
circuits, the sensitive area is confined to the part of the design
that is not triplicated, as triplication will mask errors. As long
as there is one voter for each redundant module, the sensitive
area should be zero. There are cases where the design flow
tools, in particular synthesis tools, will alter the circuit so that
the TMR modules are no longer functionally equivalent. If
the modules lack functional equivalence with each other, otten
times two of the modules are sharing a partial calculation with
the third module. While the TMR-protected circuit in this case
will be functionally equivalent to the unmitigated circuit, the

shared partial calculation is untriplicated and can cause single
points of failure. Feedback loops in TMR-protected systems
are also sensitive to persistent errors [12], if the feedback
loops are not triplicated and the feedback signals cut with
voters, If the feedback loops are not handled in this manner,
the design could be protected by technically correct TMR,
but errors in the feedback loop’s state will not be able to
autonomously resynchronize after the SEU is removed. While
the first SEU in the feedback loop will be masked, another SEu
in the feedback loop is not guaranteed to be masked. Finally.
we have found that how the design flow tools implement
logical constants, such as the zeroth bit of a carry chain adder
or unused inputs that have been tied off. can cause single
points of failures in TMR-protected systems.

In all of these cases, STARC provides warnings and in-
formation about the design to designer. The output of the
tool provides the designer a list of sub-circuits that are
untriplicated, and warnings about potential single points of
failures from functionally unequivalent modules and logical
constants. Since EDIF is tightly coupled to the circuit design,
the designer should be able to directly use STARC's output to
find and tix the design fiaws in the user circuit.

4. Fault Injection Testing

Once a design is completed and hardware has been bought,
it is possible to move onto fault injection. Unlike modeling
tools, fault injection works with the hardware that the user cir-
cuit is meant to be implemented on. Therefore, the placement-
related issues can be assessed through fault injection. Because
the hardware is being used, this type of analysis has much
better fidelity to accelerator testing and on-orbit behavior,
it done right. Finally, since input vectors are used with the
design, any logical masking and placement-related issues can
be discovered.

Since the interfaces that control configuration of the device
are accessible to the designer. these interfaces can be used by
the designer to purposefully corrupt the programming data to
mimic SEUs in programining data. This process is called fault
injection. While LANL designed one of the first fault injection
testbeds for FPGAs with the SLAACI-V SEU Emulator [13],
since then many other organizations have created them [14]-
[16] as a testament to their usefulness in preparing and
measuring a design’s space-readiness. We have also gone on
to make other versions of our fault injection tool to support
newer hardware devices and fault injection tools that injection
MBUs.

Fault injection tools for FPGAs have the same basic algo-
rithm, as shown in Figure 2. With this algorithm, faults can
be injected throughout the entire programming data, except
user flip-flops. As user flip-flops make up on only a very
small fraction of the programming data and only affect the
circuit state, not injecting faults into the user flip-flops does
not adversely affect the fault injection accuracy. It is important
to run a number of input vectors through the system after the
fault is injected to avoid logical masking. Good test coverage
of input vectors is important, as running a complete set of
test vectors 1s often infeasible due to time constraints as test

vectors increase exponentially with input data width. It is
always possible to run complete set of test vectors on a limited
set of locations in subsequent fault injection tests. It is also
important that the circuit is reset and resynchronized after the
fault is removed. If not, then it is possible that the combination
of the two error states causes an output error, causing false-
positive errors to be reported.

There are usually two types of fault injection systems based
on whether one or two FPGAs are used. In our SEU Emulator
tool two FPGAs are used. Faults are injected into the design
under test (DUT) FPGA and then run in lockstep with the
same input vectors with the golden FPGA. The advantage
of this system is that sharing input vectors, detecting output
errors, and testing the system for resynchronization is very
easy, but the timing of a lockstep system is difficult to design.
In the one FPGA fault injection systems, the input vectors
are run through the system twice: once without fault injection
and once with fault injection, The advantage of this system
is that it takes less hardware and is easier to design than a
lockstep system, but the disadvantage is that the input vectors
and correct output vectors need to be saved in the system.
Furthermore, the output from the fault injection needs to be
compared to the expected output results. While it is possible
to do the comparison in software, a lockstep system can do it
on the golden FPGA and report only the miscompares to the
software.

» Inject Fault

¥

Execute Test Vectors

Error

Record Error
Detected? r

Remove fFault |«

h 4

Resynch Design

Basic Fault Injection Algorithm [13]

In general, there are several aspects to good fault injection
systems, such as the ability to handle different types of user
circuits. With many fault injection systems, often times the

number of clock and reset pins, the width of input and
output buses. and the pin locations are often set. Due to
these restrictions. some times the design has to be changed
to fit the fault injection system. These types of changes
need to be minimized so the assessment of placement-related
errors accurately reflects the user circuit the spacecraft will
deploy. On occasion, we have found some systems do not
lend themselves to fault injection. In these systems. the use of
modeling tools will be even more important.

Unlike STARC. tying design problems found through fault
ijection to the design can be quite difficult and time con-
suming. While the fault injection tool will give a location
for the fault, most designers do not know how to translate
that Jocation into a physical location on the device. Once
the physical location is determined. it is possible to go into
a design flow tool, called FPGA Editor, to determine what
part of the user circuit 1s in that location. Since the design
flow tools do not mangle the naming convention within a user
circuit design. it is then possible to tie the physical location to
part of the design. There are times, though, that even knowing
the part of the design that is causing the problem does not
help. Since many errors manifest in the routing network of
TMR-protected designs. it’s possible the fault is caused by a
signal that 1s passing through a neighboring routing switch.
In these cases. unless the fault injection tool finds a number
of similar errors. it can be very difficult to determine exactly
what is failing. Because of these problems, some times it is
easier to disambiguate tault injection results using the STARC
results. At least in this manner. designers can confirm specific
results, such as problems with untriplicated logic. Finally,
if fault injection is only reporting a handful of errors. the
designers can decide that the user circuit meets the availability
requirements for the system and that turther design exploration
to fix design flaws is unnecessary.

5. Accelerator Testing

Related work.

One of the advantages of doing accelerator testing after the
use of fault injecuion and modeling tools is that the designers
should be better prepared for the accelerator testing. To this
end, the designers should know the areas of the circuit design
that should cause output errors from the modeling tools, and
know the locations of these faulty areas on the device through
fault injection. Furthermore, if the designer has been using
a lockstep fault injection tool, the fault injection hardware
can be used as the test fixture for the accelerator testing.
Even the lockstep fault injection software can be used with
minor modifications as part of the accelerator test fixture. If a
lockstep system was not used for fault injection, a test fixture
that can easily determine miscompares on the fiy might be
necded. as turning the beam on and off frequently can waste
time and money.

The algorithm for the software aspect of the test fixture is
very similar to the tault injection tool’s algorithm. Instead of
injecting faults artificially, though, the particle accelerator will
be injecting the faults. Unlike fault injection. controlling the
number of upsets that occur during one loop of the algorithm

is more difficult. Furthermore, error removal and single-event
functional interrupts (SEFIs) that affect the functionality of the
entire device complicate the situation. These three problems
will be discussed below.

The arrival time of radiation-induced faults are a Poisson
random processes. As the designer will want to reduce the
probability of multiple independent upsets (MIUs) causing
an output error, the beant’s flux is tuned so that on average
only one upset occurs per algorithm loop. Even still, Poisson
statistics tell us that, if the beam’s flux is tuned to one upset per
algorithm loop, there is a 37% chance that no upsets occur, a
37% chance that one upset occurs, and a 26% chance that two
or more upsets occur during the given time period. Since each
time the algorithm iterates without an upset or with multiple
upsets wastes time and money. tuning the beam’s flux properly
is very important. Further complicating this issue is detecting
the location where the upset occurred. In the larger devices, it
take can take dppreciably longer to determine where the upset
occurred on the device. which slows down each iteration of the
algorithm’s loop. Therefore, a smaller device could possibly
be tested at a much higher flux than a larger device. speeding
up the qualification process.

Going hand in hand with detecting the location of the SEU
is removing the SEU and allowing the circuit to resynchronize.
There are two ways to remove an SEU during an accelerator
test. One method is to do a complete reconfiguration of
the device and the other is to use a scrubbing circuit that
fixes SEUs through on-line reconfiguration that only partially
reconfigures the device. The advantage of using the scrubbing
circuit is that the SEU’s location can be determine at the
same time, speeding up the time for each iteration of the
algorithm’s loop. Usually access to both methods is necessary,
though. Often times the only way to recover from a SEFI
is a full reconfiguration of the device. SEFIs are usually
detected when an unreasonably high number of SEUs are
found at one time by the scrubbing circuit. Therefore, an
effective design for a scrubbing circuit is to have a threshold
limit for SEUs per cycle. Once the number of SEUs is
above that threshold, the scrubbing circuit does a complete
reconfiguration of the device. In either cuse, the circuit needs
to enough time to resynchronize with the golden FPGA before
the next SEU occurs to reduce the probability of false-positive
fault attribution from MIUs.

After the accelerator test is completed. the results need to be
examined so that correlations between output errors and SEU
locations can be determined. Since the SEUs in accelerator
testing do not present themselves in the system uniformly or
at specified time intervals, correlating output errors to specific
SEU locations can be a challenge. In some cases, if there
is a long latency in the user circuit, an output error might be
correlated with an SEU that happened several iterations before
the output error manifested. In otherGiven the disparate nature
of these three topics, the related work for these topics will
be covered in the individual sections. cases, sometimes the
software reports the output error before the SEU location is
determined and the problem location is after the output error
in the results log. Often times all of the results around a SEFI
event will need to be tossed, since removing the SEFI is time

consuming and the system will likely report output errors for
several iterations until the circuit state resynchronizes.

As Jong as the user circuit that is being tested is the same
one tested in fault injection, the results from fault injection
can be used to disambiguate the accelerator test results. Due to
the problems described with attributing SEUs to output errors,
the most effective approach for analyzing accelerator results
is to look at several SEU locations before and after the output
error in the log. This “window” of SEU locations can then be
compared to fault injection results to determine if any of these
SEUs occurred in fault injection. While this method can usu-
ally help a designer correlate output errors with tault injection
results, some output errors cannot be completely correlated.
In these cases, sometimes the accumulation of errors in the
circuit state caused by multiple errors caused the output error.
For these cases. sometimes part of an accelerator test can be
“played back’™ using the fault injection tool, where the tool
uses the accelerator log to inject faults in specific locations
in a particular order. In this way. the designer can determine
whether the output error can be explained and whether further
design exploration is needed to address potential design flaws
that caused the output error.

For fully or nearly-fully mitigated designs. accelerator test-
ing should be uneventful and the user circuit should be able
to operate for minutes or longer without any output errors.
For example, if fault injection only found 100 sensitive bits
in a device with 75 million bits. there is only a 0.000133%
chance that an output error will manifest for any given SEU.
With such a low probability of occurrence, the designer could
wail hours for an output error to occur and SEFIs might be
a more common cause of output errors. Some designers will
do tests with different flux levels and different durations. In
particular, one test might be very low flux over several hours,
mimicking average operation on orbit, and another test might
have a very high flux over a couple of minutes, mimicking
solar flare conditions. If at the end of these tests. the design
is able to operate either crror-free or within the availability
requirements, the design is considered space ready.

On the other hand, if the error rate is much higher than
indicated by the fault injection tool, either the flux could be too
high or there might be problems with either the fault injection
or accelerator test fixture. When designing new fault injection
and accelerator test fixtures it is important to test the setup by
correlating the results. If the results cannot be correlated, then
the methodologies for both systems need to be examined.

6. Results

In this section, we will compare the use of these three
methodologies on a circuit. This circuit, an adder tree, is fully
triplicated and was designed originally to test for placement-
related issues from both MBUs and logical constants. This de-
sign was implemented for a Xilinx Virtex-II part (XC2V {000).
All three methodologies were used on this design. In the
following paragraphs, we will describe the amount of time,
the quality of the results, and the cost of using these method-
ologies.

In terms of time, STARC is comparitively much faster than
the other two methods. Within a minute, the tool returned
the result that the design was triplicated properly and with
warnings that placement-related issues could exist from logical
constants. As STARC cannot currently estimate the placement-
related issues. it is unable to estimate how bits in the design
could cause output errors. In terms of cost, STARC is free to
government Users.

In terms of test coverage, the SEU Emulator was much more
complete than the other two methods. With fault injection. we
were able to find 285 single-bit SEU locations 18,733 2-bit
SEU locations, 11,264 3-bit SEU locations, and 19.464 4-bit
SEU locations that cause the design to output bad data. Each
pass through the fault injection test takes two hours per run
and each MBU test is a separate run through the test. As the
MBU tests are run with specific MBU shapes based on our
analysis of how MBUs affect the Virtex-I[, we were ahle to
constrain the MBU tests to the six most common shapes. In
all, fault injection tests took 14 hours for seven tests. In terms
of cost, the fault injection hardware is about $6,000 and the
software 1s free to government users.

As validation for both of these tests, we did a two hour long
test at at the Univerity of Indiana proton accelerator. During
this test we were able to observe 31 output errors, of which
42% we were able to later correlate to known fault injection
error locations. At one upset a second, we would have been
able to test all of the single bit errors in no less than f{our
hours of testing, assuming that no single-bit fault location was
exercised multiple times. Since the MBU-related issues have
only a 2% chance of occuring in proton, completing the test
would be prohibitively expensive. In terms of cost, we were
able to use the hardware and software from fault injection and
only had to pay the accelerator fees of $1,200 and $500 for
the FPGA. Had we completed the single-bit test, we would
have to pay for four to eight hours of testing and two to four
FPGAs for a total of $3.400-6,800.

While the initial cost of the hardware for the fault injection
tool is the highest of the three test methodologies. the cost
is amortized across across all of the fault injection tests and
the accelerator testing. Since the hardware infrastructure can
be reused an unlimited number of times, if the FPGA is not
irradiated, the cost is reasonable. When the test coverage is
factored in. the amount of time and cost invested in the fault
injection tool is the best option. While fault injection should
never replace accelerator testing, the accelerator was shortened
when we were able to confirm that our fault injection results.

7. Conclusions

In this paper we presented a three-tired methodology that
finds design flaws in FPGA user circuits and locates the faulty
locations on the FPGA. One methodology used a circuit rep-
resentation to find design flaws through modeling. The second
methodology used fault injection to locate how the design
flaws translated to physical locations on the FPGA. The final
method was an acclerator test to validate the previous results.
We were also able to show how these three methodologies
compared in terms of test coverage. time, and cost. While

the modeling tool was the fastest. fault injection was the best
methodology in terms of cost and test coverage.

References

[l

{2

3

(4

18

(9

(10}

[

[12

[13]

Ry

(151

|16

E. Fuller. M. Caffrey. P. Blain, C. Carmichael. N. Khalsa. and A, Salazar.
“Radiation test results of the Virtex FPGA and ZBT SRAM [or
space based reconfigurable computing”™ in Proceeding of the Military
and Aerospace Programmable Logic Devices International Confer-
encet MAPLD), Laurel, MD. September 1999,

M. Cuaftrey. M. Echave. C. Fite, T. Nelson. A, Salazar. and S. Storms.
“A space-based reconfigurable radio.” in Proceedings of the Sth Annual
International Conference on Military and Acrospace Progrannnable
Logic Devices (MAPLD). September 2002, p. A2,

H. Quinn. P. Graham. J. Krone. M. Calfrey. and S. Rezgui. “Radiation-
imduced multi-bit upsets in SRAM-based FPGAS.™ £ Transactions
on Nuclear Science. vol. 32, no. 6. pp. 2455 2461, December 2005,
H. Quinn. K. Morgan. P. Graham. J. Krone. M. Caffrey, and K. Lund-
green. “Domain crossing errors: Limitations on single device triple-
modular redundancy cireuits in Xilink FPGAS” [EEE Transactions on
Nuclear Science. vol. 54, no. 6. pp. 2037 - 43, 2007.

J. A Abraham and D. P Siewiorek. “An algorithm lor the accurate
reliability evaluation of tiple modular redundancy networks,” [EEE
Traunsactions on Computers. vol. 23, no. 7. pp. 682-692. July 1974,

S. Krishnaswamy. G. F. Viamontes. 1. L. Markov. and I. P. Hayes. “Ac-
curate reliability evaluation and enhancement via probabilistic transfer
matrices.” in Design. Awsomation and Test in Furope (DATE053). vol. 1.
New York. NY. USA: ACM Press. 2005, pp. 282-287.

C. Hirel. R. Saliner. X. Zang. and K. Trivedi. “Reliability and per-
formability using SHARPE 2000 in 11'" 1t Conf. on Compuier
Performance Evaluarion: Modeling Techniques and Tools, vol. 1786,
2000, pp. 345-349.

G. Norman. D, Parker. M. Kwiatkowska. and S. Shukia. “Evaluating the
rehability of NAND multiplexing with PRISM.” IEEE Transactions on
CAD, vol. 24, no. 10, pp. 1629-1637. 2005,

F. N Jensen, Bavesian Networks and Dectsion Graphs., New York:
Springer- Verlag. 2001,

1. Bhaduri. S. K. Shukla. P. S, Graham. and M. B. Gokhale. ~“Reliability
analysis of large circuits using scalable techniques and ols.” [EELE
Transactions on Circuits and Svstems - [Fundamental Theory and
Applications. vol. 54. no. 11, pp. 2447 - 60. NOV 2007,

D. Bhaduri and S. Shukla, "NANOLAB—au tool for evaluating reliability
of defect-rolerant nanoarchitectures.” IEEE Transactions on Nanotech-
nelogy. vol. 4 no. 40 pp. 381-394. 2005.

K. Morgan. M. Caflrey, P. Graham, E. Johnson. B. Pratt. and M. Wirth-
lin, “SEU-induced persistent error propagation in FPGAs. [EEE Trans-
actions on Nuclear Science. vol. 52, no. 6. pp. 2438 — 45, 2005.

E. Johnson. M. Caltrey. P. Graham. N. Rollins. and M. Wirthlin.
“Aceelerator validaton of an FPGA SEU simulator.” [EEE Transactions
on Nuclear Science. volo 50, no. 6. pp. 2147-2157. December 2003,
M. Alderighis B Casinic S, D™Angelo. M. Mancini. S. Pastore. GG, Sechi.
and R. Weigand. “Evaluation of single event upset mitigation schemes
tor sram based tpgas using the flipper Fault injection platform.” in Proc.
of the 22d0 IEEE Dt Symp. Defect and Fault Tolerance in VLSI Systems
(DI107), September 2007, pp. 105-113.

M. Berg. C. Perez. and H. Kim. “lnvestigating mitigated and non-
mitigated multiple clock domain circuiry in a xilinx virtex-4 field
programmable gate arrays.” in Single-event effects svmposium. 2008.
G, Swilt, C. WL Tseng. G, Miller. G. Allen. and H. Quinn, ~“The use of
[ault injection to simulate upsets in reconfigurable FPGAS™ in Submirted
to the military and aerespace progranmable logic devices conference
(MAPLDOS). 2008,

