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Abstract 

In this papel; we consider testing for programmable in- 
terconnect structures of look-up table based FPGAs. The 
interconnect structure considered in the paper consists of 
interconnecting wires and programmable points (switches) 
to join them. As fault models, stuck-at faults of the wires, 
and extra-device faults and missing-device faults of the pro- 
grammable points are considered. We heuristically derive 
testprocedures for the faults and then show their validnesses 
and complexities. 

1 Introduction 

Field programmable gate arrays (FPGAs) are modern 
logic devices which can be programmed to implement logic 
circuits in the field[1,2]. There are many different architec- 
tures of FPGAs driven by different programming technolo- 
gies. FPGAs with SRAM-based architecture, also called 
look-up table based FPGAs[ 1-31, are the most popular ones. 
Such types of FPGAs are called FPGAs briefly in this pa- 
per. FPGA consists of an array of identical configurable 
(programmable) logic blocks (CLBs), programmable U 0  
blocks (IOBs) and programmable interconnect structures. 
At present, FPGAs are widely used in rapid system proto- 
typings and system reconfigurations, because of their repro- 
grammability. 

Some researchers[4,5] have proposed testing for pro- 
grammed FPGAs, in which logic circuits are implemented, 
but it is not applicable to test for unprogrammed FPGAs at 
the manufacturing time. On the other hand, we have con- 
sidered testing for unprogrammed FPGAs and proposed si- 
multaneous testing for all look-up tables (LUTs) of FPGAs 
under two different programming schemes; one for seguen- 

tial loading programming scheme and the other for random 
access loading one[6]. This simultaneous 
that all the corresponding programmed logi 
FPGAs are fault-free, and the number of programs required 
for the testing is independent of the arr 
GAS. Testing for other components, how 
proposed there. In this paper, we present testing for pro- 
grammable interconnect structures in the FPGAs with se- 
quential loading. 

Programmable interconnect structures are used to con- 
nect CLBs each other and consist of switch matrices (SMs) 
and programmable switch blocks (PSBs). In this paper, we 
focus on testing for PSBs. Each of them is divided into three 
segments, (i) wires between adjacent two SMs, (ii) wires 
connected to IOBs and switches to connect them to segment 
(i), and (iii) wires connected to CLBs and switches to con- 
nect them to segment (i). 

In this paper, we show architecture of FPGAs, fault 
model of PSBs and test strategy. The strategy is to con- 
sider test procedures for the segments (i), (ii) and (iii) in 
this order, so that they are easily derived. We then derive 
the procedures and prove their validnesses. 

2 FPGA architecture and interconnect struc- 
tures 

The architecture of FPGA is illus 
are circuits to implement logic functions, and PSBs (PSBI N 

PSB6) and SMs are structures to connect CLBs each other. 
IOBs are circuits to connect the FPGA with external in- 
putsloutputs. In addition to the circ 
the FPGA is equipped with a progr 
is used to determine its function but 
is assumed in the succeeding discussions that the array size 
(the number of CLBs) of the FPGA is N x N .  
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Every CLB consists of one look-up table (LUT), two 
multiplexers (MUX1 and MUX2) and one D flip-flop (DFF) 
as shown in Fig. 2. r1, r2, . . ., r 2 3 k ,  TM1 and rM2 show 
SRAM cells, each of which is loaded with 0 or 1 at program- 
ming. When an input pattern (21, 22, . . -, x g k )  is applied 
to the LUT as an address, the content of the corresponding 
SRAM cell is read out as its output f .  Thus, an arbitrary 
logic function of 3k variables can be realized. The output 
of MUXl is f if TM1 = 0, otherwise the logical value on 
the wire y. Similarly, the logical value on the wire z is f if 
rM2 = 0, otherwise q (the output of the DFF). 

PSBs are divided into six types, PSBl N PSB6 as shown 
in Fig. 1. Fig. 3 shows four PSBs, PSBl - PSB4, which 
surround the CLB located in the upper left corner of the 
FPGA. Each PSB has n wires to connect adjacent two SMs 
each other. In addition, PSBl and PSB3 have k+4 and 
2k vertical wires, respectively, and PSBz and PSB4 have 
k+5 and k+2 horizontal wires, respectively. Small circles 
show switches (each of them is referred to as PS in this 
paper) to control connectivities of the corresponding cross 
points according to the contents of SRAM cells appended 
to them. Each PS joins the corresponding two wires each 
other if and only if the content of the corresponding SRAM 
cell is 1. Two triangles located in an IOB show three-state 
buffers which are controlled by the corresponding SRAM 
cells rB0s (i = 1,2). Each of them is closed if and only 
if the content of the corresponding SRAM cell is 1. Each 
SM is a collection of switches which can connect every in- 
put wire with an arbitrary number of other wires, where any 
two wires from a PSB can not be connected. The connec- 
tivities of the switches are controlled by the contents of the 
corresponding SRAM cells (if and only if the content of an 
SRAM cell is 1, the corresponding switch connects the cor- 
responding two wires each other). 

We must load all the SRAM cells with logical values for 
the configuration of the FPGA. If we want to change a part of 
them after the configuration, we must reload all the SRAM 
cells. 

Hereafter, for simplicity of the descriptions, a wire w be- 
tween adjacent two SMs, a wire connecting w with a CLB 
and a wire connecting w with an IOB are referred to as 
Wps~ ,  WCLB and WIOB, respectively, and PSs on a WCLB 
and a WIOB are referred to as SCLB and SIOB, respectively. 

3 Fault model and test strategy 

It is assumed in this paper that no circuits (including the 
programming facility) and no structures have any fault ex- 
cept at most one PSB which may have multiple faults. We 
consider stuck-at faults (SAFs) of wires, and extra-device 
faults (EDFs) and missing-device faults (MDFs) of PSs, 
where an EDF and an MDF are such faults that PSs are stuck 
at joint and disjoint states, respectively. 

Figure 1. Architecture of FPGA 
x k  XI 

I I  I I 

Figure 2. Structure of CLB 
:in-<: li0.B' 
.---, , .:.I.!.; :.li..i PSB 1 *.. . .. . .. . .... ...... . .. .. . .... 

k :  

k 

Figure 3. PSBs and SMs surrounding a CLB 
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For simplicity of the succeeding discussions, the follow- 
ing assumptions are introduced with respect to logical val- 
ues on wires. 
(Al) If a wire has any SAF, the logical value on it is invari- 

ant regardless of observed positions. 
(A2) The logical value on an isolated wire is fixed at either 

0 or 1, where an isolated wire is one in such a situation 
that it is floating from any drive source. 

(A3) Assume that two wires are respectively driven from 
independent sources. Then, even if they are joined each 
other by a PS at joint state, logical values on them remain 
unchanged. 

(A4) Assume that two wires 11 and 12 are respectively 
driven from independent sources. Then, even if they are 
joined each other through an isolated wire 13 with two 
PSs at joint states, logical values on 11 and 12 remain un- 
changed and the logical value on 13 is fixed at either 0 or 
1. 
Under the assumptions mentioned above, we will con- 

sider testing for WPSB’S, WCLB’S, WIOB’S, SCLB’S and SIOB’S. 
The strategy is as follows. First, we will derive such a 
test procedure that if at least one WPSB has any SAF, then 
some incorrect output appears independent of the presence 
of other faults. Second, under the condition that no W p s ~  
has any SAF, we will derive such a test procedure that if at 
least one of WIOB’S and SIOB’S has any fault, then some in- 
correct output appears independent of the presence of faults 
at WCLB’S and SCLB’S. Finally, under the same condition as 
the second procedure, we will derive such a test procedure 
that if at least one of WCLB’S and SCLB’S has any fault, then 
some incorrect output appears independent of the presence 
of faults at WIOB’S and SIOB’S. Using the three procedures, 
some incorrect output appears if any one of PSBs has at least 
one fault. Thus, we can attain 100 % fault coverage. 

It is assumed in the succeeding sections that the contents 
of SRAM cells to which we do not refer are Os, and any wire 
to which no test pattern is applied is isolated if it does not 
have any SAF and the logical value does not propagate to it. 

4 Test procedure for WPSB’s 

Let uJ (1 5 j 5 n) be the j-th W p s ~  from the left (top) 
in each of PSB2’s, PSB4’s and PSB6’S (PSBl’s, PSB3’s and 
PSBs’s) in Fig. 1. 

We first consider SAFs at an arbitrary number of WPSB’S 
in any one of PSBz’s, PSB4’s and PSB6’S. If there exist such 
faults, the following test procedure produces some incorrect 
output. 
[TP-1 : Test procedure for WPSB’S of PSBz’s, PSB4’s and 
PSB6’sI Execute (1) and (2) for j = 1,2, . . * , n (see 
Fig. 4). 
(1) Program so that (a) all uJ’s of PSBZ’S, PSB4’s and 

PSB6’s are joined through SMs as shown by a bold line in 

Fig. 4, (b) vj of the PSB2 located in the upper left corner 
is connected with a WIOS (w1) for the input and the cor- 
responding three-state buffer in the corresponding IOB is 
closed, and (c) uj of the PSB6 located in the lower right 
corner is connected with a WIOS (w2) for the output and 
the corresponding three-state buffer is closed. 

(2) Apply 0 and 1 to w1 as two test patterns, and observe 
0 

In Fig. 4, black PSs mean that they are programmed so 
logical values on w2 as the outputs. 

as to be in joint states. 

PSBl PSBl 

rve 

PSB5 

Figure 4. Program and test patterns for test- 
ing of WpsB’s 

Prior to the proof of the validness of TP-1, we introduce 
the following lemma. 
[Lemma 11 Assume that there exists any SAF at any wire 
of WPSB’S, WCLB’S and WIOB’S. Then, the logical value on it 
does not change even if the changes of logical values occur 
at an arbitrary number of wires except it in the FPGA. U 

The proof is trivial from the assumptions (Al), (A3) and 
(A4). Using the lemma, the validness of TP-1 is proved as 
follows. 
[Proof of the validness of TP-11 It is trivial that if the 
FPGA has no faults, the logical value on w2 is always iden- 
tical to that on w1 in the procedure (2). On the other hand, 
if at least one of WPSB’S in any one PSB has any SAF, the 
logical value on w2 is as follows. 

Assume that there exists any SAF at uJ of the PSB2 lo- 
cated in the upper left corner. The logical value on the v3 is 
invariant from Lemma 1 independently of the logical values 
on w1. On the other hand, since a single PSB fault model 
is introduced in this paper, all SMs and all PSBs except the 
PSB2 have no faults. The logical value on the uj therefore 
propagates to WZ. Thus, the logical value on w2 is invariant. 

Next, assume that there exists any SAF at vJ of the PSB6 
located in the lower right corner of the FPGA. (a) The log- 
ical value on the vJ is invariant from Lemma 1 regardless 
of the logical values on w1 . And (b)since a single PSB fault 
model is assumed, two SMs on the top and bottom of the 



PSB6 propagate logical values to no WPSB’S except the vj. 
From (a), (b) and the assumptions (A2) - (A4), all WPSB’S 
are unchanged. Therefore, the logical value on w2 is un- 
changed. 

Finally, if there exists any SAF at vj of any one of PSBs 
except the PSB2 and the PSB6 mentioned above, the fixed 

0 
Similarly, the test procedure for PSBl ’s, PSB3’s and 

PSB5’s can be obtained by replacing PSBz’s, PSB4’s and 
PSB6’s in TP-1 with PSBI’s, PSB3’s and PSBs’s, respec- 
tively. 

Thus, the number of programs required for testing of all 
PSBs is 2n. 

5 

(6) Execute the procedure which is obtained by replacing 
TBI, TB4, a l j ,  a4j, IO1 and I 0 2  in the procedure (5) 
with TB3, TB2, a3j, a2j, I 0 2  and 101, respectively. 0 

SM 
logical value on the vj propagates to w2. 

Test procedure for WIOB’S and SIOB’S 

In this section, we consider testing for WIOB’S and SIOB’S 
under the assumption that no WPSB has any SAF. First, we 
present a test procedure for a single PSB. Second, we extend 
it to a test procedure for all PSBs. 

Fig. 5 illustrates layout of wires and PSs in a single PSB, 
where the symbols aij’s, wi’s and vj’s (1 5 i 5 4; 1 5 j 5 
n) show SIOB’S, WIOB’S and W~SB’S, respectively, and IOl’s 
(1 5 I 5 2) and Aj’s show U 0  terminals and boundary 
points between the PSB and the SM, respectively, and TBi’s 
show three-state buffers. If at least one of wi’s and aij’s 
has any fault, then the following procedure produces some 
incorrect output. 
[TP-2 : Test procedure for WIOB’S and SlOB’S] (see 
Fig. 5 )  
(1) Execute (1-1) and (1-2) form = 1,2. 

(1-1) Program so that TB2,-1 is closed and any one 

(1-2) Apply 0 and 1 to IO,  as two test patterns, and 
( ~ 2 ~ - 1 j * )  of a2m-1j’~ is in joint state. 

observe the outputs at Aj.. 
(2) Execute (2-1) and (2-2) for m = 1,2. 

(2-1) Program so that TB2, is closed and any one 

(2-2) Apply 0 and 1 to A3* as two test patterns, and ob- 
(a2,j.) of a2,j’s is in joint state. 

serve the outputs at IO,. 
(3) Execute (3-1) and (3-2) for m = 1,2. 

(3-1) Program so that TB2,-1 is closed. 
(3-2) Apply 0 and 1 to IO, as two test patterns, and 

observe the outputs at Al N A,. 
(4) Execute (4-1) and (4-2) for m = 1,2. 

(4-1) Program so that TB2, is closed. 
(4-2) Apply all Os and all 1s to A1 N A, as two test pat- 

terns, and observe the outputs at IO,. 
(5 )  Execute (5-1) and (5-2) for j = 1,2,  . . a ,  n. 

(5-1) Program so that TB1 and TB4 are closed, and alj 

(5-2) Apply 0 and 1 to IO1 as two test patterns, and ob- 
and a4, are in joint states. 

serve the outputs at 102. 

SM 

Figure 5. Layout of WPSB’S, WIOB’S and SIOS’S 
in a single PSB 

The validness of TP-2 can be proved as follows. 
[Proof of the validness of TP-21 It is trivial that if the 
FPGA has no faults, the logical values appeared at the out- 
puts (observation points) in the procedures (1-2), (2-2), (5- 
2) and (6-2) coincide with those of the corresponding test 
patterns, and two logical values at each output in each of 
the procedures (3-2) and (4-2) are equal each other. On the 
other hand, if at least one of wi’s and ai,’s has any fault, the 
outputs are as follows. 

Assume that w2,-1 has any SAF for some m. Then, 
from Lemma 1, the logical values at IO, can not propa- 
gate to w2,-1 in the procedure (1-2), consequently to Aj,. 
Therefore, the logical value at Aj,  is unchanged indepen- 
dently of the logical value at IO,. A similar discussion 
holds in the procedure (2-2). Thus, it can be assumed in the 
following discussions that no wi (1 5 i 5 4) has any SAF. 

Assume that a2,-1j has an EDF for some m and some j. 
Then, the logical value at IO, propagates to Aj in the pro- 
cedure (3-2), since w2,-1 and v j  have no SAFs. Therefore, 
the logical value at A, coincides with the corresponding test 
pattern. A similar discussion holds in the procedure (4-2). 
Thus, it is assumed in the following discussions that no aij 
(1 5 i 5 4; 1 5 j 5 n) has an EDF. 

Assume that al, has an MDF for some j .  Then, the log- 
ical value at IO1 can not propagate to v j  in the procedure 
(5-2) of the j-th step, consequently to w4. Thus, the logical 
value at I 0 2  is kept unchanged. Similar discussions hold 

0 

Next, we consider the extension of TP-2 to a test pro- 
for a4j, and for a3j and a2j in the procedure (6-2). 

71 



cedure for simultaneous testing of several PSBs. Program- 
ming each couple of ~ 2 ~ ~ 1  (for input; m = 1,2) and ~2~ 

tput) through an SM as shown in Fig. 6(a), the pro- 
cedures (1) and (2) can be simultaneously executed. More- 
over, it is trivial that the procedure (5)  (the procedure (6)) 
for each j can be executed for all PSBs simultaneously as 
shown in Fig. 6(b). Thus, in addition to executions of these 
procedures, if we execute the procedure (3) 4 N  times and 
the procedure (4) 4 N  times (note that 4 N  is the number of 
pairs of two IOBs in the FPGA), then testing of WIOS’S and 
SIOB’S in all PSBs can be attained. Therefore, the number of 
programs required for the testing is 16N + 2n + 4. 

(a) Simultaneous execution of (b) Simultaneous execution of 
the procedures (1) and (2) the procedures (5) 

Figure 6. Scheme for simultaneous testing of 
W~OB’S and SIOB’S 

6 Test procedure for WcLB’s and SCLB’S 

For simplicity, we refer to WCLB’S for inputs of LWTs 
and for inputs of MUXls and outputs of MUX2 (see Fig. 2) 
as WLw’s and Wyz’s, respectively, and refer to SCLB’S on 
WLW’S and Wyz’s as SLUT’S and Syz’s, respectively. 

We first present a test procedure for W ~ n ’ s  and SL”s 
under the assumption that no W p s ~  has any SAE Fig. 7 illus- 
trates layout of wires and PSs in three PSBs which surround 
a CLB, where the symbols b,j’s, hi’s and u,’s (1 5 is k ;  
1 5 j 1. n) show SLUT’S, W ~ m ’ s  and WPSB’S, respectively, 
and A,’s and Bj’s show boundary points between PSBs and 
SMs. If at least one of hi’s and bi,’s in any one of the three 
PSBs has any fault, then the following test procedure pro- 
duces some incorrect output. 
[TP-3 : Test procedure for WLUT’S and SLUT’S] Execute 
(1) and (2) for j = 1,2,  . . . , n (see Fig. 7). 
(1) Execute (1-1) and (1-2). 

(1-1) Program so that (a) all b,,’s (1 5 i 5 k )  of the 
three PSBs are in joint states, (b) all u,*’s (1 I j *  1. 
n) of the three PSBs are connected through SMs as 

Figure 7. Test scheme for WLUT’s and SLuT’s in 
three PSBs 

shown in Fig. 7, (c) the contents 
and 13 - T23k are 0 and Is, respe 

(1-2) Apply 0 to A ,  as the test pa 
logical value on > and the logical value at each Bj* 
(1 I .i* 1. n). 

(2) Execute (2-1) and (2-2). 
(2-1) Program so that (a) and (b) in the procedure (1- 

1) are attained, and the contents of SRAM cells T I  - 
T23k-I and T23k are 1s and 0, respective1 

(2-2) Apply 1 to A, as the test pattern, a 
logical value on x 

The validness of TP-3 
[Proof of the validness of TP-31 

If the FPGA has no faults, then in the j-th step for each j ,  
the logical values on z in the procedures (1-2) and (2-2) are 
Os and the logical values at each B,. (1 5 j *  5 n; j *  # j )  
in them coincide with each other. On the other hand, if any 
one of the three PSBs has any fault, the logical values on 
z and the logical values at each B,* (1 5 j* 6 n) are as 
follows. 

Without loss of generality, we assume that the PSB on 
the left of the CLB may have any fault. 
the PSB has any SAF for some i*, and 1 
logical values on each h, in the procedures (1-2) and (2-2) 
of the j-th step, respectively. Then, from Lemma 1, hf,, = 
h:*, for an arbitrary j .  On the other hand, since a single PSB 
fault model is introduced, the CLB (the 

(1 j *  5 n). 
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Therefore, either the logical value on z in the procedure (1- 
2) or that in (2-2) is 1. Consequently, an incorrect output 
appears on z. Thus, it can be assumed in the succeeding 
discussions that no hi (1 5 i 5 k) has any SAF. 

Assume that bpj*  has an EDF for some i* and some j*. 
If an incorrect output is observed on z in the procedure (1-2) 
or (2-2) of the j-th step for some j, then we can conclude 
that the FPGA has some EDFs and/or MDFs. If a correct 
output is observed on z for an arbitrary j ,  at least one of 
the logical values at B1 N B, is incopect as follows. If 
hij = hij for some i and some j ,  then an incorrect output 
appears on z in the j-th step. Therefore, we can consider 
that hij J h2. for an arbitrary i and an arbitrary j. On the 

%? other hand, since it is assumed that vj. does not have any 
SAF, hi,j and propagate to B3’ for each j. Thus, an 
incorrect output appears at Bj. in the j-th step 0’ { j * ) .  It 
can be therefore assumed in the succeeding discussions that 
no b;j (1 5 i 5 k; 1 5 j 5 n) has an EDF. 

Finally, assume that b p j .  has an MDF for some i* and 
some j*. Since hi. does not have any SAF and no b p 3  (1 5 
j 5 n; j # j*) has an EDF, hp is isolated in the j”-th step. 
From the argument and the assumption (A2), hi*j* = h$j*. 

0 
As shown in Fig. 8, TP-3 can be extended to a test pro- 

cedure for simultaneous testing of PSBs whose WLUT’S are 
connected to CLBs in a column of the FPGA. Therefore, the 
number of programs required for testing of all WLUT’S and 
all SLUT’S is N x 2n, since the number of programs in TP-3 
is 2n. 

Thus, an incorrect output appears on z .  

Fig. 1, let CLB: be the CLB located in the s-th row and t- 
th column of the FPGA (1 5 s 5 N ;  1 5 t 5 N ) ,  and 
let PSB: and P S B P ’  (1 5 s 5 N ;  1 5 t L: N )  be the 
PSBs located on the left of CLB; and the right of CLBY, 
respectively. If at least one of Wyz’s and Syz’s in any one of 
PSBs has any fault, the following procedure produces some 
incorrect output. 
[TP-4 : Test procedure for Wyz’s and S,’s] 
(1) Execute (1-1) and (1-2) for j = 1,2 in each t (1 5 t 5 

N )  (see Fig. 9). 
(1-1) Program so that (a) the contents of both T M ~  and 

r ~ 2  (see Fig. 2) in each CLB: (1 5 s 5 N ;  1 5 
t* 5 t )  are Is, (b) c j  in each PSB: (1 5 s N ;  
1 5 t* 5 t )  is in joint state, (c) dj in each PSB: 
(1 5 s 5 N ;  2 5 t* 5 t + 1) is in joint state, (d) vj* in 
PSB: and vj* inPSB:+l (1 s 5 N-1; 1 < - j *  5 n; 
j *  { j )  are connected each other through an SM, (e) 
the logical value on a WIOB (a,) propagates to y in 
each PSBB (1 5 s 5 N ) ,  (f) the logical value on z 
in each CLB: (1 5 s 5 N )  propagates to a WIOB 
(p,), and (g) the logical value on each vjl (1 5 j *  5 
n; j *  # j) in PSBL propagates to a WIOB (rj*). 

(1-2) Apply all Os and all 1s to al - a~ as two test pat- 
terns, and observe the logical values on p1 N PN and 
all ‘yj*’s (1 5 j *  5 n; j *  # j) as the outputs. 

................................. 
: v ,  v*. . .v,  .-vn i 

Y i  
: z  
I ................................ I 

Y2Y3 Y “  

observe 

Figure 8. Program and test patterns for simul- 
taneous testing of several PSBs 

Finally, we consider testing for Wyz’s and Syz’s. In each 
PSB, let c j  and dj (1 5 j 5 n) be PSs on an input wire y 
of a CLB and an output wire z of a CLB, respectively. In 

Figure 9. Program and test patterns for test- 
ing of SAFs and EDFs in PSBt’s (1 < s 5 N ;  
1 5 t l N )  

(2) Execute (2-1) and (2-2) for j = 1,2 (see 
Fig. 10). 
(2-1) Program so that (a) the contents of both T M ~  and 

rM2 in each CLB are Is, (b) all cj’s and all dj’s are 
in joint states, (c) vj* in PSBY’ and in PSBS’  
(1 5 s 5 N-1; 1 5 j *  5 n; j *  J j )  are connected 
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each other through an SM, (d) the logical value on a 
WIOB (a,) propagates toy in each PSB; (1 5 s 5 N ) ,  
(e) the logical value on z in each CLB: (1 5 s 5 N )  
propagates to a WIOB (P,), and (f) the logical value on 
each vu3* (1 5 j *  5 n; j *  S j )  in PSBF’  propagates 
to a WIOB ( 7 3 ’ ) .  

(2-2) execute the same procedure as (1-2). 
(3) Execute (3-1) and (3-2) for j = 1 , 2 , . . . , n  (see 

Fig. 11). 
(3-1) Program so that (a), (b), (d) and (e) in the proce- 

dures (2-1) are attained. 
(3-2) Apply all Os and all 1s to 01 - QN as two test pat- 

terns, and observe the logical values on p1 - ,L?N as 
the outputs. 

Figure 10. Program and test patterns for test- 
ing of SAFs and EDFs in P S B F ” s  (1 5 s < N) 

Figure 11. Program and test patterns for test- 
ing of MDFs in PSB:’s (1 5 s < N ;  1 < t < N+1) 

The procedure (1)produces some incorrect output if there 
exists at least one fault of SAFs and EDFs in any one of 
PSB:’s (1 5 s 5 N ;  1 5 t 5 N ) ,  and similarly, the pro- 

cedure (2) produces some incorrect output if there exists at 
least one such fault in any one of PSBY”s (1 5 s 5 N ) .  
Under the assumption that no PSB has any fault except 
MDFs, the procedure ( 3 )  produces some incorrect output 
if there exists at least one MDF in any one of all PSBs of 
the FPGA. The proof of the validness of TP-4 is omitted 
due to space limitation. The number of programs in TP-4 is 
2 N + n + 2 .  

7 Conclusion 

In this paper, we considered testing for PSBs of FPGAs, 
such that it ensures that all the programmed PSBs are fault- 
free. And we heuristically derived test procedures for PSBs 
in which the number of programs required to test all PSBs 
of the FPGA is 2Nn+18N+5n+6. When they are applied 
to FPGAs, the time T required to test all PSBs is nearly 
equal to the time required to load all the programs ( the time 
required to apply the test patterns is negligible small com- 
pared with the loading time ), For example, in the case of 
XC2064[3J(N = 8, n = 4, t ,  = 100 ms, where t ,  is the time 
required to load each program), T is about 23.4 seconds. 

It is one of our works to consider testing for switch ma- 
trices and YO blocks. It is also an important work to obtain 
an efficient testing for the whole of FPGAs, by integrating 
the test procedures for all components of FPGAs. 
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