
Engineering

Industrial & Management Engineering fields

Okayama University Year 1996

A test methodology for interconnect

structures of LUT-based FPGAs

Hiroyuki Michinishi∗ Tokumi Yokohira† Takuji Okamoto‡

Tomoo Inoue∗∗ Hideo Fujiwara††

∗Okayama University
†Okayama University
‡Okayama University
∗∗Nara Institute of Science and Technology
††Nara Institute of Science and Technology

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/industrial engineering/51

A Test Methodology for Interconnect Structures of LUT-Based FPGAs

Hiroyuki Michinishi, Tokumi Yokohira, Takuji Okamoto
Department of Information Technology

Faculty of Engineering, Okayama University
3- 1 - 1, Tsushima-naka, Okayama, 700 Japan

Tomoo Inoue, Hideo Fujiwara
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, 630-01 Japan

Abstract

In this papel; we consider testing for programmable in-
terconnect structures of look-up table based FPGAs. The
interconnect structure considered in the paper consists of
interconnecting wires and programmable points (switches)
to join them. As fault models, stuck-at faults of the wires,
and extra-device faults and missing-device faults of the pro-
grammable points are considered. We heuristically derive
testprocedures for the faults and then show their validnesses
and complexities.

1 Introduction

Field programmable gate arrays (FPGAs) are modern
logic devices which can be programmed to implement logic
circuits in the field[1,2]. There are many different architec-
tures of FPGAs driven by different programming technolo-
gies. FPGAs with SRAM-based architecture, also called
look-up table based FPGAs[1-31, are the most popular ones.
Such types of FPGAs are called FPGAs briefly in this pa-
per. FPGA consists of an array of identical configurable
(programmable) logic blocks (CLBs), programmable U 0
blocks (IOBs) and programmable interconnect structures.
At present, FPGAs are widely used in rapid system proto-
typings and system reconfigurations, because of their repro-
grammability.

Some researchers[4,5] have proposed testing for pro-
grammed FPGAs, in which logic circuits are implemented,
but it is not applicable to test for unprogrammed FPGAs at
the manufacturing time. On the other hand, we have con-
sidered testing for unprogrammed FPGAs and proposed si-
multaneous testing for all look-up tables (LUTs) of FPGAs
under two different programming schemes; one for seguen-

tial loading programming scheme and the other for random
access loading one[6]. This simultaneous
that all the corresponding programmed logi
FPGAs are fault-free, and the number of programs required
for the testing is independent of the arr
GAS. Testing for other components, how
proposed there. In this paper, we present testing for pro-
grammable interconnect structures in the FPGAs with se-
quential loading.

Programmable interconnect structures are used to con-
nect CLBs each other and consist of switch matrices (SMs)
and programmable switch blocks (PSBs). In this paper, we
focus on testing for PSBs. Each of them is divided into three
segments, (i) wires between adjacent two SMs, (ii) wires
connected to IOBs and switches to connect them to segment
(i), and (iii) wires connected to CLBs and switches to con-
nect them to segment (i).

In this paper, we show architecture of FPGAs, fault
model of PSBs and test strategy. The strategy is to con-
sider test procedures for the segments (i), (ii) and (iii) in
this order, so that they are easily derived. We then derive
the procedures and prove their validnesses.

2 FPGA architecture and interconnect struc-
tures

The architecture of FPGA is illus
are circuits to implement logic functions, and PSBs (PSBI N

PSB6) and SMs are structures to connect CLBs each other.
IOBs are circuits to connect the FPGA with external in-
putsloutputs. In addition to the circ
the FPGA is equipped with a progr
is used to determine its function but
is assumed in the succeeding discussions that the array size
(the number of CLBs) of the FPGA is N x N .

1081-7735196 $5.00 0 1996 IEEE
Proceedings of ATS ’96

68

Every CLB consists of one look-up table (LUT), two
multiplexers (MUX1 and MUX2) and one D flip-flop (DFF)
as shown in Fig. 2. r1, r2, . . ., r 2 3 k , TM1 and rM2 show
SRAM cells, each of which is loaded with 0 or 1 at program-
ming. When an input pattern (21, 22, . . -, x g k) is applied
to the LUT as an address, the content of the corresponding
SRAM cell is read out as its output f . Thus, an arbitrary
logic function of 3k variables can be realized. The output
of MUXl is f if TM1 = 0, otherwise the logical value on
the wire y. Similarly, the logical value on the wire z is f if
rM2 = 0, otherwise q (the output of the DFF).

PSBs are divided into six types, PSBl N PSB6 as shown
in Fig. 1. Fig. 3 shows four PSBs, PSBl - PSB4, which
surround the CLB located in the upper left corner of the
FPGA. Each PSB has n wires to connect adjacent two SMs
each other. In addition, PSBl and PSB3 have k+4 and
2k vertical wires, respectively, and PSBz and PSB4 have
k+5 and k+2 horizontal wires, respectively. Small circles
show switches (each of them is referred to as PS in this
paper) to control connectivities of the corresponding cross
points according to the contents of SRAM cells appended
to them. Each PS joins the corresponding two wires each
other if and only if the content of the corresponding SRAM
cell is 1. Two triangles located in an IOB show three-state
buffers which are controlled by the corresponding SRAM
cells rB0s (i = 1,2). Each of them is closed if and only
if the content of the corresponding SRAM cell is 1. Each
SM is a collection of switches which can connect every in-
put wire with an arbitrary number of other wires, where any
two wires from a PSB can not be connected. The connec-
tivities of the switches are controlled by the contents of the
corresponding SRAM cells (if and only if the content of an
SRAM cell is 1, the corresponding switch connects the cor-
responding two wires each other).

We must load all the SRAM cells with logical values for
the configuration of the FPGA. If we want to change a part of
them after the configuration, we must reload all the SRAM
cells.

Hereafter, for simplicity of the descriptions, a wire w be-
tween adjacent two SMs, a wire connecting w with a CLB
and a wire connecting w with an IOB are referred to as
Wps~ , WCLB and WIOB, respectively, and PSs on a WCLB
and a WIOB are referred to as SCLB and SIOB, respectively.

3 Fault model and test strategy

It is assumed in this paper that no circuits (including the
programming facility) and no structures have any fault ex-
cept at most one PSB which may have multiple faults. We
consider stuck-at faults (SAFs) of wires, and extra-device
faults (EDFs) and missing-device faults (MDFs) of PSs,
where an EDF and an MDF are such faults that PSs are stuck
at joint and disjoint states, respectively.

Figure 1. Architecture of FPGA
x k XI

I I I I

Figure 2. Structure of CLB
:in-<: li0.B'
.---, , .:.I.!.; :.li..i PSB 1 *..

k :

k

Figure 3. PSBs and SMs surrounding a CLB

69

For simplicity of the succeeding discussions, the follow-
ing assumptions are introduced with respect to logical val-
ues on wires.
(Al) If a wire has any SAF, the logical value on it is invari-

ant regardless of observed positions.
(A2) The logical value on an isolated wire is fixed at either

0 or 1, where an isolated wire is one in such a situation
that it is floating from any drive source.

(A3) Assume that two wires are respectively driven from
independent sources. Then, even if they are joined each
other by a PS at joint state, logical values on them remain
unchanged.

(A4) Assume that two wires 11 and 12 are respectively
driven from independent sources. Then, even if they are
joined each other through an isolated wire 13 with two
PSs at joint states, logical values on 11 and 12 remain un-
changed and the logical value on 13 is fixed at either 0 or
1.
Under the assumptions mentioned above, we will con-

sider testing for WPSB’S, WCLB’S, WIOB’S, SCLB’S and SIOB’S.
The strategy is as follows. First, we will derive such a
test procedure that if at least one WPSB has any SAF, then
some incorrect output appears independent of the presence
of other faults. Second, under the condition that no W p s ~
has any SAF, we will derive such a test procedure that if at
least one of WIOB’S and SIOB’S has any fault, then some in-
correct output appears independent of the presence of faults
at WCLB’S and SCLB’S. Finally, under the same condition as
the second procedure, we will derive such a test procedure
that if at least one of WCLB’S and SCLB’S has any fault, then
some incorrect output appears independent of the presence
of faults at WIOB’S and SIOB’S. Using the three procedures,
some incorrect output appears if any one of PSBs has at least
one fault. Thus, we can attain 100 % fault coverage.

It is assumed in the succeeding sections that the contents
of SRAM cells to which we do not refer are Os, and any wire
to which no test pattern is applied is isolated if it does not
have any SAF and the logical value does not propagate to it.

4 Test procedure for WPSB’s

Let uJ (1 5 j 5 n) be the j-th W p s ~ from the left (top)
in each of PSB2’s, PSB4’s and PSB6’S (PSBl’s, PSB3’s and
PSBs’s) in Fig. 1.

We first consider SAFs at an arbitrary number of WPSB’S
in any one of PSBz’s, PSB4’s and PSB6’S. If there exist such
faults, the following test procedure produces some incorrect
output.
[TP-1 : Test procedure for WPSB’S of PSBz’s, PSB4’s and
PSB6’sI Execute (1) and (2) for j = 1,2, . . * , n (see
Fig. 4).
(1) Program so that (a) all uJ’s of PSBZ’S, PSB4’s and

PSB6’s are joined through SMs as shown by a bold line in

Fig. 4, (b) vj of the PSB2 located in the upper left corner
is connected with a WIOS (w1) for the input and the cor-
responding three-state buffer in the corresponding IOB is
closed, and (c) uj of the PSB6 located in the lower right
corner is connected with a WIOS (w2) for the output and
the corresponding three-state buffer is closed.

(2) Apply 0 and 1 to w1 as two test patterns, and observe
0

In Fig. 4, black PSs mean that they are programmed so
logical values on w2 as the outputs.

as to be in joint states.

PSBl PSBl

rve

PSB5

Figure 4. Program and test patterns for test-
ing of WpsB’s

Prior to the proof of the validness of TP-1, we introduce
the following lemma.
[Lemma 11 Assume that there exists any SAF at any wire
of WPSB’S, WCLB’S and WIOB’S. Then, the logical value on it
does not change even if the changes of logical values occur
at an arbitrary number of wires except it in the FPGA. U

The proof is trivial from the assumptions (Al), (A3) and
(A4). Using the lemma, the validness of TP-1 is proved as
follows.
[Proof of the validness of TP-11 It is trivial that if the
FPGA has no faults, the logical value on w2 is always iden-
tical to that on w1 in the procedure (2). On the other hand,
if at least one of WPSB’S in any one PSB has any SAF, the
logical value on w2 is as follows.

Assume that there exists any SAF at uJ of the PSB2 lo-
cated in the upper left corner. The logical value on the v3 is
invariant from Lemma 1 independently of the logical values
on w1. On the other hand, since a single PSB fault model
is introduced in this paper, all SMs and all PSBs except the
PSB2 have no faults. The logical value on the uj therefore
propagates to WZ. Thus, the logical value on w2 is invariant.

Next, assume that there exists any SAF at vJ of the PSB6
located in the lower right corner of the FPGA. (a) The log-
ical value on the vJ is invariant from Lemma 1 regardless
of the logical values on w1 . And (b)since a single PSB fault
model is assumed, two SMs on the top and bottom of the

PSB6 propagate logical values to no WPSB’S except the vj.
From (a), (b) and the assumptions (A2) - (A4), all WPSB’S
are unchanged. Therefore, the logical value on w2 is un-
changed.

Finally, if there exists any SAF at vj of any one of PSBs
except the PSB2 and the PSB6 mentioned above, the fixed

0
Similarly, the test procedure for PSBl ’s, PSB3’s and

PSB5’s can be obtained by replacing PSBz’s, PSB4’s and
PSB6’s in TP-1 with PSBI’s, PSB3’s and PSBs’s, respec-
tively.

Thus, the number of programs required for testing of all
PSBs is 2n.

5

(6) Execute the procedure which is obtained by replacing
TBI, TB4, a l j , a4j, IO1 and I 0 2 in the procedure (5)
with TB3, TB2, a3j, a2j, I 0 2 and 101, respectively. 0

SM
logical value on the vj propagates to w2.

Test procedure for WIOB’S and SIOB’S

In this section, we consider testing for WIOB’S and SIOB’S
under the assumption that no WPSB has any SAF. First, we
present a test procedure for a single PSB. Second, we extend
it to a test procedure for all PSBs.

Fig. 5 illustrates layout of wires and PSs in a single PSB,
where the symbols aij’s, wi’s and vj’s (1 5 i 5 4; 1 5 j 5
n) show SIOB’S, WIOB’S and W~SB’S, respectively, and IOl’s
(1 5 I 5 2) and Aj’s show U 0 terminals and boundary
points between the PSB and the SM, respectively, and TBi’s
show three-state buffers. If at least one of wi’s and aij’s
has any fault, then the following procedure produces some
incorrect output.
[TP-2 : Test procedure for WIOB’S and SlOB’S] (see
Fig. 5)
(1) Execute (1-1) and (1-2) form = 1,2.

(1-1) Program so that TB2,-1 is closed and any one

(1-2) Apply 0 and 1 to IO, as two test patterns, and
(~ 2 ~ - 1 j *) of a2m-1j’~ is in joint state.

observe the outputs at Aj..
(2) Execute (2-1) and (2-2) for m = 1,2.

(2-1) Program so that TB2, is closed and any one

(2-2) Apply 0 and 1 to A3* as two test patterns, and ob-
(a2,j.) of a2,j’s is in joint state.

serve the outputs at IO,.
(3) Execute (3-1) and (3-2) for m = 1,2.

(3-1) Program so that TB2,-1 is closed.
(3-2) Apply 0 and 1 to IO, as two test patterns, and

observe the outputs at Al N A,.
(4) Execute (4-1) and (4-2) for m = 1,2.

(4-1) Program so that TB2, is closed.
(4-2) Apply all Os and all 1s to A1 N A, as two test pat-

terns, and observe the outputs at IO,.
(5) Execute (5-1) and (5-2) for j = 1,2, . . a , n.

(5-1) Program so that TB1 and TB4 are closed, and alj

(5-2) Apply 0 and 1 to IO1 as two test patterns, and ob-
and a4, are in joint states.

serve the outputs at 102.

SM

Figure 5. Layout of WPSB’S, WIOB’S and SIOS’S
in a single PSB

The validness of TP-2 can be proved as follows.
[Proof of the validness of TP-21 It is trivial that if the
FPGA has no faults, the logical values appeared at the out-
puts (observation points) in the procedures (1-2), (2-2), (5-
2) and (6-2) coincide with those of the corresponding test
patterns, and two logical values at each output in each of
the procedures (3-2) and (4-2) are equal each other. On the
other hand, if at least one of wi’s and ai,’s has any fault, the
outputs are as follows.

Assume that w2,-1 has any SAF for some m. Then,
from Lemma 1, the logical values at IO, can not propa-
gate to w2,-1 in the procedure (1-2), consequently to Aj,.
Therefore, the logical value at Aj, is unchanged indepen-
dently of the logical value at IO,. A similar discussion
holds in the procedure (2-2). Thus, it can be assumed in the
following discussions that no wi (1 5 i 5 4) has any SAF.

Assume that a2,-1j has an EDF for some m and some j.
Then, the logical value at IO, propagates to Aj in the pro-
cedure (3-2), since w2,-1 and v j have no SAFs. Therefore,
the logical value at A, coincides with the corresponding test
pattern. A similar discussion holds in the procedure (4-2).
Thus, it is assumed in the following discussions that no aij
(1 5 i 5 4; 1 5 j 5 n) has an EDF.

Assume that al, has an MDF for some j . Then, the log-
ical value at IO1 can not propagate to v j in the procedure
(5-2) of the j-th step, consequently to w4. Thus, the logical
value at I 0 2 is kept unchanged. Similar discussions hold

0

Next, we consider the extension of TP-2 to a test pro-
for a4j, and for a3j and a2j in the procedure (6-2).

71

cedure for simultaneous testing of several PSBs. Program-
ming each couple of ~ 2 ~ ~ 1 (for input; m = 1,2) and ~2~

tput) through an SM as shown in Fig. 6(a), the pro-
cedures (1) and (2) can be simultaneously executed. More-
over, it is trivial that the procedure (5) (the procedure (6))
for each j can be executed for all PSBs simultaneously as
shown in Fig. 6(b). Thus, in addition to executions of these
procedures, if we execute the procedure (3) 4 N times and
the procedure (4) 4 N times (note that 4 N is the number of
pairs of two IOBs in the FPGA), then testing of WIOS’S and
SIOB’S in all PSBs can be attained. Therefore, the number of
programs required for the testing is 16N + 2n + 4.

(a) Simultaneous execution of (b) Simultaneous execution of
the procedures (1) and (2) the procedures (5)

Figure 6. Scheme for simultaneous testing of
W~OB’S and SIOB’S

6 Test procedure for WcLB’s and SCLB’S

For simplicity, we refer to WCLB’S for inputs of LWTs
and for inputs of MUXls and outputs of MUX2 (see Fig. 2)
as WLw’s and Wyz’s, respectively, and refer to SCLB’S on
WLW’S and Wyz’s as SLUT’S and Syz’s, respectively.

We first present a test procedure for W ~ n ’ s and SL”s
under the assumption that no W p s ~ has any SAE Fig. 7 illus-
trates layout of wires and PSs in three PSBs which surround
a CLB, where the symbols b,j’s, hi’s and u,’s (1 5 is k ;
1 5 j 1. n) show SLUT’S, W ~ m ’ s and WPSB’S, respectively,
and A,’s and Bj’s show boundary points between PSBs and
SMs. If at least one of hi’s and bi,’s in any one of the three
PSBs has any fault, then the following test procedure pro-
duces some incorrect output.
[TP-3 : Test procedure for WLUT’S and SLUT’S] Execute
(1) and (2) for j = 1,2, . . . , n (see Fig. 7).
(1) Execute (1-1) and (1-2).

(1-1) Program so that (a) all b,,’s (1 5 i 5 k) of the
three PSBs are in joint states, (b) all u,*’s (1 I j * 1.
n) of the three PSBs are connected through SMs as

Figure 7. Test scheme for WLUT’s and SLuT’s in
three PSBs

shown in Fig. 7, (c) the contents
and 13 - T23k are 0 and Is, respe

(1-2) Apply 0 to A , as the test pa
logical value on > and the logical value at each Bj*
(1 I .i* 1. n).

(2) Execute (2-1) and (2-2).
(2-1) Program so that (a) and (b) in the procedure (1-

1) are attained, and the contents of SRAM cells T I -
T23k-I and T23k are 1s and 0, respective1

(2-2) Apply 1 to A, as the test pattern, a
logical value on x

The validness of TP-3
[Proof of the validness of TP-31

If the FPGA has no faults, then in the j-th step for each j ,
the logical values on z in the procedures (1-2) and (2-2) are
Os and the logical values at each B,. (1 5 j * 5 n; j * # j)
in them coincide with each other. On the other hand, if any
one of the three PSBs has any fault, the logical values on
z and the logical values at each B,* (1 5 j* 6 n) are as
follows.

Without loss of generality, we assume that the PSB on
the left of the CLB may have any fault.
the PSB has any SAF for some i*, and 1
logical values on each h, in the procedures (1-2) and (2-2)
of the j-th step, respectively. Then, from Lemma 1, hf,, =
h:*, for an arbitrary j . On the other hand, since a single PSB
fault model is introduced, the CLB (the

(1 j * 5 n).

72

Therefore, either the logical value on z in the procedure (1-
2) or that in (2-2) is 1. Consequently, an incorrect output
appears on z. Thus, it can be assumed in the succeeding
discussions that no hi (1 5 i 5 k) has any SAF.

Assume that bpj* has an EDF for some i* and some j*.
If an incorrect output is observed on z in the procedure (1-2)
or (2-2) of the j-th step for some j, then we can conclude
that the FPGA has some EDFs and/or MDFs. If a correct
output is observed on z for an arbitrary j , at least one of
the logical values at B1 N B, is incopect as follows. If
hij = hij for some i and some j , then an incorrect output
appears on z in the j-th step. Therefore, we can consider
that hij J h2. for an arbitrary i and an arbitrary j. On the

%? other hand, since it is assumed that vj. does not have any
SAF, hi,j and propagate to B3’ for each j. Thus, an
incorrect output appears at Bj. in the j-th step 0’ { j *) . It
can be therefore assumed in the succeeding discussions that
no b;j (1 5 i 5 k; 1 5 j 5 n) has an EDF.

Finally, assume that b p j . has an MDF for some i* and
some j*. Since hi. does not have any SAF and no b p 3 (1 5
j 5 n; j # j*) has an EDF, hp is isolated in the j”-th step.
From the argument and the assumption (A2), hi*j* = h$j*.

0
As shown in Fig. 8, TP-3 can be extended to a test pro-

cedure for simultaneous testing of PSBs whose WLUT’S are
connected to CLBs in a column of the FPGA. Therefore, the
number of programs required for testing of all WLUT’S and
all SLUT’S is N x 2n, since the number of programs in TP-3
is 2n.

Thus, an incorrect output appears on z .

Fig. 1, let CLB: be the CLB located in the s-th row and t-
th column of the FPGA (1 5 s 5 N ; 1 5 t 5 N) , and
let PSB: and P S B P ’ (1 5 s 5 N ; 1 5 t L: N) be the
PSBs located on the left of CLB; and the right of CLBY,
respectively. If at least one of Wyz’s and Syz’s in any one of
PSBs has any fault, the following procedure produces some
incorrect output.
[TP-4 : Test procedure for Wyz’s and S,’s]
(1) Execute (1-1) and (1-2) for j = 1,2 in each t (1 5 t 5

N) (see Fig. 9).
(1-1) Program so that (a) the contents of both T M ~ and

r ~ 2 (see Fig. 2) in each CLB: (1 5 s 5 N ; 1 5
t* 5 t) are Is, (b) c j in each PSB: (1 5 s N ;
1 5 t* 5 t) is in joint state, (c) dj in each PSB:
(1 5 s 5 N ; 2 5 t* 5 t + 1) is in joint state, (d) vj* in
PSB: and vj* inPSB:+l (1 s 5 N-1; 1 < - j * 5 n;
j * { j) are connected each other through an SM, (e)
the logical value on a WIOB (a,) propagates to y in
each PSBB (1 5 s 5 N) , (f) the logical value on z
in each CLB: (1 5 s 5 N) propagates to a WIOB
(p,), and (g) the logical value on each vjl (1 5 j * 5
n; j * # j) in PSBL propagates to a WIOB (rj*).

(1-2) Apply all Os and all 1s to al - a~ as two test pat-
terns, and observe the logical values on p1 N PN and
all ‘yj*’s (1 5 j * 5 n; j * # j) as the outputs.

.................................
: v , v*. . .v, .-vn i

Y i
: z
I I

Y2Y3 Y “

observe

Figure 8. Program and test patterns for simul-
taneous testing of several PSBs

Finally, we consider testing for Wyz’s and Syz’s. In each
PSB, let c j and dj (1 5 j 5 n) be PSs on an input wire y
of a CLB and an output wire z of a CLB, respectively. In

Figure 9. Program and test patterns for test-
ing of SAFs and EDFs in PSBt’s (1 < s 5 N ;
1 5 t l N)

(2) Execute (2-1) and (2-2) for j = 1,2 (see
Fig. 10).
(2-1) Program so that (a) the contents of both T M ~ and

rM2 in each CLB are Is, (b) all cj’s and all dj’s are
in joint states, (c) vj* in PSBY’ and in PSBS’
(1 5 s 5 N-1; 1 5 j * 5 n; j * J j) are connected

73

each other through an SM, (d) the logical value on a
WIOB (a,) propagates toy in each PSB; (1 5 s 5 N) ,
(e) the logical value on z in each CLB: (1 5 s 5 N)
propagates to a WIOB (P,), and (f) the logical value on
each vu3* (1 5 j * 5 n; j * S j) in PSBF’ propagates
to a WIOB (7 3 ’) .

(2-2) execute the same procedure as (1-2).
(3) Execute (3-1) and (3-2) for j = 1 , 2 , . . . , n (see

Fig. 11).
(3-1) Program so that (a), (b), (d) and (e) in the proce-

dures (2-1) are attained.
(3-2) Apply all Os and all 1s to 01 - QN as two test pat-

terns, and observe the logical values on p1 - ,L?N as
the outputs.

Figure 10. Program and test patterns for test-
ing of SAFs and EDFs in P S B F ” s (1 5 s < N)

Figure 11. Program and test patterns for test-
ing of MDFs in PSB:’s (1 5 s < N ; 1 < t < N+1)

The procedure (1)produces some incorrect output if there
exists at least one fault of SAFs and EDFs in any one of
PSB:’s (1 5 s 5 N ; 1 5 t 5 N) , and similarly, the pro-

cedure (2) produces some incorrect output if there exists at
least one such fault in any one of PSBY”s (1 5 s 5 N) .
Under the assumption that no PSB has any fault except
MDFs, the procedure (3) produces some incorrect output
if there exists at least one MDF in any one of all PSBs of
the FPGA. The proof of the validness of TP-4 is omitted
due to space limitation. The number of programs in TP-4 is
2 N + n + 2 .

7 Conclusion

In this paper, we considered testing for PSBs of FPGAs,
such that it ensures that all the programmed PSBs are fault-
free. And we heuristically derived test procedures for PSBs
in which the number of programs required to test all PSBs
of the FPGA is 2Nn+18N+5n+6. When they are applied
to FPGAs, the time T required to test all PSBs is nearly
equal to the time required to load all the programs (the time
required to apply the test patterns is negligible small com-
pared with the loading time), For example, in the case of
XC2064[3J(N = 8, n = 4, t , = 100 ms, where t , is the time
required to load each program), T is about 23.4 seconds.

It is one of our works to consider testing for switch ma-
trices and YO blocks. It is also an important work to obtain
an efficient testing for the whole of FPGAs, by integrating
the test procedures for all components of FPGAs.

References

S. D. Brown, R. J. Francis, J. Rose and Z. G. Vranesic,
“Field-programmable gate arrays,” Kluwer Academic
Publishers, 1992.

S. M. Trimberger, “Field-programmable gate array
technology,” Kluwer Academic Publishers, 1994.

The Programmable Logic Data Book, Xilinx Inc.,
1994.

I. Pomeranz and S. M .Reddy, “Testability considera-
tions in tcchnology mapping,” Proc. ATS ’94, pp. 151-
156, Nov. 1994.

H. Tsuboi, H.Nakada and T. Miyazaki, “Testing
for circuits realized as FPGAs using register inser-
tion method,” Technical report of IEICE, FTS94-53,
pp. 5560, Oct. 1994.

T. Inoue, H. Fujiwara, H. Michinishi, T. Yokohira and
T. Okamoto, “Universal Test Complexity of Field-
Programmable Gate Arrays,” Proc. ATS ’95, pp. 259-
265, Nov. 1995.

74

