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Abstract People with higher IQ scores also tend to per-

form better on elementary cognitive-perceptual tasks, such

as deciding quickly whether an arrow points to the left or

the right Jensen (2006). The worst performance rule (WPR)

finesses this relation by stating that the association between

IQ and elementary-task performance is most pronounced

when this performance is summarized by people’s slowest

responses. Previous research has shown that the WPR can

be accounted for in the Ratcliff diffusion model by assum-

ing that the same ability parameter—drift rate—mediates

performance in both elementary tasks and higher-level cog-

nitive tasks. Here we aim to test four qualitative predictions

concerning the WPR and its diffusion model explanation in

terms of drift rate. In the first stage, the diffusion model

was fit to data from 916 participants completing a percep-

tual two-choice task; crucially, the fitting happened after

randomly shuffling the key variable, i.e., each participant’s

score on a working memory capacity test. In the second

stage, after all modeling decisions were made, the key vari-

able was unshuffled and the adequacy of the predictions was

evaluated by means of confirmatory Bayesian hypothesis

tests. By temporarily withholding the mapping of the key

predictor, we retain flexibility for proper modeling of the

� Gilles Dutilh

gilles.dutilh@gmail.com

1 Department of Psychology, University of Basel,

Missionsstrasse 60/62, 4055, Basel, Switzerland

2 University of California Irvine, Irvine, CA, USA

3 University of Amsterdam, Amsterdam, The Netherlands

data (e.g., outlier exclusion) while preventing biases from

unduly influencing the results. Our results provide evidence

against the WPR and suggest that it may be less robust and

less ubiquitous than is commonly believed.
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Over the past decades, the field of mental chronometry has

revealed several robust associations between high-level cog-

nitive ability (e.g., IQ, working memory) and response times

(RT) in elementary cognitive-perceptual tasks (Jensen,

2006; Van Ravenzwaaij et al., 2011). The main finding is

that people with relatively high IQ-scores tend to respond

relatively quickly in simple RT tasks that do not appear to

involve deep cognitive processing; one example of such a

task is the random dot kinematogram, which requires partic-

ipants to detect the direction of apparent motion in a cloud

of dot stimuli.

Another important finding is known as the worst perfor-

mance rule (WPR): the fact that the worst performance in

these simple tasks—that is, the slowest responses—is most

indicative of high-level cognitive ability (Baumeister and

Kellas, 1968; Larson & Alderton, 1990). In this study, we

aimed to assess the presence and intensity of the WPR in a

large data set. In addition, we test a prediction from the Rat-

cliff diffusion model (Ratcliff, 1978; Ratcliff et al., 2008),

namely that speed of information processing is the factor

that underlies the WPR.

In order to ensure that our statistical assessment is fair

(e.g., unaffected by hindsight bias or confirmation bias), we

first preregistered our entire analysis plan and submitted it

to Attention, Perception, & Psychophysics (e.g., Chambers,

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-017-1304-y&domain=pdf
mailto:gilles.dutilh@gmail.com
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2013; Wolfe, 2013). Only after approval by the journal did

we start to analyze the data. The preregistration plan can be

found online at https://osf.io/qc5dh/.

A novel element to our preregistration proposal is the

inclusion of a blinding procedure, where an analyst (in this

case, author JV) is sent the data with the key variable shuf-

fled (MacCoun & Perlmutter, 2015). This way, the analyst is

free to (1) resolve ambiguities and oversights in the prereg-

istration document; and (2) adjust the analysis to unexpected

peculiarities of the data. Crucially, this freedom of analysis

does not endanger the confirmatory nature of the statistical

inference: shuffling the key variable breaks the analysis-

outcome feedback loop that compromises the confirmatory

status of the inference. Only after the analyst had committed

to the analysis plan was the key variable unshuffled.

The worst performance rule

Since the seminal work by Baumeister and Kellas (1968),

the WPR has been shown to exert itself in various forms. In

its most general form, the WPR holds that the worst perfor-

mance on multi-trial elementary cognitive-perceptual tasks

is more predictive for g-loaded measures than is the best

performance on these tasks (Coyle, 2003). This prediction

is usually confirmed by demonstrating that higher RT bands

correlate more strongly than lower RT bands with both IQ

measures (e.g., Larson & Alderton, 1990; Jensen, 1982) and

working memory capacity (WMC; e.g., Unsworth, Redick,

Lakey, & Young, 2010). For example, Fig. 1 presents the

results from Larson and Alderton (1990), showing that the

negative correlation between RT and IQ gets stronger as RT

lengthens.
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Fig. 1 An example of the worst performance rule. The negative corre-

lation of RT with IQ gets stronger as RTs lengthen. Data from Larson

and Alderton (1990)

The WPR expresses itself in several related ways as well.

Coyle (2001), for example, found that the worst perfor-

mance on a word-recall task (i.e., the lowest number of

words from a list recalled by each participant) correlates

higher with IQ than the best performance on this task (i.e.,

the highest number of words from a list recalled by each par-

ticipant). Furthermore, Kranzler (1992) and Ratcliff et al.

(2010) showed that the WPR is strongest for multi-trial tasks

that are relatively complex.

Several explanations for the WPR have been proposed.

The most dominant explanation holds that performance on

cognitive tasks of any level in any domain (e.g., IQ, WMC,

speeded perceptual choice) is facilitated by the general neu-

ral processing speed of an individual’s brain (Jensen, 2006).

Inspired by this idea, Ratcliff et al. (2008) suggested that the

drift rate parameter of the diffusion model reflects precisely

this speed of processing.

The Ratcliff diffusion model

The diffusion model (Ratcliff, 1978) describes the observed

RT distributions of correct and error responses on two-

choice tasks as the finishing times of a diffusion process

with absorbing bounds. When presented with a stimulus,

a decision-maker is assumed to accumulate noisy evidence

from that stimulus (i.e., the meandering lines in Fig. 2) until
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Fig. 2 The Ratcliff diffusion model. Noisy evidence is accumulated

until one of two pre-set boundaries is reached. The lower half of the

figure shows two exemplary accumulation paths (meandering lines)

and two different drift rates (the average rate of information accumula-

tion, straight lines). The upper part shows the correct RT distributions

that result from a low and a high drift rate. Vertical lines indicate the

shift in .1st (solid lines) and .9th (dashed lines) percentiles caused by

a change in drift rate

https://osf.io/qc5dh/
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either of two pre-set evidence boundaries is reached and the

associated response is initiated. On average, the accumula-

tion of evidence approaches the correct boundary at a speed

that is quantified by the drift rate parameter. Due to noise in

the accumulated evidence, the diffusion process sometimes

reaches the incorrect boundary, leading to error responses.

This within-trial noise is also responsible for the right-

skewed distribution of RT. In the model’s most extended

form, the diffusion process is governed by seven parameters,

including drift rate. Thus, drift rate is a key parameter of

the diffusion model, as it corresponds to the signal-to-noise

ratio in the evidence accumulation process; hence, drift rate

quantifies the speed of information processing.

Ratcliff et al. (2008) pointed out an important property of

the diffusion model for the explanation of the WPR: increas-

ing drift rate acts to reduce RT. Crucially, this reduction

is most pronounced for higher percentiles of RT (cf. Van

Ravenzwaaij et al., 2011), as is illustrated in the upper part

of Fig. 2. The figure shows RT distributions that originate

from two different drift rates. The solid vertical lines indi-

cate the .1 quantiles of the distributions resulting from a

high drift rate (dark line) and a low drift rate (grey line). The

dashed vertical lines indicate the .9 quantiles of these dis-

tributions. Clearly, the change in drift rate leads to a larger

shift of the slow .9 quantile than of the fast .1 quantile.

Thus, differences in drift rate and differences in IQ have the

same qualitative effect on RT, in the sense that both are most

strongly expressed in the slowest RTs. This observation adds

credibility to the idea that the diffusion model’s drift rate

parameter quantifies the speed of processing that is thought

to underlie the WPR as well as other associations between

higher-level and lower-level cognitive tasks. In order to test

this idea, several empirical studies related drift rate to IQ

and WMC. Ratcliff et al. (2010) and (2011) showed that IQ

correlated positively with drift rate in recognition memory

tasks. Ratcliff et al. (2010) further showed that IQ corre-

lated positively with drift rate in a lexical decision task and

a numerosity judgment task. A study by Leite (2009), how-

ever, found no evidence of a correlation between IQ and

drift rate in either a brightness discrimination task or a let-

ter discrimination task. Schmiedek et al. (2007) showed that

WMC could be predicted from drift rate on a range of RT

tasks.1

Another important observation about the relation of drift

rate and RT was made by Van Ravenzwaaij et al. (2011). The

diffusion model holds that both stimulus difficulty and subject

ability are expressed in drift rate. In fact, drift rate can be

viewed as a pair of scales weighting two intrinsically related

1In fact, Schmiedek et al. (2007) constructed a measurement model

to distill for each participant a latent factor for drift rate, boundary

separation, and non-decision time.

constructs: difficulty and ability. The drift rate is the deflec-

tion of the pointer of this scale and is most pronounced in

the slowest RTs, that is, in the worst performance. From this

observation, Van Ravenzwaaij et al. (2011) suggested that

difficulty, just as ability (e.g., IQ), should be reflected most

strongly in the higher ranges of RT, a prediction that was

empirically confirmed by Van Ravenzwaaij et al. (2011).

From this same interconnection of IQ and difficulty, we

hypothesize that the WPR is more pronounced for difficult

than for easy items of an elementary RT task. Figure 3 illus-

trates this hypothesis with a concrete example. The figure

shows four hypothetical correct RT distributions generated

by four drift rates that differ across IQ group and stimulus

difficulty. The effect of IQ on slow (.9 quantile) responses

is larger than the effect on fast (.1 quantile) responses. This

difference is more pronounced for difficult stimuli (dotted

lines) than for easy stimuli (solid lines). This prediction is

closely in line with the observations of Kranzler (1992) and

Ratcliff et al. (2010), who showed that more complex tasks

show a more pronounced WPR.

Overview of hypotheses

The current study presents a rigorous, preregistered test of

four hypotheses related to the WPR and the account pro-

vided by the Ratcliff diffusion model. First, we test the

existence of the WPR. Second, we test the prediction that

the WPR is larger for difficult than for easy trials in a sim-

ple RT task. Third, we test the prediction that the diffusion

model drift rate parameter correlates with WMC. Fourth, we

test the prediction that the correlation between drift rate and

WMC is higher for difficult trials than for easy trials from

the perceptual RT task. We test these hypotheses by analyz-

ing an existing data set with 916 participants for which we

measured both perceptual choice RT and WMC. A detailed

account of the design, hypothesis, and proposed analyses is

provided below.

Data collection and method

The data at hand have been collected in a large-scale study

on the genetic underpinnings of risk preferences, funded by

the Swiss National Science Foundation. For this study, 916

participants (502 participants in Berlin, Germany; 414 in

Basel, Switzerland) were tested on a range of psychologi-

cal tasks. Among the participants, 65 % were students, and

62 % were female. The age range spans 18-36 years with

a mode at 24 years. For the current study, we analyze the

data of two relevant tasks: a WMC test and a perceptual

two-choice RT task.
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Fig. 3 Four hypothetical drift rates v for easy stimuli (solid lines) and difficult stimuli (dotted lines), for participants with a relatively high IQ

(light lines) and participants with a relatively low IQ (dark lines). The density lines show the predictions of the diffusion model, given these drift

rates. The vertically drawn quantile lines show that the IQ effect on the higher ranges of RT (i.e., the .9 quantile) relative to the lower range of RT

(i.e., the .1 quantile) is stronger for the difficult than for the easy stimuli

Working memory capacity battery

To measure working memory, we used the WMC battery

developed by Lewandowsky et al. (2010). This battery was

constructed as a tool to measure working memory capacity

with a heterogeneous set of tasks that involves both verbal

and spatial working memory. A pre-defined measurement

model described in Lewandowsky et al. (2010) allows the

calculation of a single WMC score for each participant.

Lewandowsky et al. (2010) show that this score has a strong

internal consistency and correlates highly with Raven’s test

of fluid intelligence (r = .67).

Speeded perceptual two-choice task

In the elementary RT task, participants were presented with

10 × 10 matrices of black and white dots (Fig. 4). Par-

ticipants were instructed to indicate whether the matrix

contained more black or more white dots by pressing either

of two mouse buttons. In this simple perceptual task, diffi-

culty can be manipulated by adjusting the number of black

and white dots. Participants saw 90 easy trials (proportion

of black and white dots: 60/40, 40/60) and 90 difficult tri-

als (proportions 55/45, 45/55). In addition, there were trials

with an equal proportion of black and white dots. These

stimuli are “undoable”, and are of no special interest in

this perceptual task but were included for comparison with

another task conducted in the large-scale study. In the cur-

rent analyses, we nonetheless include these trials in order

to facilitate the estimation of the diffusion model parame-

ters. Participants received no feedback, but were instructed

to respond as fast and accurately as possible. A “too slow”

message was displayed after responses slower than 3.5 s.

Our task originates from Dutilh and Rieskamp (2016) and

resembles tasks that have been modeled successfully with

the diffusion model, such as the brightness discrimination

task (Ratcliff & Rouder, 1998) and the numerosity task

(Ratcliff et al., 2010).

Registered analysis plan

In this study, our goal was to test four key hypotheses

in a manner that is described in detail below. For all

hypotheses, we use the Bayes factor to quantify the degree

Fig. 4 Example of a stimulus in the perceptual RT task. Participants

pressed the left or right mouse button to indicate quickly whether the

stimulus contained more black or more white dots
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of confirmation provided by the data (Jeffreys, 1961); we

will also provide the posterior distribution for the parame-

ters of interest.

The registered analysis plan was carried out on the com-

plete data set (subject to the outcome-blind decisions by

the analyst; see the next section on the two-stage analy-

sis process). In a second, exploratory analysis, we will test

the hypotheses separately for the relatively homogeneous

student group and the relatively heterogeneous non-student

group.

Note that, with 1000 participants, we collected data that

are sufficiently informative to pass Berkson’s “interocular

traumatic test” (Edwards et al., 1963) such that the confir-

matory hypothesis tests serve merely to corroborate what is

immediate apparent from a cursory visual inspection of the

data. Below, we provide a description of the hypotheses and

analyses that is consistent with the original preregistration

plan; as will become apparent later, the analyst executed

some outcome-independent changes to this original plan.

Planned analysis of hypothesis 1: Worst performance

rule

For each participant, we obtained a single WMC score from

the WMC battery. Furthermore, for each participant we

obtained the 1/6, 2/6, 3/6, 4/6, and 5/6 quantiles of cor-

rect RTs; it is possible to use more quantiles, but only at

the cost of reducing the precision with which the mean RT

within each bin is estimated. Hypothesis 1 states that the

correlation between WMC and mean RT within each quan-

tile is negative (i.e., higher WMC is associated with faster

responding). More specifically, Hypothesis 1 states that the

absolute magnitude of this correlation increases monotoni-

cally from the fastest to the slowest quantile (i.e., the WPR).

Hypothesis 1a refers to the WPR for easy stimuli, and

Hypothesis 1b refers to the WPR for difficult stimuli.

Both Hypothesis 1a and 1b are tested separately, in the

following manner. Denote by ρi the estimated Pearson cor-

relation coefficient for quantile i. Then, the simplest linear

version of the WPR predicts that ρi = β0 + β1Ii , where Ii

indicates the quantile, β0 is the intercept of the regression

equation, and β1 is the slope. We then use the Bayes factor

(Jeffreys, 1961; Kass & Raftery, 1995) to quantify the sup-

port that the data provide for two competing hypotheses: the

null hypothesis H0 : β1 = 0 versus the WPR alternative

hypothesis H1 : β1 < 0. Under H1, we assign each ρi an

independent uniform prior from −1 to 0, in order to respect

the fact that all correlations are predicted to be negative. Fur-

thermore, we assign a uniform prior to β0 that ranges from

−1 to 0, in order to respect the fact that even for the fastest

RTs, the correlation is not expected to be positive. Finally,

we assign a uniform prior to β1 that ranges from its steepest

possible value to 0. Specifically, since the quantiles are on

the scale from zero to one, and the highest possible value of

the intercept β0 equals 0, the assumption of linearity across

the scale implies that the steepest slope is −1. Hence, we

assign β1 a uniform prior from −1 to 0 (see the results

section for an inconsistency in this model specification).

With the model specification in place, the Bayes fac-

tor between H0 :β1=0 versus H1: β1 ∼ U [−1, 0] can be

obtained using an identity known as the Savage–Dickey

density ratio (e.g., Dickey & Lientz, 1970; Wagenmakers,

Lodewyckx, Kuriyal, & Grasman, 2010). Specifically, this

involves focusing on parameter β1 in H1 and comparing the

prior ordinate at β1 = 0 to the posterior ordinate at β1 = 0,

that is, by computing BF10 = p(β1 = 0 | H1)/p(β1 = 0 |

y,H1), where y denotes the observed data. Bayes factors

higher than 1 favor H1 and provide support for the WPR. All

parameters will be estimated simultaneously using a hierar-

chical Bayesian framework and Markov chain Monte Carlo

(MCMC, e.g., Lee & Wagenmakers, 2013).

Planned analysis of hypothesis 2: Stronger worst

performance rule for more difficult stimuli

The WPR tested under Hypothesis 1 is predicted to be more

pronounced for difficult stimuli than for easy stimuli. In the

previous WPR model, ρi = β0 + β1Ii; now denote β1 for the

difficult stimuli by β1d and denote β1 for the easy stimuli

by β1e. Hypothesis 2 holds that β1e > β1d . We multiply

both parameters by −1 so that we obtain variables on the

probability scale, and hence β∗
1d > β∗

1e. We use a dependent

prior structure (Howard, 1998), apply a probit transfor-

mation, and orthogonalize the parameter space (Kass &

Vaidyanathan, 1992). Specifically, denoting the probit trans-

formation by �−1, we write �−1(β∗
1d) = μ + δ/2 and

�−1(β∗
1e) = μ − δ/2. We assign the probitized grand mean

parameter μ an uninformative distribution, that is, μ ∼

N(0, 1), and then use the Bayes factor to contrast two mod-

els: the null hypothesis H0 : δ = 0 versus the alternative

hypothesis H2 : δ > 0. We complete the model specifica-

tion for H2 by assigning the difference parameter δ a default

folded normal prior defined only for positive values, that is,

δ ∼ N(0, 1)+. As before, parameter estimates are obtained

from MCMC sampling in a hierarchical Bayesian model and

Bayes factors will be computed using the Savage–Dickey

density ratio test on parameter δ under H2.

Planned analysis of hypothesis 3: Working memory

capacity correlates positively with drift rate

We fit the diffusion model to the data using hierarchical

Bayesian estimation (e.g., Wabersich & Vandekerckhove,

2014; Wiecki, Sofer, & Frank, 2013). This hierarchical

method allows us to exploit the vast number of partici-

pants and estimate parameters even for participants whose
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data contain little information (for example due to a small

number of errors, which are crucial for diffusion model

parameter estimation). Hypothesis 3 holds that WMC cor-

relates positively with drift rate. Hypothesis 3a refers to the

positive correlation between WMC and drift rate for the

easy stimuli, and Hypothesis 3b refers to the positive corre-

lation between WMC and drift rate for the difficult stimuli.

Both Hypothesis 3a and 3b will be tested separately, in the

following manner.

First WMC is included within the hierarchical struc-

ture. WMC will then be correlated with drift rate estimates

(Hypothesis 3a: for the easy stimuli; Hypothesis 3b: for

the difficult stimuli) in a hierarchical structure. The null

hypothesis holds that there is no correlation, H0 : ρ = 0,

whereas the alternative hypothesis holds that the correlation

is positive, H3 : ρ > 0. Specifically, we assign ρ a uni-

form prior from 0 to 1. Bayes factors can be obtained by a

Savage–Dickey density ratio test on parameter ρ under H3.

Planned analysis of hypothesis 4: Stronger correlation

between working memory and drift rate

for more difficult stimuli

Hypothesis 4 holds that WMC correlates more strongly

with drift rates for difficult stimuli than with drift rates

for easy stimuli. Denote by ρd the WMC-drift rate corre-

lation for the difficult stimuli, and by ρe the WMC-drift

rate correlation for the easy stimuli. Hypothesis 4 states that

ρd > ρe. Moreover, both ρd and ρe are assumed to be

positive, so that both are on the probability scale. Conse-

quently, the proposed analysis mimics that of Hypothesis

2: We use a dependent prior structure, apply a probit trans-

formation, and orthogonalize the parameter space. We write

�−1(ρd) = μ+δ/2 and �−1(ρe) = μ−δ/2. We assign the

probitized grand mean parameter μ an uninformative distri-

bution, that is, μ ∼ N(0, 1), and then use the Bayes factor

to contrast two models: the null hypothesis H0 : δ = 0 ver-

sus the alternative hypothesis H4 : δ > 0. We complete

the model specification for H4 by assigning the difference

parameter δ a default folded normal prior defined only for

positive values, that is, δ ∼ N(0, 1)+. As before, parameter

estimates are obtained from MCMC sampling in a hierar-

chical Bayesian model and Bayes factors will be computed

using the Savage–Dickey density ratio test on parameter δ

under H4.

Two-stage analysis

We pursue an unbiased yet flexible method to test the dif-

fusion model account of the WPR. Therefore, we adopted

a two-stage analysis with a special status for coauthor JV

who fits the diffusion model to data (e.g., Vandekerckhove

& Tuerlinckx, 2007, 2008; Vandekerckhove, Tuerlinckx,

& Lee, 2011; Wabersich & Vandekerckhove, 2014). In

the first stage, we provided JV with the perceptual RT

data and a randomly permuted version of the WMC vari-

able. With these data in hand, JV produced code to fit

the model while respecting the analysis choices outlined

above (i.e., Hypotheses 1–4). This first stage allowed JV to

model the data at will, for instance by excluding outliers,

introducing contaminant processes, adding transformations,

and generally make any other reasonable modeling choice.

Importantly, JV was also able to correct ambiguities and

oversights in the preregistration document that had ini-

tially escaped us. Since the crucial WMC score variable is

randomly permuted, the correlation between drift rate and

WMC estimated in this stage-one model is meaningless.

The first stage was terminated when JV indicated the model

code is ready. At this point, the code was fixed and made

available on the Open Science Framework (osf.io/wupbm).

In the second stage, the true sequence of WMC scores was

revealed, and the code created by JV was applied to the data

in a deterministic manner to address each of the hypotheses

outlined above.

This two-stage analysis is both flexible and fair. It is flex-

ible because the modeler retains the freedom to exclude data

and make adjustments to the model to account for eventual

peculiarities of the data, and it is fair because the mod-

eling choices are not outcome-driven, that is, guided by

expectations about the main hypotheses.

Results of preregistered analyses

After the methods and analysis plan above were prereg-

istered and accepted as such at Attention, Perception &

Psychophysics on October 1st , 2015, author JV prepared

the preregistered analyses based on the blinded data. For

hypotheses 1 and 2, JV had to deviate slightly from the

analysis plan. This deviation solved an inconsistency in the

original analysis description. Thanks to the fact that the ana-

lyst was blinded, the findings of this analysis remain purely

confirmatory.

On May 11, 2016, JV registered the analysis plan on

the Open Science Framework (osf.io/wupbm), at which

moment the unblinded data set was shared with JV. After

lifting the blind, a small typo was found in the analyses

codes for both Hypotheses 3b and 4. This typo involved

the coding of stimulus types (left, right, hard, easy). The

nature of this typo and its correction are unambiguous, and

we believe that the analyses can still be considered purely

confirmatory. The model code for all analyses is available at

https://osf.io/qc5dh/.

https://osf.io/wupbm
https://osf.io/wupbm
https://osf.io/qc5dh/
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Fig. 5 Scatterplots of key outcome variables for the easy items. Upper

row: relation between WMC and each of the five quantiles (.1, .3, .5,

.7, .9) of correct RT; Lower row: relation between accuracy and each

of the five quantiles of correct RT. The first panel in the lower row

shows the relation between overall accuracy and WMC. Each point

represents a participant. Each panel shows the Bayes factor in favor

of a linear model with non-zero slope (represented by the black line)

versus the intercept-only model. Bayes factors are calculated from the

BayesFactor Package for R (Morey et al., 2014)

Descriptive results

Before we turn to the results of our preregistered analy-

ses, we first present a descriptive view of the observed data

in Figs. 5 (easy items) and 6 (hard items) to facilitate the

understanding of our results. In these figures, individual

participants are presented by points, and the lines illustrate

linear regressions fitted to these points. In both figures, the
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Fig. 6 Scatterplots of key outcome variables for the hard items. Upper

row: relation between WMC and each of the five quantiles (.1, .3, .5,

.7, .9) of correct RT; Lower row: relation between accuracy and each of

the five quantiles of correct RT. The first panel in the lower row shows

the relation between overall accuracy and WMC. Each point represents

a participant. Each panel shows the Bayes factor in favor of a linear

model with non-zero slope (represented by the black line) versus the

intercept-only model. Bayes factors calculated from the BayesFactor

Package for R (Morey et al., 2014)



720 Atten Percept Psychophys (2017) 79:713–725

panels in the upper row show the relation between working

memory capacity versus each of the five quantiles of correct

RT. In the lower row, the first panel shows the relation

between working memory capacity and overall accuracy.

The remaining five panels in the lower row display the rela-

tion between overall accuracy and each of the five quantiles

of correct RT.

These figures support a number of observations. First, for

both easy and hard items, the left-most panel of the lower

row reveals a clear positive correlation between WMC and

accuracy; in other words, participants with high WMC are

relatively accurate on the perceptual task. Second, although

all our hypotheses predict a negative correlation between

WMC and RT, the panels in the upper row suggest that in

our sample of participants, such a relation is absent. For

the fastest RTs, there is even weak evidence for a posi-

tive relation. Finally, the five right-most panels in the lower

row highlight that accuracy correlates positively with RT. In

other words, participants who respond slowly also respond

more accurately. We keep these observations in mind when

we present the results of the confirmatory hypothesis tests

below.

Hypotheses 1a and 1b

Hypothesis 1 states that working memory capacity corre-

lates negatively with mean RT in the bins defined by the

1/6, 2/6, 3/6, 4/6, and 5/6 quantiles of correct RT, both for

easy and hard stimuli. The precise prediction that we tested

was that the negative correlation increases linearly over the

RT bins. When working on the blinded data, an inconsis-

tency was discovered in the preregistered analysis plan for

this hypothesis. This analysis plan specified both the slope

parameter β1 and the correlations ρi of WMC with each

quantile of RT as estimable parameters. Since ρi is defined

as a function of β1, only one of both can be estimated. This

inconsistency was corrected while working on the blinded

data and only the beta weight was defined as an estimable

parameter.

The results show strong evidence against Hypothesis 1a

that stipulates a negative β1 for the easy items (BF01 =

64.3) and strong evidence against Hypothesis 1b that stip-

ulates a negative β1 for the hard items (BF01 = 222). This

support for a zero β1 constitutes evidence against the WPR

in its classical form. This result is not too surprising given

the apparent absence of negative a negative relation obser-

vation that we observed in Figs. 5 and 6. Indeed, when we

present the exploratory results, it will become apparent that

the reason for the strong support against Hypotheses 1a and

1b is that, when estimated freely, the correlations between

RT and WMC are actually slightly positive rather than nega-

tive, such that people who respond more slowly tend to have

larger WMC. This positive rather than negative correlation

is also suggested by the posterior distributions of β1 for easy

and hard items in Fig. 7, which show most of their mass at

the 0-edge of the prior parameter range.

For illustration of the results of this analysis, Fig. 8 shows

the correlations between RT quantiles and WMC as defined

by the linear function that was estimated in the model. The

densities indicate the uncertainty of each correlation follow-

ing from the uncertainty in the estimate of the parameters of

the linear function.

Hypothesis 2

Hypothesis 2 states that the linear decrease tested under

hypothesis 1b (hard stimuli) was stronger than the decrease

tested under hypothesis 1a (easy stimuli). Although we

found evidence against the existence of each of these WPR

effects, we can still test whether one effect is stronger than

the other. The Bayes factor indicates inconclusive evidence

about this hypothesis (BF01 = 1.10). The posterior dis-

tribution of the difference parameter δ is displayed in the

rightmost panel of Fig. 7.
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Fig. 8 Correlation between RT quantiles and WMC, as defined from the linear function estimated in confirmatory analyses H1a and H1b. The

densities reflect the uncertainty about these correlations that follow from the uncertainty about the parameters of the linear function. Note that no

statistical evidence was found for a negative slope

Hypotheses 3a and 3b

Hypothesis 3 states that working memory capacity corre-

lates positively with the diffusion model drift rate on the

perceptual task, for both easy (hypothesis 3a) and hard (3b)

stimuli. Both hypotheses 3a and 3b are confirmed with

strong evidence (hypothesis 3a: BF10 = 58.7, hypothesis

3b: BF10 = 889). The estimated correlations with work-

ing memory capacity were 0.24 for easy and 0.28 for hard

stimuli. The posterior distributions of the correlations are

displayed in the leftmost panels of Fig. 9.

Hypothesis 4

Hypothesis 4 states that the correlation between working

memory and drift rates is higher for hard than for easy stim-

uli. The Bayes factor shows inconclusive evidence about

this hypothesis (BF01 = 1.25). The posterior distribution

of the difference parameter δ is displayed in the rightmost

panel of Fig. 9.

Discussion of preregistered hypotheses

In its standard form, the worst performance rule predicts

that the correlation between working memory capacity and

perceptual RT is negative, and that this negative correlation

becomes increasingly pronounced for the higher RT bands.

Our preregistered analysis revealed strong evidence against

the worst performance rule, for both easy and hard items

(i.e., Hypotheses 1a and 1b).

Interestingly, however, we did find strong evidence for a

positive correlation between the perceptual drift rates and

working memory capacity (i.e., Hypotheses 3a and 3b). This

finding supports the conceptual idea underlying the WPR:

higher-level processing and lower-level processing are facil-

itated by the same general processing speed. The evidence

for a difference in the strength of this effect between easy

and hard items was inconclusive.

Initially, these two main results may seem inconsistent;

after all, the hypothesis of a correlation between working

memory and drift rate was raised since this correlation could
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produce the worst performance rule in its classical form.

Therefore, it is remarkable that we found strong evidence

in favor of a correlation between perceptual drift rate and

working memory capacity, but comparably strong evidence

against the classical WPR hypothesis. The exploratory anal-

yses below aim to address this issue.

Results of exploratory analyses

Inspection of the descriptive data in Figs. 5 and 6 suggest

two explanations for our seemingly conflicting set of results,

that is, evidence against a negative correlation between

WMC and RT, and evidence in favor of a positive corre-

lation between WMC and perceptual drift rate. The first

explanation is that we have put inappropriate constraints on

the correlations of WMC with RT: these correlations were

constrained to be negative, although in the data they appear

slightly positive. This misspecification may be responsible

for our failure to find the classical WPR.

The second explanation is that the drift rate is a

more specific measure of general processing speed than

response times. The diffusion model explicitly describes

how response times can be influenced by factors other

than the speed of processing, such as the caution with

which decisions are made. Thus, large individual differ-

ences in response caution across participants might have

masked the worst performance rule in its classical form.

Both explanations will be discussed and tested below.

Explanation 1: Undue constraints on correlations

Our preregistered hypotheses specified all correlations

between RT and WMC to be negative: people with higher

WMC were expected to respond more quickly on the per-

ceptual task, an effect expected to increase over RT bands.

Therefore, in the statistical analyses for Hypotheses 1 and

2, these correlations were restricted to fall between –1 and

0. Figures 5 and 6 suggest that this prediction may be incor-

rect: if anything, the correlations appear to be positive. The

correlations may in fact appear to decrease monotonically

over quantiles. It is possible, therefore, that this pattern

is masked by the constraint that all estimated correlations

should be negative. The analysis below examines whether it

was this misspecification that kept us from detecting a true

worst performance rule in the data.

Results releasing constraints on correlations

for Hypotheses 1a, 1b, and 2

In a revision of analyses 1a, 1b, and 2, we release the con-

straint on correlations to be strictly negative; specifically,

we release the constraints on the intercept and slope of

the linear function relating quantile number to the corre-

lations. After releasing these constraints, the intercept (β0)

was indeed estimated to be positive for both easy and hard

items of the perceptual task. At the same time, the slope (β1)

was estimated to be slightly negative, as illustrated by the

posterior distributions of the β1 parameters depicted in the

leftmost panels of Fig. 10. For the easy perceptual items,

these β0 and β1 values defined a linear function with posi-

tive WMC–RT correlations for all but the highest quantile of

perceptual RT. For the hard perceptual items, all correlations

defined by this linear function are positive. These linear

functions are illustrated in Fig. 11. Again, the black dots

and grey line indicate the highest density estimate of this

linear function, whereas the densities depict the uncertainty

around the resulting individual correlations.

Although these estimates suggest that releasing the con-

straint on the correlation function improved the analyses, we

again found evidence opposing the worst performance rule

hypothesis for both easy stimuli (Hypothesis 1a*, BF01 =
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Fig. 10 Exploratory analysis: Posterior distributions for parameters β1 for easy and hard items and for difference parameter δ, as estimated when

releasing the constraints on the correlations for Hypotheses 1a and 1b, and 2. Whiskers indicate 95 % highest density intervals
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Fig. 11 Exploratory analysis: Correlation between RT quantiles and WMC, as defined from the linear function estimated in confirmatory analyses

H1a and H1b. The densities reflect the uncertainty about these correlations that follow from the uncertainty about the parameters of the linear

function. Note that no statistical evidence was found for a negative slope

6.29) and hard stimuli (Hypothesis 1b*, BF01 = 19.9).

Thus, releasing the constraint on the correlations did not

result in a different conclusion and the evidence still favors

the absence of the worst performance rule in its classical

form, albeit less strongly than for the restricted analysis.

Explanation 2: Confound of response caution

A possible theoretical explanation for the fact that we find

evidence against the WPR in its classical form is that true

WPR effects are confounded by individual differences in

response caution. To understand this explanation, consider

the scenario in which participants who are more cautious

than others on the perceptual task, also more carefully per-

form the WMC test. Careful participants will score higher

on the WMC test and respond more slowly (and maybe

more accurately) on the perceptual task. The result could

be a positive correlation between WMC and perceptual

RT. More precisely, the diffusion model predicts that an

increased boundary separation on both tasks will result in

a positive correlation between WMC and RT that increases

over RT bands (Ratcliff et al., 2008), an effect that opposes

the WPR predictions.

This observation offers an alternative interpretation for

the results in Figs. 5 and 6: On the one hand, there exists

a true correlation between WMC and drift rate; a corre-

lation that is assumed under the WPR and found in our

confirmatory analyses, which would, unopposed, cause a

negative correlation between RT and WMC in the form of

the worst performance rule. Acting against this influence,

however, are individual differences in boundary separation

and carefulness that cause a positive correlation between RT

and WMC. Below, we study this alternative interpretation in

more detail.

Results correcting for potential confound

To test whether individual differences in response caution

have confounded the worst performance rule on the raw RT

data, we explore how analyses 1a, 1b, and 2 turn out when

we perform them on ten subgroups with similar response

caution. These ten homogeneous–caution groups were cre-

ated by dividing participants based on the .1, .2, .3, .4,

.5, .6, .7, .8, .9 quantiles of the boundary separation esti-

mates obtained in analysis 4. The results of this analysis

did, however, not yield consistent results either. Only in one

boundary separation bin (the .3 through .4 quantile), and

then again only for easy stimuli, there appeared to be a

decrease of the correlation over quantiles. Thus, accounting

for the potential confound of response caution does not alter

our conclusions about the existence of the WPR on the raw

RT data.

Student vs. non-student participants

In the preregistration document, we foreshadowed

exploratory analyses to study whether the worst perfor-

mance rule would show more reliable for the relatively

homogeneous student-sample, than for the rest of the par-

ticipants. For this exploratory analyses, we repeated the

worst-performance hypothesis tests H1a, H1b, and H2

separately for students (n = 690) and non-students (n =

211, for 15 participants, there was no information available

as to whether they were students or not). As was the case

in the full data set, the analyses for neither the students

sub-sample, nor the non-students sub-sample, yielded note-

worthy evidence in favor of the WPR hypothesis. These

results are available in the online appendix on OSF (https://

osf.io/7dwfy/).

https://osf.io/7dwfy/
https://osf.io/7dwfy/
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General discussion

Summary of results

We tested four main hypotheses to study the worst per-

formance rule. The first two hypotheses concerned the

relationship between working-memory capacity and percep-

tual choice response times. Hypothesis 1, which formalized

the classical WPR hypothesis predicting a negative corre-

lation between working-memory capacity and all quantiles

of perceptual RT that strengthens over the quantiles of

RT, was rejected for both easy and hard perceptual stimuli

(hypotheses 1a and 1b). Even after releasing the order-

constraints on the correlations in our exploratory analyses,

the evidence spoke against the worst performance rule in its

classical form. We also explored the possibility that indi-

vidual differences in response caution had confounded a

true latent WPR. A separate analysis of groups of partic-

ipants with homogeneous response caution did not lead

to different conclusions. Given these results, it is not sur-

prising that the related Hypothesis 2, that the WPR would

hold more strongly for hard than for easy items, was not

supported.

The second set of hypotheses concerned the explana-

tion of the worst performance rule in terms of the diffusion

model’s drift rate. Hypothesis 3 formalized this explana-

tion by predicting a positive correlation between working

memory capacity and the diffusion model drift rate in the

perceptual task. This hypothesis was strongly confirmed for

both easy and hard perceptual stimuli. However, no evi-

dence was found for Hypothesis 4 that stated that working

memory capacity correlates stronger with drift rates for hard

than for easy perceptual stimuli.

Interpretation of results

Our results suggest that the worst performance rule is more

fragile than the literature suggests. Whereas many studies

have reported support for the worst performance rule, our

preregistered analyses revealed evidence for the absence of

the effect. It is also of note that the size of the correlations

between WMC and drift rate are moderate in comparison to

those found in similar studies (e.g., Schmiedek et al., 2007;

Ratcliff et al., 2010, 2011; Schmitz & Wilhelm, 2016). Our

preregistered results were obtained in a large data set and,

to a skeptical by-stander, it may appear that the ubiquity

and robustness of the worst performance rule results in part

from selective reporting and publication bias. This worrying

possibility can only be excluded by additional large-scale

preregistered studies.

Preregistration and blinding

This study reported the first purely confirmatory and unbi-

ased test of the well-studied worst performance rule. To

achieve this goal, we preregistered an analysis plan that was

conditionally accepted for publication in Attention, Percep-

tion, & Psychophysics (Wolfe, 2013). We anticipated that

the required modeling effort would be relatively complex,

and therefore we incorporated a blinding protocol in which

the analyst (author JV) developed the analysis code based

on a version of the data set in which the crucial WMC vari-

able was shuffled. This shuffling prevented JV to alter the

analysis plan in order to achieve desirable outcomes. Our

personal experience with the blinding protocol was highly

positive, as it secured fairness without sacrificing flexibility.

Conclusions

Our results show strong evidence for the claim that the

same underlying processing speed, as quantified by the dif-

fusion model drift rate, underlies perceptual choice and

working memory capacity. Thereby our results support the

theoretical explanation of the worst performance rule. The

worst performance rule itself, however, was absent in our

data. These results raise the question of how ubiquitous the

worst performance rule really is, a question that can only

be addressed by additional studies using preregistration and

blinding.
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