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A Test Statistic in the Complex Wishart Distribution
and Its Application to Change Detection in

Polarimetric SAR Data
Knut Conradsen, Allan Aasbjerg Nielsen, Jesper Schou, and Henning Skriver

Abstract—When working with multilook fully polarimetric syn-
thetic aperture radar (SAR) data, an appropriate way of repre-
senting the backscattered signal consists of the so-called covariance
matrix. For each pixel, this is a 3 3 Hermitian positive definite
matrix that follows a complex Wishart distribution. Based on this
distribution, a test statistic for equality of two such matrices and an
associated asymptotic probability for obtaining a smaller value of
the test statistic are derived and applied successfully to change de-
tection in polarimetric SAR data. In a case study, EMISAR L-band
data from April 17, 1998 and May 20, 1998 covering agricultural
fields near Foulum, Denmark are used. Multilook full covariance
matrix data, azimuthal symmetric data, covariance matrix diag-
onal-only data, and horizontal–horizontal (HH), vertical–vertical
(VV), or horizontal–vertical (HV) data alone can be used. If applied
to HH, VV, or HV data alone, the derived test statistic reduces to
the well-known gamma likelihood-ratio test statistic. The derived
test statistic and the associated significance value can be applied as
a line or edge detector in fully polarimetric SAR data also.

Index Terms—Covariance matrix test statistic, EMISAR, radar
applications, radar polarimetry, remote sensing change detection.

I. INTRODUCTION

D
UE TO ITS all-weather mapping capability indepen-

dently of, for instance, cloud cover, synthetic aperture

radar (SAR) data hold a strong potential, for example, for

change detection studies in remote sensing applications. In

this paper, multitemporal SAR images of agricultural fields

are used to demonstrate a new change detection method for

polarimetric SAR data. It is well known that the development

of different crops over time causes changes in the backscatter.

The radar backscattering is sensitive to the dielectric properties

of the vegetation and the soil, to the plant structure (i.e., the

size, shape, and orientation distributions of the scatterers), to

the surface roughness, and to the canopy structure (e.g., row

direction and spacing and cover fraction) [1], [2].

The polarimetric SAR measures the amplitude and phase

of backscattered signals in four combinations of the linear

receive and transmit polarizations: horizontal–horizontal (HH),
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horizontal–vertical (HV), vertical–horizontal (VH), and ver-

tical–vertical (VV). These signals form the complex scattering

matrix that relates the incident and the scattered electric fields

[3]. The inherent speckle in the SAR data can be reduced by

spatial averaging at the expense of loss of spatial resolution. In

this so-called multilook case, a more appropriate representation

of the backscattered signal is the covariance matrix in which

the average properties of a group of resolution cells can be

expressed in a single matrix. The average covariance matrix is

defined as [3]

(1)

where denotes ensemble averaging; denotes complex con-

jugation; and is the complex scattering amplitude for receive

polarization and transmit polarization ( and are either

for horizontal or for vertical). Reciprocity, which normally

applies to natural targets, gives (in the backscat-

tering direction using the backscattering alignment convention

[3]) and results in the covariance matrix (1) with rank 3.

follows a complex Wishart distribution [4]. The components in

the covariance matrix containing both co- and cross-polarized

scattering matrix elements often contain little information. For

randomly distributed targets with azimuthal symmetry, the ele-

ments are zero [5].

In this paper, a test statistic for equality of two complex co-

variance matrices and an associated asymptotic probability mea-

sure for obtaining a smaller value of the test statistic are de-

rived and applied to change detection in fully polarimetric SAR

data. In [6], a change detection scheme based on canonical cor-

relations analysis is applied to scalar EMISAR data (see also

[7]–[10]).

If used with HH, VV, or HV data only, the test statistic re-

duces to the well-known test statistic for equality of the scale

parameters in two gamma distributions.

The derived test statistic and the associated significance mea-

sure can be applied as a line or edge detector in fully polari-

metric SAR data also [11].

Section II sketches important aspects of the complex

Gaussian and Wishart distributions, the likelihood-ratio test

statistic in the complex Wishart distribution, and the associated

significance measure. Section III gives a case study in which

data from the Danish airborne EMISAR [12], [13] are used.

Section IV discusses the results from the case study, and

Section V concludes.
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II. THEORY

This section describes the complex normal and Wishart distri-

butions and the likelihood-ratio test for equality of two complex

Wishart matrices. For a more thorough description, see the Ap-

pendix.

A. Complex Normal Distribution

We say that a -dimensional random complex vector fol-

lows a complex multivariate normal distribution with mean

and dispersion matrix , i.e.,

(2)

if the frequency function is

(3)

where denotes the determinant; denotes the trace of a

matrix; and denotes complex conjugation ( ) and transpose

( ).

B. Complex Wishart Distribution

We say that a Hermitian positive definite random matrix

follows a complex Wishart distribution, i.e.,

(4)

if the frequency function is

(5)

where

(6)

The frequency function is defined for positive definite.

If and are independent and both follow complex Wishart

distributions

and (7)

then their sum also follows a complex Wishart distribution

(8)

C. Test for Equality of Two Complex Wishart Matrices

Let the independent Hermitian positive definite

matrices and be complex Wishart distributed, i.e.,

with and

with . We consider the null hypothesis

, which states that the two matrices are

equal against the alternative hypothesis .

In general, suppose that the observations on which we shall

base our test have joint density where is the set of

parameters of the probability function that has generated the

data. Then states that where is a subset of the

set of all possible . states that where and

are disjoint, and often . The likelihood ratio

(9)

where is the likelihood function rejects for small values.

If is true (in statistical parlance “under ”), then in our

case with

. The likelihood-ratio test statistic becomes

(10)

Here

(11)

and

(12)

where is the identity matrix ( ). Similar expressions are

valid for and . For the numerator of we get

(13)

and

(14)

This leads to the desired likelihood-ratio test statistic

(15)

If , which is typically the case for change detection, we

get

(16)

If

(17)

and

(18)

then the probability of finding a smaller value of 2 is

(19)
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For covariance matrix data, . For HH, HV, or VV data,

. In the latter case, and are therefore scalars and

, and reduces to

(20)

which is equivalent to the well-known likelihood-ratio test

statistic for the equality of two gamma parameters [14], [15]

(see the Appendix).

Fig. 1 shows and as functions of the number of looks for

and .

D. Azimuthal Symmetry

By swapping first rows and then columns two and three in

in (1), we obtain in the azimuthal symmetry case

(21)

where is (here 2 2), and is

(here 1 1). This matrix is not Wishart distributed. We now

consider , ,

, and , and we assume

that , , , and are mutually independent.

We want to test the hypothesis

and against all alternatives. We have the

likelihood function

(22)

The likelihood-ratio test statistic becomes

(23)

where the latter equality is due to the fact that the determinant

of a block diagonal matrix is the product of the determinants of

the diagonal elements, i.e., we get the same test statistic as in

the full covariance matrix case. In this case . If

(24)

(25)

and

(26)

then the probability of finding a smaller value of 2 is

(27)

Fig. 1. � and ! as functions of the number of looks for n = m and p = 3.

III. DATA

To illustrate the change detection capability of the derived

test statistic, EMISAR and ground data from an agricultural test

site at the Research Center Foulum located in Central Jutland,

Denmark are used. Agricultural fields have been selected for the

analysis because of the large change in the polarimetric proper-

ties for such areas, due to the development of the crops with

time. Polarimetric parameters of agricultural crops have previ-

ously been analyzed from this area [2].

A. SAR Data and Calibration

The EMISAR system is a fully polarimetric airborne

SAR system, and it operates at two frequencies: C-band

(5.3-GHz/5.7-cm wavelength) and L-band (1.25-GHz/24-cm

wavelength) [11], [12]. The SAR system is normally oper-

ated from an altitude of approximately 12 500 m; the spatial

resolution is 2 m 2 m (one-look); the ground range swath

is approximately 12 km; and typical incidence angles range

from 35 to 60 . The processed data from this system are

fully calibrated by means of an advanced internal calibration

system. The radiometric calibration is better than 0.5 dB, and

the channel imbalance is less than 0.5 dB in amplitude and

5 in phase [12]. The cross-polarization contamination is

generally suppressed by more than 30 dB. The stability of the

system is very important in the change detection scheme set up

in this paper.

A large number of acquisitions with both the C- and L-band

polarimetric SAR from 1994 to 1999 exist for the agricultural

test site. To illustrate the change detection capability of the de-

rived test statistic, L-band data from April 17, 1998 and May



CONRADSEN et al.: TEST STATISTIC IN COMPLEX WISHART DISTRIBUTION 7

Fig. 2. L-band EMISAR image of the test area acquired on April 17, 1998, 5210 m � 5120 m.

20, 1998 have been used. The two EMISAR images are shown

in Figs. 2 and 3, as color composites of the HH (green), HV (ac-

tually the complex addition of HV and VH, red), and VV (blue)

channels. The HH and VV channels are stretched linearly be-

tween 30 dB and 0 dB. The HV channel is stretched linearly

between 36 dB and 6 dB. The area is relatively flat, and cor-

rections of the local incidence angle due to terrain slope are not

critical in this study, since the acquisition geometry for the two

acquisitions are almost identical, and therefore the correction

has not been carried out. The geometrical coregistration is, how-

ever, very important in a change detection application, where

two images are compared on a pixel-by-pixel basis. The polari-

metric images were registered to a digital elevation model gen-

erated from interferometric airborne data acquired by EMISAR.

The registration was carried out by combining a model of the

imaging geometry with few ground control points, and the im-

ages were registered to one another with a root mean-square ac-

curacy of better than one pixel [13]. In the study, 13-look co-

variance matrix data with a 5 m 5 m pixel spacing are used.

B. Test Site

The area contains a number of agricultural fields of different

sizes with different crops. The lengthy, dark blue feature in the

upper left corner of Figs. 2 and 3 is a lake, while the bright
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Fig. 3. L-band EMISAR image of the test area acquired on May 20, 1998, 5210 m � 5120 m.

greenish areas seen especially in the lower part of the images are

forests (primarily coniferous forests). In the April acquisition,

the colors of the agricultural fields are predominantly bluish,

due to the larger VV- than HH-backscatter coefficient for the

bare fields for the spring crops and the sparsely vegetated fields

for the winter crops. For the May acquisition, the spring crops

are mainly in the tillering stage, and the winter crops are at the

end of the stem elongation stage, in the boot stage, or at the

beginning of heading, depending on the crop type.

A number of test areas have been selected for quantitative

analysis of the test statistic. These areas are outlined in Figs. 2

and 3, and the development stage and the height of the vegeta-

tion are shown in Table I for reference. Five spring crop fields

have been used, i.e., one beet field, one pea field, two spring

barley fields, and one oats field. All spring crop fields are bare

at the April acquisition with the surface being relatively smooth

due to sowing or harrowing. At the May acquisition, the beet

field is still bare, whereas the other fields have some relatively

dense and low vegetation. The three winter crop fields, i.e., two

winter wheat fields and one rye field, have low vegetation for

the April vegetation and relatively dense and high vegetation

for the May acquisition. Finally, a common spruce field, which

is virtually unchanged between the two acquisitions, is used in

the investigation.
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TABLE I
DEVELOPMENT STAGES AND VEGETATION HEIGHTS (IN PARENTHESES)

Fig. 4. (a)  , (b)  , and (c)  backscatter coefficients for the test areas
shown in Figs. 2 and 3 for L-band in April and in May.

IV. RESULTS AND DISCUSSION

In Section IV-A, polarimetric parameters for the fields used

in the quantitative evaluation will be presented and discussed to

provide the background for interpretation of the test statistic re-

sults. The results for the test statistic are presented and discussed

in Section IV-B.

(a)

(b)

Fig. 5. (a) Correlation coefficient � and (b) phase difference �
between HH and VV for the test areas shown in Figs. 2 and 3 for L-band in
April and in May.

A. Polarimetric Parameters

The polarimetric parameters used to describe the selected

fields are standard parameters derived from the covariance

matrix (1) [2]; the backscatter coefficients , , and

where the backscatter coefficient is slightly less dependent

on the incidence angle than the backscatter coefficient

[2]; the correlation coefficient and the phase differ-

ence of the HH and VV components, which contain

important information about the scattering mechanisms; and

the co- and cross-polarized polarization signatures, which are

graphical representations of the polarimetric properties [2],

[3]. Fig. 4 shows the , , and backscatter coefficients

for the various test fields and for both the April and the May

acquisitions. Correspondingly, and are shown in

Fig. 5, and the polarization responses are shown in Fig. 6.

1) Spring Crops: All spring crops (beets, peas, spring barley

1 and 2, oats) show classical behavior for rough surface scat-

tering for the April acquisition, i.e., high [Fig. 5(a)], small

[Fig. 5(b)], low backscatter [Fig. 4(c)], larger

than backscatter [Fig. 4(a) and (b)], and textbook examples

of surface scattering polarization responses (which are there-

fore not shown here). The actual backscatter level from the sur-

face is, of course, controlled by the soil moisture and the surface

roughness of the individual fields, and we observe rather weak

backscatter from the spring barley 1 and the oats fields (Fig. 4)

for the April acquisition due to very smooth surfaces.

The beets field also shows rough surface behavior for the May

acquisition [Fig. 6(a)]. The pea field shows some volume scat-

tering behavior for the May acquisition, due to the sparse vegeta-

tion, i.e., the [Fig. 5(a)] has decreased, and the pedestal of

the polarization response has increased [Fig. 6(b)]. This effect is
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Fig. 6. Polarization signatures for the test areas shown in Figs. 3 for the L-band acquisition in May. Orientation angle of 0 corresponds to HH backscatter and
the left-hand signature is the copolarized signature, whereas the right-hand signature is the cross-polarized signature.

even more pronounced for the spring barley and the oats fields,

due to a more dense vegetation [Figs. 5(a) and 6(c) and (d)]. For

the latter fields, a large is observed too [Fig. 5(b)], and a

pronounced double-bounce response is observed, especially for

oats [Fig. 6(c) and (d)]. The double-bounce scattering is most

likely caused by penetration through the vegetation, scattering

from the ground surface, and scattering from the vegetation,

or vice versa. This phenomenon has previously been observed

early in the growing season for winter crops [2].

2) Winter Crops: The backscatter coefficients from the

winter crops are, in general, larger than from the spring crops

(Fig. 4), due to the contribution from the volume scattering.

The behavior of the winter wheat and the rye fields resembles

surface scattering for the April acquisition (Fig. 5), indicating

penetration through the vegetation and a large surface scat-

tering component. The cross-polarized backscatter is, however,

somewhat larger than for surface scattering, due to the volume

scattering contribution [Fig. 4(c)]. The backscattering from the

winter wheat 1 field is significantly larger than from the winter

wheat 2 field for both acquisitions (Fig. 4). The reason is that

the sowing direction for the winter wheat 1 field is exactly

perpendicular to the radar look direction. For the May acqui-

sition, the winter wheat fields also show some double-bounce

scattering behavior [Figs. 5(b) and 6(e) and (f)]. The rye field

shows virtually no change in the polarimetric parameters

between the two acquisitions, except for some increase in the

backscatter (Fig. 4). The coniferous forest area shows pro-

nounced volume scattering behavior for both acquisitions, i.e.,
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Fig. 7. Logarithm of the test statistic lnQ (16) for the images shown in Figs. 2 and 3 in the assumed azimuthally symmetric case.

small [Fig. 5(a)], small [Fig. 5(b)], strong

backscatter [Fig. 4(c)], and large pedestal for the polarization

responses [Fig. 6(h)].

B. Test Statistic

Figs. 7 and 8 show “ ” (16) for the azimuthally sym-

metric case and the diagonal-element-only case, respectively,

for the two images shown in Figs. 2 and 3. The test statistic is in-

verted to show areas with large change as bright areas and areas

with small change as dark areas. Consequently, when “large

values of the test statistic” is mentioned below, it means large

values of “ ” and vice versa for small values. We observe

that especially the forest areas appear very dark, indicating vir-

tually no change between the two acquisitions. For the agricul-

tural fields, the results range from dark (no change) to bright

(large change) areas depending on the crop type. Fig. 9(a) shows

the average “ ” for the test areas outlined in the previous

sections in the following four different cases:

1) using only the VV channel;

2) using only the three diagonal elements of the covariance

matrix;

3) using the covariance matrix but assuming azimuthal

symmetry;

4) using the full covariance matrix.

Furthermore, Fig. 9(b) shows the average probability of finding a

larger value of “ 2 ” (derived from (19) and Theorem 6 in

the Appendix) for the four cases mentioned above. Fig. 9(b) also

indicates the 5% and the 1% significance levels, and the regions

withprobabilities lower than these levelsare the regionswherewe

will typically reject the hypothesis of equal covariance matrices

(or VV channels) at the two points in time, i.e., these are regions

with major change between the two data acquisitions.
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Fig. 8. Logarithm of the test statistic lnQ (16) for the test areas shown in Figs. 2 and 3 in the diagonal case.

Figs. 10 and 11 show in white for the images in Figs. 2 and

3, where the hypothesis of equal covariance matrix has been re-

jected at a 1% significance level for the azimuthally symmetric

case and the diagonal case, respectively. Clearly, we observe de-

tection of changes in the azimuthally symmetric case that have

not been detected in the diagonal case, as well as improved de-

tection in the azimuthally symmetric case of changes that al-

ready to some extent have been detected in the diagonal case.

In general, the test statistic for the full covariance matrix is

only slightly larger than that for the assumed azimuthally sym-

metric case [Fig. 9(a)]. We may conclude that the additional in-

formation added by the co- and cross-elements of the covari-

ance matrix is small. Also, the change detection potential of the

single VV channel is seen to be much less than for the other

three cases. Therefore, the discussion below will concentrate on

comparing the results for two cases: the diagonal case, where

only the three diagonal backscatter coefficient elements of the

covariance matrix are used, and the polarimetric case, where

azimuthal symmetry is assumed (i.e., all the co- and cross-po-

larization elements are zero).

1) Similar Polarimetric Parameters: The two regions with

virtually no change between the acquisitions but with different

dominating scattering mechanisms, i.e., beets (surface scat-

tering) and coniferous forest (volume scattering), show both

large values of the test statistic and no significant difference

between the diagonal and the polarimetric case. It is not

possible to reject the hypothesis of equal covariance matrices

at a 5% significance level for any of the regions [Fig. 9(b)].

The rye field also has very similar polarimetric parameters for

the two acquisitions, except for , as mentioned above, and

the test statistic for the diagonal and the polarimetric cases

are relatively close [Figs. 7–9(a)]. The hypothesis of equal

covariance matrices is rejected at a 5% significance level for

both cases. Consequently, in these cases with relatively similar
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(a)

(b)

Fig. 9. (a) Average “� lnQ” for the test areas shown in Figs. 2 and 3 in four
different cases: 1) using only the VV channel, 2) using only the three diagonal
elements of the covariance matrix, 3) using the covariance matrix but assuming
azimuthal symmetry, and 4) using the full covariance matrix. (b) Average
probability of finding a larger value of “�2� lnQ” (derived from (19) and
Theorem 6 in the Appendix) for the same four cases.

polarimetric parameters, the new test statistic for polarimetric

data performs equally well as the nonpolarimetric test statistic.

2) Similar Backscatter Coefficients, Large Difference

for and/or : Three fields have very similar

backscatter coefficients for the two acquisitions, whereas a

large difference between and/or exists between

the two acquisitions, i.e., the pea field (where decreases

between the two acquisitions, due to the sparse vegetation cover

at the May acquisition), the winter wheat 2 field (where

changes significantly between the two acquisitions), and the

winter wheat 1 field (where both and change

significantly). A significantly larger test statistic is observed in

the polarimetric case than in the diagonal case [Figs. 7–9(a)] for

all three fields. Also, it is not possible to reject the hypothesis

of equal covariance matrices at a 5% significance level for any

of the three fields in the diagonal case [Fig. 9(b)]. On the other

hand, the hypothesis is rejected in the polarimetric case at a

1% significance level for all three fields [Fig. 9(b)]. Thus, the

results clearly show that the new polarimetric test statistic is

very sensitive to differences in the full polarimetric information

contained in the covariance matrix.

3) Large Difference for All Polarimetric Parame-

ters: Finally, three regions show significant changes in

all polarimetric parameters, i.e., the backscatter coefficients,

the , and the , i.e., the two spring barley fields

and the oats field, which have a smooth bare surface at the

April acquisition and a relatively dense vegetation cover at the

May acquisition. For the spring barley 2 and the oats fields,

we see a medium test statistic in the diagonal case, whereas a

much larger test statistic is observed for the polarimetric case

[Figs. 7–9(a)]. The spring barley 1 field has a very large change

in the backscatter coefficients, due to the relatively smooth

surface at the April acquisition (Fig. 4), and we observe a very

large test statistic for both the diagonal and the polarimetric

cases [Figs. 7–9(a)]. The two spring barley fields have almost

the same and (Fig. 5), whereas the change in the

backscatter coefficients is largest for the spring barley 1 field,

as mentioned above. This difference is clearly important for

both test statistics, where the test statistic for both the diagonal

and the polarimetric case is much larger for the spring barley

1 field than for the spring barley 2 field. The hypothesis of

equal covariance matrices is rejected for all three fields at the

5% significance level in both the diagonal and the polarimetric

case. This is also the case at the 1% significance level, except

for the spring barley 2 field in the diagonal case. Consequently,

even when large changes in the backscatter coefficients ensure

detection with a nonpolarimetric method, the addition of

polarimetric information improves the detection of changes

with the new polarimetric test statistic.

V. CONCLUSIONS

In this paper, a test statistic for equality of two complex

Wishart distributed covariance matrices and an associated

asymptotic probability measure for obtaining a smaller value

of the test statistic have been derived. The test statistic provides

a unique opportunity to develop optimal algorithms for change

detection, edge detection, line detection, segmentation, etc.,

for polarimetric SAR images. Such algorithms have previously

been based on results of applying algorithms to the single

channels and subsequently combining these results using some

kind of fusion operator.

As a demonstration of the potential of the new test statistic,

the derived measures have been applied to change detection in

fully polarimetric SAR data for a test area with primarily agri-

cultural fields and forest stands where two images acquired with

approximately one-month interval have been used. In the case

with areas with only small change in the polarimetric param-

eters between the two acquisitions, the new test statistic for

polarimetric data performs equally well as the nonpolarimetric

test statistic. When the backscatter coefficients are virtually un-

changed, but either the phase and/or the correlation coefficient

between the HH and VV polarizations have changed, the results

clearly show that the new polarimetric test statistic is much more

sensitive to the differences than test statistics based only on the

backscatter coefficients. Also, in the case where all parameters

in the covariance matrix have changed between the two polar-

izations, the new test statistic shows improved change detec-

tion capability. Consequently, the results show clearly that the

new test statistic offers improved change detection capability for

fully polarimetric SAR data.

APPENDIX

ANALYSIS OF COMPLEX WISHART MATRICES

In change detection and edge detection in polarimetric SAR

data, it is useful to be able to compare two complex Wishart

distributed matrices.
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Fig. 10. Rejection of hypothesis of equal covariance matrices at 1% level for the assumed azimuthally symmetric case (white: rejection, black: acceptance).

Most of the standard literature in multivariate analysis only

contains references to the real case (e.g., see [16]). This does not

mean, however, that results for the complex case do not exist. In

[4], the relevant class of complex distributions is introduced, and

[17] completed much of the work, either giving results or (indi-

rectly) pointing out how results may be obtained. It is, however,

not straightforward to deduce the relevant formulas from their

work.

In [18], many of the necessary formulas are deduced in an

elegant way using the fact that the problem is invariant under

a group of linear transformations. The notation chosen is not

straightforward however. Some of their results appear in [19],

an unpublished thesis in Danish, including results on comparing

covariance matrices. In [20], the theory for linear and graphical

models in multivariate complex normal models is covered.

Since the formulas for the distribution of the likelihood ratio

do not seem to be available and since no authors seem to have

treated the so-called block diagonal case, we have chosen to give

a rather thorough description of the necessary results.

We start with a short introduction to the complex normal

and the complex Wishart distributions. We then compare two

gamma distributions, which is the one-dimensional test often

usen in the radar community. Then we give a straightforward

(brute force) derivation of the likelihood-ratio criterion for

testing the equality in the complex case. Then, we describe

the so-called block diagonal case, which among other things

covers the case known in the radar community as the azimuthal

symmetric case and the total independence case.

After quoting results from [21] on asymptotic distributions,

we establish the necessary results on moments by brute force

integration. By straightforward but rather cumbersome calcula-

tions, the results in [21] yield the desired results. Alternatively,

one may use results in [20] and derive expressions involving the

product of beta distributed random variables.
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Fig. 11. Rejection of hypothesis of equal covariance matrices at 1% level for the diagonal case (white: rejection, black: acceptance).

A. Complex Normal Distribution

Following [4], we say that a -dimensional random complex

vector follows a complex multivariate normal distribution

with mean and dispersion matrix , i.e.,

(28)

if the frequency function is

(29)

is Hermitian positive definite and of the form

...
...

. . .

(30)

In other words, we have for

(31)

(32)

B. Complex Wishart Distribution

We say that a Hermitian positive definite random matrix

follows a complex Wishart distribution, i.e.,

(33)
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if the frequency function is

(34)

where

(35)

If confusion concerning or may arise, we write

rather than . The frequency function is defined for posi-

tive definite, and in evaluating integrals the volume element be-

comes

(36)

where and denote real and imaginary parts. For further de-

scription and useful results on Jacobians, etc., see [4] and [17].

It is emphasized that the formulas for the complex normal and

Wishart distributions differ from their real counterparts.

Estimation of from a normal sample follows in Theorem 1.

Theorem 1: Let be independent, complex

normal random variables, i.e.,

(37)

Then the maximum-likelihood (ML) estimator for is

(38)

and is Wishart distributed

(39)

Proof: See [4].

From Theorem 1, we easily obtain Theorem 2.

Theorem 2: Let and be independent Wishart distributed

matrices

(40)

(41)

Then the sum will again be Wishart distributed, i.e.,

(42)

Proof: Straightforward.

C. Test on Equality of Two Gamma Parameters

Let the independent random variables and (which are

real scalars) be gamma distributed and . The

frequency function for is

(43)

and similarly for . The likelihood function for the parameters

( ) thus becomes

(44)

and under the hypothesis , we obtain

(45)

Taking the derivatives of the log likelihoods and setting them

equal to zero, we obtain the ML estimates

(46)

(47)

(48)

Therefore the likelihood-ratio test statistic becomes

(49)

The critical region is given by or

(50)

Straightforward calculations show that this critical region is of

the form

or (51)

Since under the null hypothesis is distributed like Fisher’s

, i.e.,

(52)

and may be determined by means of quantiles in the -dis-

tribution.

D. Test on Equality of Two Complex Wishart Matrices

We consider independent Wishart distributed matrices

(53)

(54)

and wish to test the hypothesis

against (55)
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We have the likelihood functions

(56)

(57)

The ML estimates are

(58)

(59)

(60)

Therefore, the likelihood-ratio test statistic becomes

(61)

Thus, we get the critical region

(62)

E. Tests in the Block Diagonal Case

In some applications (e.g., remote sensing), there are several

independent Wishart matrices in each observation. They will

often be arranged in a block diagonal structure like

(63)

where . This covers the so-called az-

imuthal symmetric case and the case with independence of co-

and cross-polarized signals. If we define

(64)

it is important to note that is not Wishart distributed

.

We now consider similar partitionings of and , i.e., we

have independent random matrices

(65)

(66)

for . We have and set .

We want to test the hypothesis

(67)

against all alternatives. The likelihood-ratio criterion becomes

the product of the criteria, i.e.,

(68)

Since the determinant of a block diagonal matrix is the product

of the determinants of the diagonal elements, we obtain

(69)

i.e., the same result as in the general case [see (61)]. Note, how-

ever, that the distribution has changed, since and are no

longer Wishart distributed.

F. Large Sample Distribution Theory

In [21] (as quoted in [16]), a general asymptotic expansion of

the distribution of a random variable whose moments are certain

functions of gamma functions has been developed. We state the

main result as a theorem, and we shall use it in determining the

(asymptotic) distribution of the likelihood-ratio criterion.

Theorem 3: Let the random variable ( ) have

the th moment

(70)

where is a constant so that and

. For an arbitrary we set

(71)

(72)

The first three Bernoulli polynomials are denoted

(73)

(74)

(75)

We define

(76)

(77)

If we select so that , we have

(78)

Proof: See [16].
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Theorem 4: Let

(79)

(80)

be independent complex Wishart distributed matrices. Then for

and

(81)

we have

(82)

Proof: The joint frequency function of ( ) is

. Therefore

(83)

and evaluation of this integral gives the desired result.

By means of the two previous theorems, we are now able to

state the important result on the (asymptotic) distribution of the

likelihood-ratio criterion.

Theorem 5: We consider the likelihood-ratio criterion

(84)

and define

(85)

(86)

(87)

Then

(88)

Proof: Omitted, straightforward but cumbersome calcula-

tions.

We now address the block diagonal case and state the main

result in Theorem 6.

Theorem 6: Let the situation be as described in Section A–E,

and define for

(89)

(90)

(91)

(92)

(93)

Then the asymptotic distribution of the likelihood-ratio criterion

is given by

(94)

Proof: Omitted, straightforward but cumbersome calcula-

tions.
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