
A Testbed for Evaluating Human Interaction with Ubiquitous Computing
Environments

Eleanor O'Neill1, Martin Klepal2, David Lewis1, Tony O'Donnell1, Declan O'Sullivan1, Dirk
Pesch2

1Knowledge and Data Engineering Group,
Department of Computer Science, Trinity College Dublin

{oneille|Dave.Lewis|Tony.ODonnell|Declan.OSullivan}@cs.tcd.ie
2Centre for Adaptive Wireless System

Cork Institute of Technology
{mklepal|dpesch}@cit.ie

Abstract

Core to ubiquitous computing environments are

adaptive software systems that adapt their behavior to
the context in which the user is attempting the task the
system aims to support. This context is strongly linked
with the physical environment in which the task is
being performed. The efficacy of such adaptive systems
is thus highly dependent on the human perception of
the provided system behavior within the context
represented by that particular physical environment
and social situation. However, effective evaluation of
human interaction with adaptive ubiquitous computing
technologies has been hindered by the cost and
logistics of accurately controlling such environmental
context. This paper describes TATUS, a ubiquitous
computing simulator aimed at overcoming these cost
and logistical issues. Based on a 3D games engine, the
simulator has been designed to maximize usability and
flexibility in the experimentation of adaptive
ubiquitous computing systems. We also describe how
this simulator is interfaced with a testbed for wireless
communication domain simulation.

1. Introduction
Weiser’s vision of pervasive or ubiquitous

computing [1] involves devices, sensors and actuators
that are inter-networked and embedded in the fabric of
everyday life. These collaborate to sense and attend to
the tasks users in a space are currently aiming to
perform, adapting the behavior of available software
services to meet that task while reflecting the context

of the situation. More so than other distributed
systems, ubiquitous computing systems must
dynamically adapt to the needs of the user and to the
current operational context. This requires ubiquitous
computing systems to exhibit a high level of adaptive
behavior in order to respond to a wide range of
contexts and stimuli that may be difficult to define a
priori in a comprehensive manner. In addition, the
context and input stimuli experienced by adaptive
software applications and the effectiveness of the
adaptive behavior they exhibit are highly dependent on
the user’s involved and the environmental and social
context in which they are attempting the tasks which
the adaptive systems aim to support. Experimentation
and testing of such adaptive software is therefore
problematic due to the number of independent
variables associated with such context. Accurate
assessment of the perceived human benefits achieved
by using such adaptive systems therefore requires that
this context is accurately controllable, recordable and
replicable. In developing such adaptive systems,
human interactions must be recorded and later
replicated in synchronization with their interactions
with the physical ubiquitous computing environment.
This experimental requirement is further complicated
by the need to test scenarios that involve multiple users
collaborating in a ubiquitous computing environment.

This paper introduces a ubiquitous computing
simulator called TATUS that has been developed to
support research and development of adaptive software
for ubiquitous computing environments.

A system-under-test (SUT) connected to the
simulator assimilates exported state in order to develop

its own representation of the world, as depicted in
Figure 1. The SUT makes decisions to change its
behavior in reaction to user movements and behavior
as well as other environmental factors such as network
conditions, ambient noise or social setting.

3D Simulated

Ubiquitous
Computing

Environment

System Under

Test

Interactions with
physical

environment

Human test
subject

Actuating
instructions to

simulated
environment

Simulated sensor
data from
simulated

environment

Mobile

Terminal

Adaptive Service
Delivery

Figure 1. High-level simulator overview

When developing devices, protocols and software to

support a ubiquitous computing environment, the
common problem set encountered involves cost,
logistics and location. Acquisition of adequate
resources, such as embedded and hand-held devices,
and their configuration within the various test
scenarios applied to a SUT are complex, time-
consuming and, therefore, expensive tasks. In addition,
most ubiquitous computing applications require testing
and experimentation in their target location for valid
and beneficial results to be produced. Through careful
device positioning, a standard office can be adapted to
resemble another environment such as a living-room,
however it is difficult to simulate large or specialized
locations, for example an airport. In response to these
issues, this platform provides a virtual ubiquitous
computing environment. The simulator aims to reduce
the complexity of setting up adaptive ubiquitous
computing software tests by emulating sensors and
actuators and allowing physical settings and scenarios
to be easily set up by the researcher/tester. The test can
be configured and monitored from a single desktop
machine. The virtual world used in the test can be built
and varied rapidly using intuitive graphical tools.

The simulator was initially designed to support
various adaptive system research that is being
conducted in the ubiquitous computing domain at
Trinity College Dublin. Examples include: the use of
Bayesian Networks to infer user intent from gestures
and voice commands; the use of policies to constrain

adaptive service behavior and the adaptive collection
of context information.

In summary, therefore, the project aimed to develop
a 3D simulator to satisfy the following objectives:

• To allow researchers/testers to readily connect
a SUT to the simulator.

• To simulate conditions in a physical
environment and to simulate corresponding
sensor events.

• To allow researchers to define simulator
events of interest for notification to the SUT.

• To provide researchers with a mechanism to
allow the SUT to control actions within the
simulator.

• To be flexible in handling a diversity of test
scenarios

• To support connection to multiple SUT
simultaneously.

• To readily reflect the changing state of
ubiquitous computing technology especially
new types of sensors and actuators.

• To replicate experiments using saved settings,
both of test subjects’ control of the simulated
environment and the resulting simulated
sensor events and adaptive software
responses.

• To review experiments by rerunning recorded
and logged experiments.

In the rest of this paper we examine previous
attempts at ubiquitous computing experimentation with
simulators, examine the characteristics of 3D games
engines in this context, briefly present the TATUS
simulator and review experiences in its application,
before exploring its integration with a further,
sophisticated heterogeneous wireless network
simulator currently implementing IEEE802.11 and
sensor networks.

2. Background
Techniques for evaluating and assessing ubiquitous

computing environments have not yet been well-
established [3]. A variety of practices are currently
used to test ubiquitous computing environments, with
many research groups developing testbeds specifically
tailored towards their own experiments. This section
presents existing approaches to simulation and testing
of ubiquitous computing systems that influenced this
work.

The Sentient Computing Project [4] is moving away
from the conventional view that human-computer
interaction is all premeditated and involves explicit
deliberate actions with a computer interface. The
project is working to develop applications that can

model a true representation of the world so that a
person’s natural surroundings become in essence a
user interface. The natural movements and gestures of
people occupying the space become the input
commands to the application controlling the
environment. The Sentient Computing Project has set
up a physical test-environment which is replicated as a
3D graphical representation. The application under test
receives input from sensors and actuators embedded in
the room and uses the virtual representation to indicate
its understanding of the status of devices, typically not
visible in the real world, e.g. coloring the virtual
representation of a phone red when it is in use.

Ricardo Morla and Nigel Davies have built and
evaluated a location-based ubiquitous computing
application using a hybrid test environment [5]. A
wearable remote medical monitoring system was
implemented as the test application. Using existing
network and context simulators the team simulated the
potential conditions that occur in a user’s home e.g.
temporary disconnection from the network. From this
they were able to verify that the application does
perform reliably under target conditions.

The UbiWise platform [2] targeted the development
and testing of hardware and embedded software for
ubiquitous computing devices. The mutual dependency
between developing these two technologies, i.e.
portable devices that are networked and context-aware,
had been hindering real-world development of these
types of devices. The UbiWise project aimed to
simulate the existence of devices in order to develop
the software that would run on them before physical
prototypes are available. UbiWise emerged from an
amalgamation of two existing simulators, UbiSim and
WISE. UbiSim aimed to produce context information
in real-time using a semi-realistic environment. It
worked by taking raw simulated data outputted from
the Quake III Arena (Q3A) [11] first person shooter
gaming environment and processing it in the Context
Toolkit. The context server was also capable of
inserting data produced by real-world sensors and
using the result to deliver meaningful context to
applications and services. The WISE environment
consists of a 2D display of a simulated device. The
user manipulates the device to communicate with real-
world Internet services or other simulated devices. The
underlying supporting software is a Web Client that
connects to the desired Internet services and interacts
with the outside world via the HTTP protocol.

UbiWise thus made use of the graphical interfaces
provided by each tool. UbiSim provides the 3D model
of the simulated world that the user can navigate
around in the first person manner as is normally done
when playing a first-person shooter game. This is

called the physical environment view. In this view, the
user can call up a 2D view of the wireless device, with
which they can interact, called the Device-Interaction
View. This is a Java window as part of the WISE
system where screen areas are mapped to particular
device buttons so the device can be controlled by a
mouse and keyboard. UbiWise offers three usage roles.
The first role, the user, interacts with the simulated
environment when running an experiment or playing
out a scenario. This involves navigating around the 3D
world using the game controls or using the mouse and
keyboard to interact with the Device-Interaction view.

The second role is that of a researcher where the
user adjusts the simulated environment, pre-run time,
setting up the world to suit a particular scenario.
Generally when using this type of simulator it is
necessary to consider in advance the actions that will
be carried out. For example a meeting requires a
conference room with appropriate facilities e.g. large
table but to execute a lecture there must be projection
facilities in the room.

The third role is that of a developer, it is the most
technical role and is filled by anyone extending the
simulator to improve the ubiquitous computing
environment. This includes incorporation of new
devices and wireless media. A developer must
therefore understand the underlying software structure
of the simulator, including the underlying games
software.

Ubiwise thus focussed on device emulation with a
simulated 3D environment and therefore did not seem
to develop the original context-awareness capabilities
(which were focussed on character position) to make
the configuration of a simulated sensor environment
more flexible. This was however a major requirement
for our simulator so a slightly different approach was
required, where less emphasis was place on the
developer role for configuring different experiments,
with the aim that this can be conducted by the
researcher, without the need for any game code
modification. In addition, our simulator differs from
the Ubiwise in that it does not attempt to simulate user
devices, but instead relies on the test subject accessing
adaptive services via devices such as PDAs which they
manipulate during the experiment. This decision
supported the aim of keeping the modification of
games code to a minimum, so all complex human-
device interaction is performed external to the
simulator, and thus more realistically through the use
of actual devices.

2.1. 3D FPS Games
Many of the 3D first-person-shooter (FPS) network

games released for PCs since the late 1990’s have also

released software development kits (SDKs). These
SDKs allow programmers to modify the game through
the inclusion of new rules, physics, weapons and
characters. The term mod is appropriately used to refer
to the games resulting from such adjustments.

The general aim in choosing to use one of these
games was to exploit the 3D graphics engine to
provide a realistic user experience, while mapping the
projects requirements into the SDK code to provide a
readily configurable test-bed for researchers. In
addition the LAN style implementation of these games
provides potential for multiple researchers to interact
in a single experiment. Finally, the SDK also provides
limited AI capabilities and scripted sequences to
include non-player-characters (NPCs) allowing a
single researcher to run tests independently.

When choosing the game engine for this project the
potential candidates were Half-Life [7], Quake III
Arena [11] and Unreal Tournament [12]. These games
are designed on the same basic principles and in fact
Half-Life is derived from Quake with about 30% of the
original code remaining at its core. The Half-Life SDK
[8] was selected based on its use of standard C/C++
rather than proprietary languages and the availability
of relatively comprehensive, albeit unofficial, SDK
documentation [10].

2.2. Introduction to Half-Life
Half-Life (HL) uses a client-server architecture

allowing up to 32 players to compete in a single game.
Each client has enough built-in artificial intelligence to
estimate player movements in the case of lost messages
from the server, correcting to the true picture of the
world when contact is re-established. A total-
conversion of HL involves creating new maps,
weapons, characters, physics and rules. The simplest
method to modify the game uses map creation alone.
To adjust or add new instances of the remaining items,
the HL SDK must be reprogrammed.

2.2.1.Map Creation
New maps or levels can provide the illusion of an
entirely new game. Every world is a combination of
basic shapes but through careful application of textures
the map’s terrain can be varied dramatically. Valve
released a map editor called Hammer [9] which is a
drawing tool for building maps. Hammer compiles
maps to the BSP (Binary Space Partitioning) format
used by Half-Life.

BSP files have been designed to improve game play
by minimizing the calculations involved at run-time
when drawing the environment. The BSP file saves the
topology of a map as a binary tree. Objects that are
geographically close in the map are stored in

neighboring nodes within the tree. In addition to the
BSP file, Hammer produces a MAP file which
provides a textual representation of the world. It lists
information about objects in the world such as their
name, type, size and coordinates. A view of Hammer
can be seen in Figure 1, showing the map building
views and a navigable view of the environment being
generated.

Figure 2. Hammer games editor for Half-Life

The principle elements of a map are brushes and

entities. Brushes are the three dimensional solid
objects that represent the physical structure of the
room e.g. walls, doors, furniture. Textures are applied
to these blocks to give a realistic representation of a
door, whiteboard, carpet and walls. Entities, on the
other hand, are neither visible nor physically tangible
during game-play. They exist only through the effects
they supply to a map e.g. sound/light. Hammer shows
the positioning of entities through the use of icons e.g.
the light bulb at the centre of Figure 3. Entity-Brushes
are the result of selecting a brush and associating an
entity with it using a technique called tying which can
be performed via the map editor. When tied, the
combination provides a functional object e.g. a door or
button.

Triggers are essentially entity-brushes, however
unlike the example of an entity-brush that is a door,
triggers are invisible during game-play. They are used
to generate events based on a player’s movements and
location. For this reason, they must be invisible so that
it is not possible to consciously avoid them. When a
player enters a region of a map occupied by a trigger
the associated event is activated e.g. a door is opened.
As a result, a normal entity alone cannot act as a
trigger since the boundary of the trigger must be
detectable to the game engine. In Figure 3 triggers can
be seen as the patterned bars surrounding the door and
the lecturn. In this instance the triggers are present to
open the door when a player approaches. During the

setup process for the trigger, the door’s targetname is
stored as the target for the trigger. At runtime the
engine can perform a lookup using the target value to
search for the entity to be activated.

Figure 3. Map editor’s rendering of a prototype
space

Together these features of the HL SDK provide the

flexibility needed to model a variety of sensors and
actuators. Only simple actuation is possible, since
entities at most support a single un-parameterised ‘use’
action. However, the ability to extract position of
entities, proximity of other entities with a given radius
and presence of other entities within a field of view
allows for a large range of sensor types to be
simulated.

3. Ubiquitous Computing Simulator
Though the HL SDK makes it is easy to isolate

modification of the game’s code to a limited set of
files, the discovery stage and learning curve were both
difficult and time-consuming. As a result it was
deemed too complex to require researchers or test staff
to have to ascend that curve in order to effectively use
the simulator. We therefore aimed to provide a
convenient and flexible 3D virtual ubiquitous
computing environment that researchers can use to test
ubiquitous computing applications currently under
development, without the need to develop game level
code. The resulting features of the simulator are:
• 3D Graphical Interface: Provision of a 3D

interactive graphical user interface using the SDK
for simultaneous use by a number of test-subjects

• Separation of simulator and SUT: The SUT is
physically separate from the games engine,
running on another machine if necessary.
Simultaneous connection to multiple SUTs is
supported.

• Realism: The simulated ubiquitous computing
environment realistically modes the equivalent
real-world physical implementation of sensors and
actuator. The framework emphasizes avoiding the
use of the precise positional and attitudinal
information available form the simulator, and
simulating actual sensor data instead.

• Flexibility: The simulator supports the test of a
range of software. It is generic and not tailored to
provide specific state or to interface to a particular
piece of software, through the use of a proxy that
mediates messages from the games engine to the
SUTs

• Usability: The configuration of an experiment is
conducted entirely through the combination of
existing map editors and an additional message
definition tool which allows the information
passed to and from entities in a specific map to be
defined via a simple GUI.

• Extensibility: The underlying SDK, though not
typically used by a tester, can be readily adapted
to extend the features offered by the simulator
framework.

• SUT API: This offers selectable state extraction.
Researchers are provided with a mechanism to
select a subset of the state information most suited
to the goals of the SUT experiment. This is to
avoid a full state dump, potentially containing
surplus data and requiring unnecessary processing
by the researcher. It also offers an interface to
impose changes (i.e. actuation) on the simulated
ubiquitous computing environment.

Figure 4. Design Overview of Simulator
Framework

An overview of the design is shown in Figure 4.

Binary Space Partitioning (BSP) files are generated by
the map editor and fed into the simulator, while the
message definition tool provides XML definitions of
the state extraction and actuation message information
to be passed between the simulator and the SUT during
the experiment. These XML definitions are referenced
by the map editor and fed into the simulator with the
BSP files defining the environment.

The modified game engine and SUT needed some
method of communication to exchange information.
Messages travelling outbound from the simulator
contain state information about the simulated
environment. Messages traveling inbound to the
simulator contain instructions to adjust the simulated
environment. Two specific feature of this framework
are:
• Network Connection: The network connection

allows the simulator and SUT to run on separate
computers. This is important because when both
programs are run in parallel on a single machine
the simulator’s graphics absorb the entire screen.
In addition, the keyboard and mouse are
dominated by Half-Life’s player controls. Running
each program on a separate machine means a
researcher can view and control both programs
concurrently. This is particularly relevant when
debugging test software.

• Proxy: The Proxy removes any need to integrate a
network connection into the SUT code by
providing a ready-made link to the simulator. This
is supplied with a view to reducing set-up time
when initially connecting new SUT to TATUS.
The Proxy also provides an API that offers
function calls to send and receive messages to and
from the simulator.

Figures 5 and 6 show two screen shots from a
ubiquitous computing meeting room scenario. The
trigger entities visible in the map editors view of this
scenario are invisible in these views, as are the trigger
entities used to detect the characters in Figure 6
standing up and sitting down. The other characters in
Figure 6 are non-player characters, though in this
particular test scenario the test operator can control
when the standing figure gets to his feet and
subsequently sits down through the use of XML
commands sent from the proxy-level. The other
characters are controlled by script based AI behavior.
In an alternative collaborative test scenario, these
characters could be controlled by other human test
subjects on a remote game clients.

Initial usage of the simulator by a TCD researcher
has shown that single room scenarios can be
configured using the map editor and message
definition tool in a matter of hours.

Figure 5. Screen shot from meeting room
scenario

Figure 6. Screen shot from simulated meeting
room scenarios showing other characters

4. User Interaction with Wireless Networks
Currently TATUS does not simulate any aspect of

the communications networks that must support any
operational ubiquitous computing environment. The
application of wireless access network technologies to
ubiquitous computing environment, e.g. 802.11,
Bluetooth, UWB, 3G and their fusion in 4G is an
active area of research as is research into network
architectures that addresses the intermittent
connectivity, lack of fixed infrastructure and limited
power requirements that characterizes ubiquitous
computing, e.g. mobile ad hoc networks and sensor
networks.

A wide range of wireless network simulators exist
that support this type of research. However they
typically use statistical models of user behavior, thus
not allowing for evaluation that is able to assess the
reaction of human test subjects to the adaptive

behavior wireless networks can provide. We have
already started examining integration with simulators
that would enhance the model of the sensed
environment, in particular the TOSSIM TinyOS sensor
network simulator [17], which would provide a more
realistic view of sensor network latency and sensor
reachability problems.

In this section, however, we will present in more
detail work that is underway in interfacing TATUS
with a heterogeneous wireless network simulator that
will allow us to evaluate the impact user behavior and
actions in the environment have on the wireless
network and indeed vice-versa.

4.1 Wireless Network Simulator
In order to evaluate the performance of a

communication systems, especially those used in
ubiquitous computing environments, a system
simulation is being developed that comprises of six
main components as shown in Figure 7.

Interface System
Simulator

RF Server

Ray-Tracing

System
Analysis & Optimisation

Real World
Simulator

OpenGL & SVG
Real-time

Visualisation

Link Level
Simulator

UMTS
GSM

IEEE802.11

Sensor
Network

Environment
Definition

(GUI)

Interface with
TATUS Simulator

Figure 7. Structure of the Simulator

• Environment Definition: Graphical user
interface for the description of environment
configuration, heterogeneous network
infrastructure, user behaviour, etc. The
environment definition is compatible with the
BSP file based environment description of
TATUS and in a joint simulation case user
behavior is provided by TATUS.

• Real World Simulator: Implements various
models that capture behavior of entities in the
simulated environment in a realistic form,
especially people and vehicle mobility,
models of environment ambient parameters as
light, temperature, humidity, noise etc. This
component also implements a web services
interface for interfacing with the TATUS
simulator.

• RF Server: Component containing a ray-
tracing tool based on the Motif Model [14] to
predict wireless channel condition for space-
time specific environment configuration, RF
actuators range, etc.

• System Simulator: this component
comprises of a number of subcomponents for
the simulation of different wireless network
services..

• System Analysis & Optimization: Captures
and analyses performance of the simulated
system. It also implements a optimization
engine based on evolutionary computing
strategies for optimization of the system
performance or infrastructure
topology/layout.

• Interface: Management system interfacing
the main components of the simulation
environment, which is a highly distributed
system.

Figure 8. Example of environment
segmentation for ray-tracing prediction

4.2 Wireless Link Parameters Prediction
In order to predict wireless channel conditions and
thus wireless system performance as realistically as
possible for a particular environment configuration, the
influence of presence and mobility of people on the
channel conditions was studied and associated models
implemented into the simulation system. The effects of

people shadowing are especially important in indoor
environments, where the deployed wireless systems
provide wireless access through access points (APs)
placed in convenient locations such as on ceilings,
walls or some times even placed on desks near which
wireless access is desired. From the radio wave
propagation point of view, the signal between the AP
and the user terminal propagates rather horizontally
over the coverage area, crossing obstacles of various
types such as desks, chairs and people etc. The net
effect is an attenuation caused by static obstacles and a
more varying signal due to moving obstacles such as
people. As a consequence, there are rapid and frequent
transitions between line-of-site and non-line-of-site
situations, causing a variation in the statistics of fast
fading, which is closely associated with the shadowing
process. The characteristic of shadowing caused due to
moving people resembles fast fading in other
propagation environments.
Figure 9 shows an example of measured signal level
fluctuation when a person is randomly crossing LOS
between transmitter and receiver. The description of
the measurement and ray-tracing prediction of effects
of moving people shadowing on the performance of a
wireless system for both LOS and NLOS case can be
found in [15, 16].

 b)

Figure 9. Sample of measured signal level
fluctuation when 1 person, 5 people and 14
people are randomly crossing LOS between
transmitter and receiver

In order to accurately predict the signal quality in the
channel, at every point of the investigated scenario, all
parameters, except AWGN (Additive White Gaussian
Noise), must be site-specifically predicted. Path loss
and channel parameter prediction (Figure 11) are
performed by a deterministic ray-tracing model known
as Motif Model [14]. The prediction of the level of
interference is based on the appropriately filtered mean
signal level predicted from surrounding interferers

such as access points, microwave ovens and other
appliances.

Data Rate

L A µs σs k I

Link Level Simulator
with Channel Model

Ray-tracing model
(Motif model)

Achievable
Throughput

802.11 PHY Layer

freg PwT

BER

Site-Specific
Information

Figure 10. Architecture of the Wireless Link
Parameters Prediction

Once the empirical parameters are delivered by the
propagation model, they are used as inputs to the Link
Level Simulator, using the channel model described
above, and an estimation of BER can be obtained and
used as input for the evaluation of IEEE802.11 WLAN
performance. Figures 10 to 15 show site-specific
predictions of channel parameters in every point of the
investigated environment section.

Figure 10. Signal level experienced by users of
IEEE802.11 WLAN

Figure 11. BER experienced by the users of
IEEE802.11 WLAN (CCK 11)

Figure 12. Throughput experienced by the
users of IEEE802.11b WLAN

Figure 13. Extra signal attenuation caused by
people

Figure 14. Extra Standard deviation of the
signal fluctuation caused by people

4.3 Simulator Integration
In order to assess the impact of people movement

and the effects of wireless communications usage an
integration of the two simulators is desirable. This
integration involves:

• The use of the same BSP based representation
of the test environment for both simulators.

• The passing of character movement from
TATUS to the wireless simulator so that the
resulting changes in wireless signal propagation
can be used to define 802.11 throughput
calculations. The wireless simulator can also be
used to predict the accuracy of location tracking
mechanisms that use 802.11 signal strength.

• Throughput figures can then be used to control
application data flows between the SUT and
user terminals, e.g. a PDA, used by the test
subjects, in concert with the simulator, using a
suitable network emulator, e.g. DummyNet [18]

Integration between the platforms will take a Web
Service approach similar to that described in [5]. This
allows for flexible deployment of elements that make
up the joint simulator.

Figure 15 depicts the target operational
configuration for the integration of the two simulators.
A single map editing tool will generate maps formats
for both TATUS and the Wireless Network Simulator.
TATUS provides the SUT with stream of sensor data
as configured by the editor, while it provides the
Wireless Network Simulator with real-time updates of
the position of all humans in the simulator, both player
driven and non-player characters. The Wireless
Network Simulator is then in a position to use the
resulting updates to its wireless signal propagation
map to provide accuracy-adjusted location tracking
data to the SUT that reflects the errors introduces in
802.11-based tracking due to signal fluctuations. It can
also use similar data to control a traffic throttle placed
between the SUT and the PDA used by the test subject
to access ubiquitous computing services offered by the
SUT, thus allowing the impact of signal fluctuations
on these services to be assessed.

Figure 15: Operation of integrated simulators

Wireless
Network
Simulator

TATUS

SUT

Ubicomp
environment

editor

Human test
subject

Maps and access
point placement

Maps, sensor,
actuator and NPC

configuration

Player/character
movement

Accuracy adjusted
location tracking

Sensor data

Throughput
Throttle

PDA

UbiComp Service
Interactions

Wireless
throughput

values

6. Conclusions
In this paper we attempt to identify the difficulties

of experimenting with and testing adaptive systems
developed for ubiquitous computing environments.
Such adaptive systems must react to changing user
requirements and preferences, network connectivity
and available services i.e. they are context aware.
Controlling, recording and replicating such context and
the corresponding human interaction with adaptive
systems is a challenging and typically expensive
undertaking, and hinders the development of effective
adaptive software for ubiquitous computing. We
describe a simulator that builds on experience of
previous ubiquitous computing simulators that exploit
the capabilities of first person 3D games engines to
support such testing and evaluation activities. This
simulator, TATUS, is novel in that it removes the need
for experimenters to develop games level code, while
retaining a large level of flexibility in the scenarios that
can be readily developed by researchers. A different
simulator focusing on the variation of wireless
throughput that occurs in populated indoor
environment is also reviewed and the integration of
these two simulators into a comprehensive, person-
centered testbed for adaptive ubiquitous computing
systems is described.

Future work will involve detailed evaluation of the
integration of the two simulators. We need to assess in
particular whether the limited interaction between the
user and simulated environment has a significant
impact on results. We are constructing a live
ubiquitous computing environment in which scenarios
that might require such interaction can be conducted
and user evaluation compared with the equivalent
simulator-based experiments. We will also examine
different types of APIs for use by the SUT, in
particular ones that replicate existing sensor networks,
such as TinyDB [6]. Simulating the fidelity of
simulated sensors is also an important issue, with more
sophisticated models being built using the map editor
to more accurately reflect sensor field of view and
range and within those variations of sensing accuracy.

Acknowledgements
This work was partially funded by the Irish Higher

Education Authority under the M-Zones research
programme.

References
[1] The Computer for the Twenty-First Century Mark Weiser
Scientific American, 1991,Vol 265, No. 3, pp. 94-104

[2] UbiWise, A Ubiquitous Wireless Infrastructure
Simulation Environment John J.Barton, HP Labs Vikram
Vijayaraghavan, Stanford University Copyright 2002, HP.
[3] User Study Techniques in the Design and Evaluation of a
Ubicomp Environment, S. Consolvo, L. Arnstein, B. Franza,
in proc of the 4th International conference on Ubiquitous
Computing, Sept 2002
[4] Sentient Computing Project Cambridge University
Engineering Department Andy Ward, Pete Steggles, Rupert
Curwen, Paul Webster http://www.uk.research.att.com/spirit
[5] Evaluating a Location-Based Application: A Hybrid Test
and Simulation Environment. Ricardo Morla, Nigel Davies,
Lancaster University Pervasive Computing, IEEE, pp48-56,
July-Sept 2004
[6] TinyDB: In-Network Query Processing in TinyOS Sam
Madden, Joe Hellerstein and Wei Hong
http://telegraph.cs.berkeley.edu/tinydb/documentation.htm
[7] Half-Life, Valve Corporation,
http://www.valvesoftware.com
[8] Half-Life SDK v2.3, Valve Corporation, http://dev.valve-
erc.com
[9] Valve Hammer Editor v 3.4, http://collective/valve-
erc.com
[10] Botman’s Bots, HL SDK Tutorial,
http://www.planethalflife.com/botman
[11] Quake III Arena, id Software, http://idsoftware.com
[12] Unreal Tournament, Epic Games,
http://www.epicgames.com
[13] Bylund, M., Espinoza, F., “Testing and Demonstrating
Context-Aware Services with Quake III Arena”,
Communications of the ACM, Jan 2002, Vol 45, No 1, pp46-
48
[14] Large Dynamic Range Prediction of AOA, AOD and
PDP for MIMO Systems, M. Klepal, P. Pechac, in Proc. IEE
12th International Conference on Antennas & Propagation,
Exeter, March 2003, pp. 775-779, ISBN 0-85296-7527
[15] Influence of People Shadowing on Optimal
Deployment of WLAN Access Points, M. Klepal, R.
Mathur, A. McGibney, D. Pesch, in Proc. of IEEE
Vehicular Technology Conference Fall 2004, Los
Angeles, CA, USA, September 2004
[16] Influence of People Shadowing on Bit Error Rate of
IEEE802.11 2.4GHZ Channel, R. Mathur, M. Klepal, A.
McGibney, D. Pesch, in Proc. of 1st IEEE ISWCS, Mauritius,
Sept. 2004
[17] TOSSIM: Accurate and Scalable Simulation of Entire
TinyOS Applications, Levis, P., Lee, M., Welsh, M., Culler,
D., in Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems (SenSys 2003)
[18] Luigi Rizzo “Dummynet: A simple Approach to
evaluation of Network Protocols” ACM Computer Comm
Rev. vol 27, no. 1, 1997, pp 31-41

