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Abstract 

 
Core to ubiquitous computing environments are 

adaptive software systems that adapt their behavior to 
the context in which the user is attempting the task the 
system aims to support. This context is strongly linked 
with the physical environment in which the task is 
being performed. The efficacy of such adaptive systems 
is thus highly dependent on the human perception of 
the provided system behavior within the context 
represented by that particular physical environment 
and social situation. However, effective evaluation of 
human interaction with adaptive ubiquitous computing 
technologies has been hindered by the cost and 
logistics of accurately controlling such environmental 
context. This paper describes TATUS, a ubiquitous 
computing simulator aimed at overcoming these cost 
and logistical issues. Based on a 3D games engine, the 
simulator has been designed to maximize usability and 
flexibility in the experimentation of adaptive 
ubiquitous computing systems. We also describe how 
this simulator is interfaced with a testbed for wireless 
communication domain simulation. 

 

1. Introduction 
Weiser’s vision of pervasive or ubiquitous 

computing [1] involves devices, sensors and actuators 
that are inter-networked and embedded in the fabric of 
everyday life. These collaborate to sense and attend to 
the tasks users in a space are currently aiming to 
perform, adapting the behavior of available software 
services to meet that task while reflecting the context 

of the situation. More so than other distributed 
systems, ubiquitous computing systems must 
dynamically adapt to the needs of the user and to the 
current operational context. This requires ubiquitous 
computing systems to exhibit a high level of adaptive 
behavior in order to respond to a wide range of 
contexts and stimuli that may be difficult to define a 
priori in a comprehensive manner. In addition, the 
context and input stimuli experienced by adaptive 
software applications and the effectiveness of the 
adaptive behavior they exhibit are highly dependent on 
the user’s involved and the environmental and social 
context in which they are attempting the tasks which 
the adaptive systems aim to support. Experimentation 
and testing of such adaptive software is therefore 
problematic due to the number of independent 
variables associated with such context. Accurate 
assessment of the perceived human benefits achieved 
by using such adaptive systems therefore requires that 
this context is accurately controllable, recordable and 
replicable. In developing such adaptive systems, 
human interactions must be recorded and later 
replicated in synchronization with their interactions 
with the physical ubiquitous computing environment. 
This experimental requirement is further complicated 
by the need to test scenarios that involve multiple users 
collaborating in a ubiquitous computing environment. 

This paper introduces a ubiquitous computing 
simulator called TATUS that has been developed to 
support research and development of adaptive software 
for ubiquitous computing environments.  

A system-under-test (SUT) connected to the 
simulator assimilates exported state in order to develop 



its own representation of the world, as depicted in 
Figure 1. The SUT makes decisions to change its 
behavior in reaction to user movements and behavior 
as well as other environmental factors such as network 
conditions, ambient noise or social setting. 
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Figure 1. High-level simulator overview 

 
When developing devices, protocols and software to 

support a ubiquitous computing environment, the 
common problem set encountered involves cost, 
logistics and location. Acquisition of adequate 
resources, such as embedded and hand-held devices, 
and their configuration within the various test 
scenarios applied to a SUT are complex, time-
consuming and, therefore, expensive tasks. In addition, 
most ubiquitous computing applications require testing 
and experimentation in their target location for valid 
and beneficial results to be produced. Through careful 
device positioning, a standard office can be adapted to 
resemble another environment such as a living-room, 
however it is difficult to simulate large or specialized 
locations, for example an airport. In response to these 
issues, this platform provides a virtual ubiquitous 
computing environment. The simulator aims to reduce 
the complexity of setting up adaptive ubiquitous 
computing software tests by emulating sensors and 
actuators and allowing physical settings and scenarios 
to be easily set up by the researcher/tester. The test can  
be configured and monitored from a single desktop 
machine. The virtual world used in the test can be built 
and varied rapidly using intuitive graphical tools. 

The simulator was initially designed to support 
various adaptive system research that is being 
conducted in the ubiquitous computing domain at 
Trinity College Dublin. Examples include: the use of 
Bayesian Networks to infer user intent from gestures 
and voice commands; the use of policies to constrain 

adaptive service behavior and the adaptive collection 
of context information. 

In summary, therefore, the project aimed to develop 
a 3D simulator to satisfy the following objectives: 

• To allow researchers/testers to readily connect 
a SUT to the simulator. 

• To simulate conditions in a physical 
environment and to simulate corresponding 
sensor events. 

• To allow researchers to define simulator 
events of interest for notification to the SUT. 

• To provide researchers with a mechanism to 
allow the SUT to control actions within the 
simulator. 

• To be flexible in handling a diversity of test 
scenarios  

• To support connection to multiple SUT 
simultaneously. 

• To readily reflect the changing state of 
ubiquitous computing technology especially 
new types of sensors and actuators.  

• To replicate experiments using saved settings, 
both of test subjects’ control of the simulated 
environment and the resulting simulated 
sensor events and adaptive software 
responses. 

• To review experiments by rerunning recorded 
and logged experiments. 

In the rest of this paper we examine previous 
attempts at ubiquitous computing experimentation with 
simulators, examine the characteristics of 3D games 
engines in this context, briefly present the TATUS 
simulator and review experiences in its application, 
before exploring its integration with a further, 
sophisticated heterogeneous wireless network 
simulator currently implementing IEEE802.11 and 
sensor networks.  

2. Background 
Techniques for evaluating and assessing ubiquitous 

computing environments have not yet been well-
established [3]. A variety of practices are currently 
used to test ubiquitous computing environments, with 
many research groups developing testbeds specifically 
tailored towards their own experiments. This section 
presents existing approaches to simulation and testing 
of ubiquitous computing systems that influenced this 
work. 

The Sentient Computing Project [4] is moving away 
from the conventional view that human-computer 
interaction is all premeditated and involves explicit 
deliberate actions with a computer interface. The 
project is working to develop applications that can 



model a true representation of the world so that a 
person’s natural surroundings become in essence a 
user interface. The natural movements and gestures of 
people occupying the space become the input 
commands to the application controlling the 
environment. The Sentient Computing Project has set 
up a physical test-environment which is replicated as a 
3D graphical representation. The application under test 
receives input from sensors and actuators embedded in 
the room and uses the virtual representation to indicate 
its understanding of the status of devices, typically not 
visible in the real world, e.g. coloring the virtual 
representation of a phone red when it is in use.  

Ricardo Morla and Nigel Davies have built and 
evaluated a location-based ubiquitous computing 
application using a hybrid test environment [5]. A 
wearable remote medical monitoring system was 
implemented as the test application. Using existing 
network and context simulators the team simulated the 
potential conditions that occur in a user’s home e.g. 
temporary disconnection from the network. From this 
they were able to verify that the application does 
perform reliably under target conditions.  

The UbiWise platform [2] targeted the development 
and testing of hardware and embedded software for 
ubiquitous computing devices. The mutual dependency 
between developing these two technologies, i.e. 
portable devices that are networked and context-aware, 
had been hindering real-world development of these 
types of devices. The UbiWise project aimed to 
simulate the existence of devices in order to develop 
the software that would run on them before physical 
prototypes are available. UbiWise emerged from an 
amalgamation of two existing simulators, UbiSim and 
WISE. UbiSim aimed to produce context information 
in real-time using a semi-realistic environment. It 
worked by taking raw simulated data outputted from 
the Quake III Arena (Q3A) [11] first person shooter 
gaming environment and processing it in the Context 
Toolkit. The context server was also capable of 
inserting data produced by real-world sensors and 
using the result to deliver meaningful context to 
applications and services. The WISE environment 
consists of a 2D display of a simulated device. The 
user manipulates the device to communicate with real-
world Internet services or other simulated devices. The 
underlying supporting software is a Web Client that 
connects to the desired Internet services and interacts 
with the outside world via the HTTP protocol. 

UbiWise thus made use of the graphical interfaces 
provided by each tool. UbiSim provides the 3D model 
of the simulated world that the user can navigate 
around in the first person manner as is normally done 
when playing a first-person shooter game. This is 

called the physical environment view. In this view, the 
user can call up a 2D view of the wireless device, with 
which they can interact, called the Device-Interaction 
View. This is a Java window as part of the WISE 
system where screen areas are mapped to particular 
device buttons so the device can be controlled by a 
mouse and keyboard. UbiWise offers three usage roles. 
The first role, the user, interacts with the simulated 
environment when running an experiment or playing 
out a scenario. This involves navigating around the 3D 
world using the game controls or using the mouse and 
keyboard to interact with the Device-Interaction view.  

The second role is that of a researcher where the 
user adjusts the simulated environment, pre-run time, 
setting up the world to suit a particular scenario. 
Generally when using this type of simulator it is 
necessary to consider in advance the actions that will 
be carried out. For example a meeting requires a 
conference room with appropriate facilities e.g. large 
table but to execute a lecture there must be projection 
facilities in the room. 

The third role is that of a developer, it is the most 
technical role and is filled by anyone extending the 
simulator to improve the ubiquitous computing 
environment. This includes incorporation of new 
devices and wireless media. A developer must 
therefore understand the underlying software structure 
of the simulator, including the underlying games 
software. 

Ubiwise thus focussed on device emulation with a 
simulated 3D environment and therefore did not seem 
to develop the original context-awareness capabilities 
(which were focussed on character position) to make 
the configuration of a simulated sensor environment 
more flexible. This was however a major requirement 
for our simulator so a slightly different approach was 
required, where less emphasis was place on the 
developer role for configuring different experiments, 
with the aim that this can be conducted by the 
researcher, without the need for any game code 
modification. In addition, our simulator differs from 
the Ubiwise in that it does not attempt to simulate user 
devices, but instead relies on the test subject accessing 
adaptive services via devices such as PDAs which they 
manipulate during the experiment. This decision 
supported the aim of keeping the modification of 
games code to a minimum, so all complex human-
device interaction is performed external to the 
simulator, and thus more realistically through the use 
of actual devices. 

2.1. 3D FPS Games 
Many of the 3D first-person-shooter (FPS) network 

games released for PCs since the late 1990’s have also 



released software development kits (SDKs). These 
SDKs allow programmers to modify the game through 
the inclusion of new rules, physics, weapons and 
characters. The term mod is appropriately used to refer 
to the games resulting from such adjustments. 

The general aim in choosing to use one of these 
games was to exploit the 3D graphics engine to 
provide a realistic user experience, while mapping the 
projects requirements into the SDK code to provide a 
readily configurable test-bed for researchers. In 
addition the LAN style implementation of these games 
provides potential for multiple researchers to interact 
in a single experiment. Finally, the SDK also provides 
limited AI capabilities and scripted sequences to 
include non-player-characters (NPCs) allowing a 
single researcher to run tests independently. 

When choosing the game engine for this project the 
potential candidates were Half-Life [7], Quake III 
Arena [11] and Unreal Tournament [12]. These games 
are designed on the same basic principles and in fact 
Half-Life is derived from Quake with about 30% of the 
original code remaining at its core. The Half-Life SDK 
[8] was selected based on its use of standard C/C++ 
rather than proprietary languages and the availability 
of relatively comprehensive, albeit unofficial, SDK 
documentation [10]. 

2.2. Introduction to Half-Life 
Half-Life (HL) uses a client-server architecture 

allowing up to 32 players to compete in a single game. 
Each client has enough built-in artificial intelligence to 
estimate player movements in the case of lost messages 
from the server, correcting to the true picture of the 
world when contact is re-established. A total-
conversion of HL involves creating new maps, 
weapons, characters, physics and rules. The simplest 
method to modify the game uses map creation alone. 
To adjust or add new instances of the remaining items, 
the HL SDK must be reprogrammed.  

2.2.1.Map Creation 
New maps or levels can provide the illusion of an 
entirely new game. Every world is a combination of 
basic shapes but through careful application of textures 
the map’s terrain can be varied dramatically. Valve 
released a map editor called Hammer [9] which is a 
drawing tool for building maps. Hammer compiles 
maps to the BSP (Binary Space Partitioning) format 
used by Half-Life. 

BSP files have been designed to improve game play 
by minimizing the calculations involved at run-time 
when drawing the environment. The BSP file saves the 
topology of a map as a binary tree. Objects that are 
geographically close in the map are stored in 

neighboring nodes within the tree. In addition to the 
BSP file, Hammer produces a MAP file which 
provides a textual representation of the world. It lists 
information about objects in the world such as their 
name, type, size and coordinates. A view of Hammer 
can be seen in Figure 1, showing the map building 
views and a navigable view of the environment being 
generated. 

 
Figure 2. Hammer games editor for Half-Life 

 
The principle elements of a map are brushes and 

entities. Brushes are the three dimensional solid 
objects that represent the physical structure of the 
room e.g. walls, doors, furniture. Textures are applied 
to these blocks to give a realistic representation of a 
door, whiteboard, carpet and walls. Entities, on the 
other hand, are neither visible nor physically tangible 
during game-play. They exist only through the effects 
they supply to a map e.g. sound/light. Hammer shows 
the positioning of entities through the use of icons e.g. 
the light bulb at the centre of Figure 3. Entity-Brushes 
are the result of selecting a brush and associating an 
entity with it using a technique called tying which can 
be performed via the map editor. When tied, the 
combination provides a functional object e.g. a door or 
button.  

Triggers are essentially entity-brushes, however 
unlike the example of an entity-brush that is a door, 
triggers are invisible during game-play. They are used 
to generate events based on a player’s movements and 
location. For this reason, they must be invisible so that 
it is not possible to consciously avoid them. When a 
player enters a region of a map occupied by a trigger 
the associated event is activated e.g. a door is opened. 
As a result, a normal entity alone cannot act as a 
trigger since the boundary of the trigger must be 
detectable to the game engine. In Figure 3 triggers can 
be seen as the patterned bars surrounding the door and 
the lecturn. In this instance the triggers are present to 
open the door when a player approaches. During the 



setup process for the trigger, the door’s targetname is 
stored as the target for the trigger. At runtime the 
engine can perform a lookup using the target value to 
search for the entity to be activated. 

 

 
Figure 3. Map editor’s rendering of a prototype 
space 

 
Together these features of the HL SDK provide the 

flexibility needed to model a variety of sensors and 
actuators. Only simple actuation is possible, since 
entities at most support a single un-parameterised ‘use’ 
action. However, the ability to extract position of 
entities, proximity of other entities with a given radius 
and presence of other entities within a field of view 
allows for a large range of sensor types to be 
simulated. 

3. Ubiquitous Computing Simulator 
Though the HL SDK makes it is easy to isolate 

modification of the game’s code to a limited set of 
files, the discovery stage and learning curve were both 
difficult and time-consuming. As a result it was 
deemed too complex to require researchers or test staff 
to have to ascend that curve in order to effectively use 
the simulator. We therefore aimed to provide a 
convenient and flexible 3D virtual ubiquitous 
computing environment that researchers can use to test 
ubiquitous computing applications currently under 
development, without the need to develop game level 
code.  The resulting features of the simulator are: 
• 3D Graphical Interface: Provision of a 3D 

interactive graphical user interface using the SDK 
for simultaneous use by a number of test-subjects 

• Separation of simulator and SUT: The SUT is 
physically separate from the games engine, 
running on another machine if necessary. 
Simultaneous connection to multiple SUTs is 
supported. 

• Realism: The simulated ubiquitous computing 
environment realistically modes the equivalent 
real-world physical implementation of sensors and 
actuator. The framework emphasizes avoiding the 
use of the precise positional and attitudinal 
information available form the simulator, and 
simulating actual sensor data instead. 

• Flexibility: The simulator supports the test of a 
range of software. It is generic and not tailored to 
provide specific state or to interface to a particular 
piece of software, through the use of a proxy that 
mediates messages from the games engine to the 
SUTs 

• Usability: The configuration of an experiment is 
conducted entirely through the combination of 
existing map editors and an additional message 
definition tool which allows the information 
passed to and from entities in a specific map to be 
defined via a simple GUI. 

• Extensibility: The underlying SDK, though not 
typically used by a tester, can be readily adapted 
to extend the features offered by the simulator 
framework. 

• SUT API: This offers selectable state extraction. 
Researchers are provided with a mechanism to 
select a subset of the state information most suited 
to the goals of the SUT experiment. This is to 
avoid a full state dump, potentially containing 
surplus data and requiring unnecessary processing 
by the researcher. It also offers an interface to 
impose changes (i.e. actuation) on the simulated 
ubiquitous computing environment. 

 

 
Figure 4. Design Overview of Simulator 
Framework 

 
An overview of the design is shown in Figure 4. 

Binary Space Partitioning (BSP) files are generated by 
the map editor and fed into the simulator, while the 
message definition tool provides XML definitions of 
the state extraction and actuation message information 
to be passed between the simulator and the SUT during 
the experiment. These XML definitions are referenced 
by the map editor and fed into the simulator with the 
BSP files defining the environment. 



The modified game engine and SUT needed some 
method of communication to exchange information. 
Messages travelling outbound from the simulator 
contain state information about the simulated 
environment. Messages traveling inbound to the 
simulator contain instructions to adjust the simulated 
environment. Two specific feature of this framework 
are: 
• Network Connection: The network connection 

allows the simulator and SUT to run on separate 
computers. This is important because when both 
programs are run in parallel on a single machine 
the simulator’s graphics absorb the entire screen. 
In addition, the keyboard and mouse are 
dominated by Half-Life’s player controls. Running 
each program on a separate machine means a 
researcher can view and control both programs 
concurrently. This is particularly relevant when 
debugging test software. 

• Proxy: The Proxy removes any need to integrate a 
network connection into the SUT code by 
providing a ready-made link to the simulator. This 
is supplied with a view to reducing set-up time 
when initially connecting new SUT to TATUS. 
The Proxy also provides an API that offers 
function calls to send and receive messages to and 
from the simulator. 

Figures 5 and 6 show two screen shots from a 
ubiquitous computing meeting room scenario. The 
trigger entities visible in the map editors view of this 
scenario are invisible in these views, as are the trigger 
entities used to detect the characters in Figure 6 
standing up and sitting down. The other characters in 
Figure 6 are non-player characters, though in this 
particular test scenario the test operator can control 
when the standing figure gets to his feet and 
subsequently sits down through the use of XML 
commands sent from the proxy-level. The other 
characters are controlled by script based AI behavior. 
In an alternative collaborative test scenario, these 
characters could be controlled by other human test 
subjects on a remote game clients. 

Initial usage of the simulator by a TCD researcher 
has shown that single room scenarios can be 
configured using the map editor and message 
definition tool in a matter of hours. 
 

 
Figure 5. Screen shot from meeting room 
scenario 
 

 
Figure 6. Screen shot from simulated meeting 
room scenarios showing other characters 

 

4. User Interaction with Wireless Networks  
Currently TATUS does not simulate any aspect of 

the communications networks that must support any 
operational ubiquitous computing environment. The 
application of wireless access network technologies to 
ubiquitous computing environment, e.g. 802.11, 
Bluetooth, UWB, 3G and their fusion in 4G is an 
active area of research as is research into network 
architectures that addresses the intermittent 
connectivity, lack of fixed infrastructure and limited 
power requirements that characterizes ubiquitous 
computing, e.g. mobile ad hoc networks and sensor 
networks. 

A wide range of wireless network simulators exist 
that support this type of research. However they 
typically use statistical models of user behavior, thus 
not allowing for evaluation that is able to assess the 
reaction of human test subjects to the adaptive 



behavior wireless networks can provide. We have 
already started examining integration with simulators 
that would enhance the model of the sensed 
environment, in particular the TOSSIM TinyOS sensor 
network simulator [17], which would provide a more 
realistic view of sensor network latency and sensor 
reachability problems. 

In this section, however, we will present in more 
detail work that is underway in interfacing TATUS 
with a heterogeneous wireless network simulator that 
will allow us to evaluate the impact user behavior and 
actions in the environment have on the wireless 
network and indeed vice-versa.  

4.1 Wireless Network Simulator 
In order to evaluate the performance of a 

communication systems, especially those used in 
ubiquitous computing environments, a system 
simulation is being developed that  comprises of six 
main components as shown in Figure 7. 
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Figure 7. Structure of the Simulator 

• Environment Definition: Graphical user 
interface for the description of environment 
configuration, heterogeneous network 
infrastructure, user behaviour, etc. The 
environment definition is compatible with the 
BSP file based environment description of 
TATUS and in a joint simulation case user 
behavior is provided by TATUS.  

• Real World Simulator: Implements various 
models that capture behavior of entities in the 
simulated environment in a realistic form, 
especially people and vehicle mobility, 
models of environment ambient parameters as 
light, temperature, humidity, noise etc. This 
component also implements a web services 
interface for interfacing with the TATUS 
simulator. 

• RF Server: Component containing a ray-
tracing tool based on the Motif Model [14] to 
predict wireless channel condition for space-
time specific environment configuration, RF 
actuators range, etc. 

• System Simulator: this component  
comprises of a number of subcomponents for 
the simulation of different wireless network 
services.. 

• System Analysis & Optimization: Captures 
and analyses performance of the simulated 
system. It also implements a optimization 
engine based on evolutionary computing 
strategies for optimization of the system 
performance or infrastructure 
topology/layout. 

• Interface: Management system interfacing 
the main components of the simulation 
environment, which is a highly distributed 
system.  

 

 

 
Figure 8. Example of environment 
segmentation for ray-tracing prediction 

4.2 Wireless Link Parameters Prediction 
In order to predict wireless channel conditions and 
thus wireless system performance as realistically as 
possible for a particular environment configuration, the 
influence of presence and mobility of people on the 
channel conditions was studied and associated models 
implemented into the simulation system. The effects of 



people shadowing are especially important in indoor 
environments, where the deployed wireless systems 
provide wireless access through access points (APs) 
placed in convenient locations such as on ceilings, 
walls or some times even placed on desks near which 
wireless access is desired. From the radio wave 
propagation point of view, the signal between the AP 
and the user terminal propagates rather horizontally 
over the coverage area, crossing obstacles of various 
types such as desks, chairs and people etc. The net 
effect is an attenuation caused by static obstacles and a 
more varying signal due to moving obstacles such as 
people. As a consequence, there are rapid and frequent 
transitions between line-of-site and non-line-of-site 
situations, causing a variation in the statistics of fast 
fading, which is closely associated with the shadowing 
process. The characteristic of shadowing caused due to 
moving people resembles fast fading in other 
propagation environments. 
Figure 9 shows an example of measured signal level 
fluctuation when a person is randomly crossing LOS 
between transmitter and receiver. The description of 
the measurement and ray-tracing prediction of effects 
of moving people shadowing on the performance of a 
wireless system for both LOS and NLOS case can be 
found in [15, 16]. 

 
 b) 

Figure 9. Sample of measured signal level 
fluctuation when 1 person, 5 people and 14 
people are randomly crossing LOS between 
transmitter and receiver 
 
In order to accurately predict the signal quality in the 
channel, at every point of the investigated scenario, all 
parameters, except AWGN (Additive White Gaussian 
Noise), must be site-specifically predicted. Path loss 
and channel parameter prediction (Figure 11) are 
performed by a deterministic ray-tracing model known 
as Motif Model [14]. The prediction of the level of 
interference is based on the appropriately filtered mean 
signal level predicted from surrounding interferers 

such as access points, microwave ovens and other 
appliances.  
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Figure 10. Architecture of the Wireless Link 
Parameters Prediction 

Once the empirical parameters are delivered by the 
propagation model, they are used as inputs to the Link 
Level Simulator, using the channel model described 
above, and an estimation of BER can be obtained and 
used as input for the evaluation of IEEE802.11 WLAN 
performance. Figures 10 to 15 show site-specific 
predictions of channel parameters in every point of the 
investigated environment section. 

  
Figure 10. Signal level experienced by users of 
IEEE802.11 WLAN 

 
Figure 11. BER experienced by the users of 
IEEE802.11 WLAN (CCK 11) 



 
Figure 12. Throughput experienced by the 
users of IEEE802.11b WLAN 

 
Figure 13. Extra signal attenuation caused by 
people 

 
Figure 14. Extra Standard deviation of the 
signal fluctuation caused by people 

4.3 Simulator Integration 
In order to assess the impact of people movement 

and the effects of wireless communications usage an 
integration of the two simulators is desirable. This 
integration involves: 

• The use of the same BSP based representation 
of the test environment for both simulators. 

• The passing of character movement from 
TATUS to the wireless simulator so that the 
resulting changes in wireless signal propagation 
can be used to define 802.11 throughput 
calculations. The wireless simulator can also be 
used to predict the accuracy of location tracking 
mechanisms that use 802.11 signal strength. 

• Throughput figures can then be used to control 
application data flows between the SUT and 
user terminals, e.g. a PDA, used by the test 
subjects, in concert with the simulator, using a 
suitable network emulator, e.g. DummyNet [18] 

Integration between the platforms will take a Web 
Service approach similar to that described in [5]. This 
allows for flexible deployment of elements that make 
up the joint simulator.  

Figure 15 depicts the target operational 
configuration for the integration of the two simulators. 
A single map editing tool will generate maps formats 
for both TATUS and the Wireless Network Simulator. 
TATUS provides the SUT with stream of sensor data 
as configured by the editor, while it provides the 
Wireless Network Simulator with real-time updates of 
the position of all humans in the simulator, both player 
driven and non-player characters. The Wireless 
Network Simulator is then in a position to use the 
resulting updates to its wireless signal propagation 
map to provide accuracy-adjusted location tracking 
data to the SUT that reflects the errors introduces in 
802.11-based tracking due to signal fluctuations. It can 
also use similar data to control a traffic throttle placed 
between the SUT and the PDA used by the test subject 
to access ubiquitous computing services offered by the 
SUT, thus allowing the impact of signal fluctuations 
on these services to be assessed. 

 
Figure 15: Operation of integrated simulators 
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6. Conclusions 
In this paper we attempt to identify the difficulties 

of experimenting with and testing adaptive systems 
developed for ubiquitous computing environments. 
Such adaptive systems must react to changing user 
requirements and preferences, network connectivity 
and available services i.e. they are context aware. 
Controlling, recording and replicating such context and 
the corresponding human interaction with adaptive 
systems is a challenging and typically expensive 
undertaking, and hinders the development of effective 
adaptive software for ubiquitous computing. We 
describe a simulator that builds on experience of 
previous ubiquitous computing simulators that exploit 
the capabilities of first person 3D games engines to 
support such testing and evaluation activities. This 
simulator, TATUS, is novel in that it removes the need 
for experimenters to develop games level code, while 
retaining a large level of flexibility in the scenarios that 
can be readily developed by researchers.  A different 
simulator focusing on the variation of wireless 
throughput that occurs in populated indoor 
environment is also reviewed and the integration of 
these two simulators into a comprehensive, person-
centered testbed for adaptive ubiquitous computing 
systems is described. 

Future work will involve detailed evaluation of the 
integration of the two simulators. We need to assess in 
particular whether the limited interaction between the 
user and simulated environment has a significant 
impact on results. We are constructing a live 
ubiquitous computing environment in which scenarios 
that might require such interaction can be conducted 
and user evaluation compared with the equivalent 
simulator-based experiments. We will also examine 
different types of APIs for use by the SUT, in 
particular ones that replicate existing sensor networks, 
such as TinyDB [6].  Simulating the fidelity of 
simulated sensors is also an important issue, with more 
sophisticated models being built using the map editor 
to more accurately reflect sensor field of view and 
range and within those variations of sensing accuracy.  
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