

A Testbed for Investigating Task Allocation Strategies between Air

Traffic Controllers and Automated Agents

Nathan Schurr
1
, Richard Good

1
, Amy Alexander

1
, Paul Picciano

1
, Gabriel Ganberg

1
,

Michael Therrien
1
, Bettina L. Beard

2
 and Jon Holbrook

3

1Aptima Inc., 12 Gill Street, Suite 1400, Woburn, MA 01801

2NASA Ames Research Center, Moffett Field, CA 94035
3
San Jose State University Research Foundation, San Jose, CA 95192

{rgood, nschurr, aalexander, ppicciano, gganberg, mtherrien}@aptima.com, {tina.beard, jon.holbrook}@nasa.gov

Abstract

To meet the growing demands of the National Airspace System

(NAS) stakeholders and provide the level of service, safety and

security needed to sustain future air transport, the Next

Generation Air Transportation System (NextGen) concept calls

for technologies and systems offering increasing support from

automated systems that provide decision-aiding and optimization

capabilities. This is an exciting application for some core aspects

of Artificial Intelligence research since the automation must be

designed to enable the human operators to access and process a

myriad of information sources, understand heightened system

complexity, and maximize capacity, throughput and fuel savings

in the NAS.. This paper introduces an emerging application of

techniques from mixed initiative (adjustable autonomy), multi-

agent systems, and task scheduling techniques to the air traffic

control domain. Consequently, we have created a testbed for

investigating the critical challenges in supporting the early design

of systems that allow for optimal, context-sensitive function

(role) allocation between air traffic controller and automated

agents. A pilot study has been conducted with the testbed and

preliminary results show a marked qualitative improvement in

using dynamic function allocation optimization versus static

function allocation.

 Introduction

According to the Federal Aviation Administration,

“NextGen is an umbrella term for the ongoing, wide-

ranging transformation of the United States’ national

airspace system.” Fundamental to the Joint Planning and

Development Office’s (JPDO) definition of the Next

Generation Air Transportation System (NextGen) is the

notion that automated systems must coordinate with the

human operator to “take advantage of the functions each

can best perform” (JPDO, 2007). Under this specification,

Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

automated tools should be designed to support the optimal

allocation of tasks between the system and the human

operators using these systems. It follows that function

allocation strategies among operators and automated

systems must be studied early in the design process to

ensure that the impact of these function allocations can be

fully realized in an implemented system.

 Function allocation strategies can be either static or

dynamic. Static FA strategies assume that the automation

and human will maintain unchanging roles and

responsibilities. Dynamic FA strategies adjust seamlessly

and appropriately as required to balance workload and

capitalize on the human’s and automation’s strengths.

Here we present a testbed, referred to as the Airportal

Function Allocation Reasoning (AFAR) testbed, for

investigating the critical challenges in supporting the early

design of systems that allow for optimal, context-sensitive

function allocation between human air traffic controller

and automated systems.

AFAR applies the Artificial Intelligence research areas

of mixed initiative (adjustable autonomy), multiagent

systems, and task scheduling to the NextGen aviation

environment. The testbed is designed to investigate the

interaction between automation and human operators,

specifically, adjustable autonomy between air traffic

controllers managing aircraft on the airport surface (ground

controllers) and automated agents capable of performing a

subset of those associated tasks. Because the NextGen

concept of operations (ConOps) involves new classes of

functions and responsibilities, with relatively unstudied

consequences, the testbed allows for assessing task

allocation performance in terms of its adaptation to

previously unplanned-for scenarios and changing ConOps.

The intention is for early testing and analysis of human-

system interaction concepts with dynamic function

allocation that adjusts to the evolving goals, demands, and

constraints of the operational environment. Consequently,

the testbed uses dynamic function allocation strategies

1839

Proceedings o f the Twenty-Second Innovative Applications o f Artificial Intelligence Conference (IAAI-10)

(DFAS) that are represented by allocation policies that

vary over time and circumstances. By casting function

allocation as a problem of adjusting autonomy between

human-automation (and human-human) links, one can

leverage the current techniques for optimizing both

strategy selection and strategy timing.

Related Work

One of the most fundamental challenges of building a

human-multiagent team is that of “adjustable autonomy”

(Reitsema et al. 2005); (Schurr, Patil, and Pighin 2006);

(Scerri, Pynadath, and Tambe 2002); (Sellner et al. 2006);

(Sierhuis et al. 2003); (Varakantham, Maheswaran, and

Tambe 2005). Conventionally, adjustable autonomy refers

to the ability of an agent to dynamically adjust its own

autonomy, thereby altering the amount of control a human

has over the agent at a particular time and context. Given

the changing state of the environment and the team, it is

beneficial for an agent to be flexible in its autonomy and

not be forced to act either with full autonomy or with zero

autonomy. The key to adjustable autonomy is when and

where to transfer control of a decision. For example, much

work has focused on adjustable autonomy in robotic assets

to better cope with the unpredictable nature of military

environments (De Visser et al. 2006); (Freedy et al. 2008);

(Parasuraman and Wickens 2008). In this case, a multi-

agent planning tool based on a proxy framework with

adjustable autonomy is used to facilitate human-robot task

allocation. The overall approach is to enhance human-robot

team effectiveness by matching function allocation to

contextual and situational demands.

In addition to adjustable autonomy, extensive work

has been done in the last decade to evaluate the intricate

interactions between automation and the human operators

(Parasuraman and Riley 1997); (Parasuraman, Sheridan,

and Wickens 2000). These solutions help support designers

in developing systems and policies to exploit the

capabilities of both human operators and automated

systems. Computational and formal models have also been

recently developed including automation verification

(Degani and Heymann 2002), Bayesian modeling

approaches (Sheridan and Parasuraman 2000), and

mathematical models of automation reliance and

compliance (Dixon and Wickens, 2006).

The Air Traffic Control Use Case

The motivating example for the AFAR testbed involves

human and automated agents sharing ground control

responsibilities at Dallas/Fort Worth International Airport

(DFW). The use case was developed based on

contributions from three sources: (1) interviewing

experienced pilots, (2) visiting DFW and Boston Logan’s

control towers, and (3) interviewing experienced air traffic

controllers. The resulting scenario consists of

approximately two dozen aircraft at DFW over a period of

approximately 30 minutes. During the scenario the surface

operations duties were shared between a human ground

controller and an automated agent. Duties were shared for

managing traffic and ensuring safe taxi coordination for all

aircraft. Responsibility for a given aircraft concluded

when it was handed over to the local controller (a

responsibility coordinated by a testbed agent) for departure

or was parked at the designated terminal gate for arrivals.

The scenario involved the management of arriving and

departing traffic on the east side of DFW. Arrivals were

inbound on Runway (RWY) 17C, and departing aircraft

took off from RWY 17R. This configuration created a

need to cross arriving traffic over the active departure

runway. Departing and arriving aircraft were assigned

terminal gates, destinations, squawk codes, airframe types,

and call signs. The airport configuration included the

designation of standard departure and arrival routes, as

well as several predetermined taxi routings.

The simulation involved a ground controller position

as the single human-in-the-loop participant. Researchers

served as pseudo-pilots (one for departure and one for

arrivals) managing all scenario aircraft to provide

communications and manipulate aircraft taxi behavior as

dictated by either the ground controller or automated agent.

In order to manipulate the workload, attention allocation,

and task prioritization, a number of experimental “events”

were inserted during each run. These ranged from small

perturbations such as intentional read-back errors to more

demanding situations such as a pilot reporting from near

the departure queue that they do not yet have their

weights/balances for takeoff. The intent was to maintain

realistic demands and interrupts that are likely to occur in

operations. The events were collected through interviews

with commercial pilots and controllers to validate these

situations.

The AFAR Testbed

The AFAR Testbed consists of four main applications: the

AFAR JADE Agents, the AFAR User Interface, the DFAS

Task Allocation Engine, and Aptima’s Distributed

Dynamic Decision-making (DDD) simulation

environment. While running experiments, the air traffic

controller participant views the ground controller user

interface and interacts verbally with experimenter

confederates (or pseudo-pilots) who play the role of the

arriving and departing aircraft pilots. These pseudo-pilots

view and interact with a different set of user interfaces.

Meanwhile, the Decision Maker Proxy Agents monitor the

completion of tasks by the ground controller participant

and report progress to the Function Allocation Agent. The

Function Allocation Agent generate workflows based on

the DFAS algorithm that specifies whether tasks should be

1840

performed by the ground controller participant, or by

automation. If the task is assigned to the ground controller,

the ground controller participant is required to initiate

communications with the pseudo-pilots to complete the

task. If the task is assigned to automation, the pseudo-

pilots complete the task without requiring input from the

participant. A schematic showing the interactions of these

components is shown in Figure 1 followed by a discussion

of each of these components in more detail.

Figure 1: The AFAR Testbed architecture consists of

four main components: AFAR JADE Agents, AFAR

User Interface, DFAS Task Allocation Engine, and the

DDD server.

Agent Design

There are two distinct agent architectures used in the

AFAR Testbed. The AFAR JADE Agents are based on the

Java Agent Development framework. They consist of four

types of agents: Function Allocation, Decision Maker

Proxy, Solver, and DDD Client agents.

The Function Allocation Agent generates work flows

and adds them to the global task queue (i.e. generates an

arrival work flow when it's informed a plane has arrived).

It also maintains a list of active Decision Maker Proxy

agents and their capabilities and assigns tasks to decision

makers (e.g. Ground Controller or automation) based on

input from the Solver Agents and the state of the global

task queue.

Decision Maker Proxy agents come in two varieties, one

that represents a human and one that represents an

automated system. Decision Maker Proxy agents are

responsible for detecting task completion and reporting

progress to the Function Allocation Agent.

Solver Agents are responsible for scheduling and

assigning tasks. There are two different solver agents for

the two conditions in the pilot study. The DFAS Solver

Agent applies the Dynamic Function Allocation Strategies

algorithms when scheduling tasks and the Round Robin

Solver applies a simple algorithm that statically distributes

tasks between the Ground Controller and automation.

The DDD Client Agent is responsible for subscribing to

relevant DDD Simulation events and provides the Function

Allocation and Decision Maker Proxy agents with the

necessary information to accomplish their goals.

Figure 2: The AFAR interface enhanced with dynamic

map

 The second distinct agent architecture that the AFAR

Testbed uses is the DDD Agent Framework, a DDD-

specific agent framework that is used to develop aircraft

pilot agents and an automated Local Controller agent. In

general, the goal of these agents is to take the place of all

the other decision makers and actors that would normally

be involved in an air traffic control environment. The pilot

agents monitor their environment using the AFAR

interface (shown in Figure 2) to avoid collisions and can

take taxi instructions from the Ground Controller through

the pseudo-pilots. When given taxi instructions, they can

navigate through the airport following the appropriate

routes. The automated Local Controller agent serves as the

owner of all aircraft when they are not directly under the

Ground Controller or automation’s control. It gives

instructions to the pilot agents during landings until they

are handed off to the Ground Controller or automation, and

handles the takeoff of departing aircraft.

Dynamic Function Allocation Strategies

The DFAS approach assumes that functions will be

allocated across heterogeneous decision makers, where a

decision maker is either an automated system (agent) or a

human operator. As the name suggests, the two main

characteristics of the function allocation techniques are that

they must be dynamic (functions allocated based on real-

time state of the world, not static rules) and they must be

strategic (functions are not only allocated for the current

state of the world, but are predictive over a scheduling

horizon). The role of the DFAS component is to determine

the task assignment between human air traffic controller(s)

and automated agents. As such, DFAS operates as a task

1841

allocation scheduler in which DFAS determines which

resource is most appropriate for what task(s) and when

given the state, user preferences, and constraints in the

operational environment. Some of the unique constraints

and preferences that the DFAS engine must consider when

creating a task assignment schedule, irrespective of the

DFAS scheduling algorithm include: task quality and

duration, the agent’s real-time workload and ability to

multi-task, task precedence (order), penalties from

switching tasks between agents, tardiness penalties,

rescheduling frequency, and algorithm execution time.

The preferences and constraints listed above are used

as inputs into the DFAS engine as well as the world state.

The world state (managed by the task manager) refers to

the current list of tasks to be assigned, which tasks are

currently assigned to whom, the tardiness of the tasks, and

any available insight into the state of the task (for example,

how close is a task from being completed). The output of

the DFAS engine is a schedule for each of the agents (who

should be doing what and when).

DFAS Solution Methods. Due to the discrete decisions

involved, the task allocation problem is inherently

combinatorial in nature and, therefore, very challenging

from a computationally expense perspective. More

specifically, the problem falls into a class of NP-complete

problems (Garey and Johnson 1979). Many approaches

have been proposed for solving the task allocation problem

including utilizing Markov Decision Processes (MDP;

Dolgov and Durfee 2006), discrete (DTS) and continuous

time schedulers (Floudas and Lin 2004), and myriad

heuristic methods (Pinedo 1992). Because discrete-time

schedulers are able to formulate constraints and objectives

in a relatively straightforward manner and globally optimal

results can be reached within a reasonable execution time,

the authors have chosen to first implement the DTS

approach.

Discrete-Time Scheduler. The discrete-time scheduler’s

unique characteristic is that it breaks up the scheduling

horizon into uniform time durations (often called shifts). A

schematic of the DTS approach is shown in Figure 3 where

the goal is to assign agent (i) to task (j) during shift (k). If

an agent is assigned to a task then a fraction of the task is

consumed during the shift (according to the task’s

duration). The fraction of the incomplete task remains for

the agents to operate on during the following shift (k+1).

To illustrate this concept, consider the case where a task’s

duration is twice the shift interval: half of the task can be

completed during shift, k, and half of the task remains for

shift, k+1. Resources are allocated to tasks until none of

the task is remaining.

An exemplary formulation of the DTS uses a mixed

integer program (MIP) of the following form,

(1)

subject to:

 (2)

(3)

 (4)

 (5)

. (6)

The objective function in (1) shows that the MIP has

three types of variables: X, Y, and Z. Xi,j,k is a binary

variable that indicates if agent i is assigned to task j during

shift k. The continuous variable Yj,k indicates how much of

task j remains unfinished after shift k. Vi,j,k is the change in

task assignment between shifts k-1 and k. The objective

function in (1) also shows that the MIP is balancing four

objectives: minimize the cost of a task assignment

(weighted by C), maximize the quality of the task

assignment (weighted by Q), minimize the tardiness of a

task (weighted by P), and minimize the change in an

agent’s task assignment (weighted by S). The constraints

in (2) through (6) are explained below:

Eq. (2) is the task consumption balance. The amount of

task j remaining at shift k is consumed by the agent

assignment i where the task is consumed by at the rate

Ri,j tasks per shift. The rate is the shift duration divided

by the task duration.

Eq. (3) specifies that a task can only be assigned to one

agent.

Eq. (4) specifies the precedence. An agent cannot be

assigned to task j in shift k unless the preceding task, j’,
is completed at shift k-1.

Eq. (5) is the increase in task assignments between

shifts.

Eq. (6) indicates that the task assignments X are binary

variables and Y and V are continuous variables.

Figure 3: The discrete-time scheduler determines which

agent is assigned to what task and at what time. Tasks

are divided into complete and incomplete portions.

1842

To illustrate the algorithm, the task flows for two

events have been generated. The example includes four

agents each of which is competent in a subset of the tasks

and can accomplish the tasks at different durations. In

addition, workloads, quality, and cost values has been

assigned to each of the competent agent/task duples. The

scheduling horizon was set at 15 minutes and the time

interval was set at 15 seconds for a total of 60 shifts.

Figure 4 illustrates the remaining fraction after each of the

shifts in which green indicates that 100% of the task is

remaining. As the task is completed over time, the color

shifts to red. One can clearly see the propagation of tasks.

As one task is finished, the agents can start working on

completing the following task(s). We also see in Figure 4

that several of the tasks remain incomplete at the end of the

planning horizon. As the horizon recedes and tasks are

completed, these tasks will be included in the scheduling

horizon at the next reschedule.

Figure 4: The amount of each task remaining at the end

of each 15-second shift.

The task assignment is shown in Figure 5 where a task

assignment is indicated with a green dot. Most of the time

an agent is assigned to a single task. However,

occasionally agents are assigned to multiple tasks if the

workload of the tasks does not exceed the agent’s capacity.

Figure 5 also shows that the penalty on an agent switching

tasks has the desired effect of keeping the agents

designated to tasks. There are no examples of a task being

switched between agents as the task is being executed.

AFAR Pilot Study

To test the feasibility of employing DFAS concepts, we

performed a pilot investigation using our DFW ground

control simulator. We ran two taxi scenarios requiring the

participant (an experienced air traffic controller) to manage

arriving and departing traffic safely and efficiently. The

two scenarios involved a moderate traffic load and both

scenarios included a few off-nominal events to make the

scenarios more interesting and challenging for the

participant. Several photographs of the AFAR setup are

shown in Figure 6.

Figure 5: An example agent task assignment schedule.

The ground traffic control participant completed the

two scenarios with and without the DFAS component

managing the task allocation. In the non-DFAS condition,

automation still assisted the ground controller; however,

the tasks were assigned according to a static round-robin

heuristic. The automation during the non-DFAS operation

was preserved to prevent outcome differences from being

confounded by an automation factor, but instead attempted

to keep automation consistent with and without DFAS in

order to engender a more controlled evaluation of the

DFAS technology. In both conditions, an automated agent

could be assigned tasks of receiving the aircraft

(acknowledge), providing taxi instructions, and granting

permission to taxi.

Figure 6: (Top) The experimental setup with the

participant in the center and the pseudopilots on the

left and right. (Left) The participant’s desk. (Right)

Participant using the system.

1843

Each of the participants received a training brief and

two training trials to familiarize himself with the

automation and user interface. The two experimental

scenarios were run, one with the DFAS algorithms and one

with the static function allocation (round robin). There

were 2 settings for the static allocation which manipulated

the number of aircraft under automated control. Each

participant performed two experimental scenarios on two

different days (one DFAS and one static each day), for a

total of eight experimental trials. The trial order

pertaining to the inclusion of DFAS was balanced within

and between participants.

Subjective ratings of mental workload were captured

via the NASA Task Load Index (TLX), developed by

NASA Ames Research Center (Hart & Staveland, 1988).

The NASA TLX is a multi-dimensional rating procedure

that provides an overall workload score based on a

weighted average of ratings on six subscales: Mental

Demand, Physical Demand, Temporal Demand, Own

Performance, Effort, and Frustration. The degree to which

each of the six factors contributed to the workload

associated with each automation condition, from the

participants' perspectives, was determined by their

responses to pair-wise comparisons among the six factors.

Magnitude ratings on each subscale were then obtained

after each scenario. Ratings of factors deemed most

important in creating the workload of a task were given

more weight in computing the overall workload score,

thereby enhancing the sensitivity of the scale. Table 1

provides the descriptive statistics for the NASA TLX data

for each sub-scale, as well as for the composite workload

score.

Table 1: NASA TLX Subjective Workload Rating

Descriptive Statistics

Mean Standard Deviation

Scale Static DFAS Static DFAS

Mental 48.75 43.75 12.37 26.52

Physical 27.50 12.50 17.68 0.00

Temporal 55.00 43.75 28.28 30.05

Performance 80.00 91.25 7.07 8.84

Effort 57.50 36.25 7.07 30.05

Frustration 25.00 6.25 28.28 1.77

Composite 49.00 55.00 27.58 12.02

While there were no statistically significant

differences in workload ratings between the static and

DFAS conditions (all p > 1.0), it is important to note the

preliminary nature of this finding given the small dataset

collected , as well as the variability in responses within the

dataset. We therefore highlight a few trends that may bear

significance in future studies:

The dynamic function allocation condition showed a

trend toward lower workload ratings across the “physical

demand,” “temporal demand,” “effort,” and “frustration”

sub-scales.

Variability was high in ratings of “mental demand,”

“temporal demand,” and “effort. These sub-scales were

considered by the controllers (via the subscale

ranking/paired comparison procedure) to be major

contributors to overall perceptions of workload.

“Physical demand” and “frustration” were considered to

contribute the least to overall perceptions of workload.

Although we lack the necessary data to draw statistically

definitive conclusions, the results of the pilot study were

encouraging. Perhaps most telling are the words of the

participants themselves. When asked to qualitatively

compare the runs with and without DFAS, the experienced

ground controllers responded with the following

comments:

Participant 1: “Without a doubt, my temporal

demand and mental workload increased substantially

in the static [function allocation] environment. When

working in DFAS mode, a feeling of great

confidence came over me, knowing that DFAS

would kick in and make my job manageable while

traffic increased.”

Participant 2: “[The DFAS function allocation] was

easier because it acted as more of a manager.”

Conclusions and Future Work

In this paper we have introduced a testbed that is

designed to evaluate adjustable autonomy technology early

in the design cycle. A use case involving ground control at

DFW airport was developed to exercise the testbed and a

pilot study was conducted involving two experienced air

traffic controllers. Although still preliminary, the results of

the pilot study were encouraging in that the participants

reported sufficient trust and confidence as well as DFAS’s

ability to mitigate workload. The testbed has shown to be

easily configurable by running several operational

scenarios utilizing two distinct function allocation

algorithms: the round-robin heuristic and the DTS task

allocation algorithm (DFAS). In addition, the fidelity and

user interface sufficiently captured the airport surface

domain to create realistic interactions and workload for the

participants.

Results to date indicate that the flexibility and utility

of the AFAR testbed will enable future investigation into

human-system interaction and approaches to adjustable

autonomy. As such, the next steps in this project involve

investigating other DFAS algorithms and including

multiple participants with expanded roles and in more

complex operational scenarios. In addition, the testbed can

be expanded to involve the air traffic control domain (in

addition to ground control) including coordinating within

airport multiplexes. AFAR can also be expanded to

domains outside of air traffic management into myriad

1844

areas involving teams of humans and automated systems.

Finally, we see the need to develop generate and deploy

more comprehensive performance metrics to evaluate the

allocation strategies. While traditional metrics (e.g.,

accuracy, completion time) can be used for assessing total

system performance, these methods have generally been

extended from human performance measurement

approaches and often lack sensitivity for assessing the

complex performance of the collaborative human/

automation team.

AAcknowledgments

The authors would like to thank the NASA Airspace

Systems Program for its support of this work under

Contract #NNA08BC68C.

References

De Visser, E., Parasuraman, R., Freedy, A., Freedy, E., &

Weltman, G. (2006). A comprehensivc methodology for

assessing human-robot team performance for use in

training and simulation. In Proceedings of the 50th Annual

Meeting of the Human Factors and Ergonomics Society.

Santa Monica, CA.

Degani, A., & Heymann, M. (2002). Formal verification of

human-automation interaction. Human Factors, 44, 28-43.

Dixon, S., & Wickens, C. D. (2006). Automation reliability

in unmanned aerial vehicle control: A reliance-compliance

model of automation dependence in high workload. Human

Factors , 48 (3), 474-486.

Dolgov, D., & Durfee, E. (2006). Resource allocation

among agents with MDP-induced preferences. Journal of

Artificial Intelligence Research, 27, 505-549.

Floudas, C. & Lin, X. (2004). Continuous-time versus

discrete-time approaches for scheduling of chemical

processes: A review. Computers and Chemical
Engineering, 11 (28), 2109-2129.

Freedy, A., Sert, O., McDonough, J., Weltman, G., &

Tambe, M. (2008). Multi-agent adjustable autonomy

framework (MAAF) for multi-robot, multi-human teams.

In Proceedings of the Symposium on Collaborative
Technologies and Systems. Irvine, CA: CTS.

Garey, M. R., & Johnson, D. R. (1979). Computers and

intractability: A guide to the theory of NP- completeness.
New York: W.H. Freeman.

Hart, S. G., & Staveland, L. E. (1988). Development of a

multi-dimensional workload rating scale: Results of

empirical and theoretical research. In P. A. Hancock, & N.

Meshkati (Eds.), Human Mental Workload. Amsterdam,

The Netherlands: Elsevier.

JPDO. (2007). Concept of Operations for the Next

Generation Air Transportation System. Retrieved from

http://www.jpdo.gov/library/NextGen v2.0.pdf

Parasuraman, R., & Riley, V. (1997). Humans and

automation: Use, misuse, disuse, abuse. Human Factors,
39 (2), 230-253.

Parasuraman, R., & Wickens, C. D. (2008). Humans: Still

vital after all these years of automation. Human Factors,
50 (3), 511-520.

Parasuraman, R., Sheridan, T., & Wickens, C. (2000). A

model of types and levels of human interaction with

automation. IEEE Transactions on Systems, Man, and

Cybernetics—Part A: Systems and Humans, 30, 286-297.

Pinedo, M. (1992). Scheduling. In G. Salvendy (Ed.),

Handbook of Industrial Engineering (2nd Edition ed.).

Chichester: Wiley Interscience.

Reitsema, J., Chun, W., Fong, T., & Stiles, R. (2005).

Team-centered virtual interactive presence for adjustable

autonomy. American Institute of Aeronautics and
Astronautics (AIAA) Space .

Scerri, P., Pynadath, D., & Tambe, M. (2002). Towards

adjustable autonomy for the real world. Journal of
Artificial Intelligence Research, 17, 171-228.

Schurr, N., Patil, P., & Pighin, F. (2006). Resolving

Inconsistencies in Adjustable Autonomy in Continuous

Time (RIAACT): A robust approach to adjustable

autonomy for Human-Multiagent teams. Fifth

International Joint Conference on Autonomous Agents and
Multiagent Systems.

Sellner, B., Heger, F., Hiatt, L., Simmons, R., & Singh, S.

(2006). Coordinated multi-agent teams and sliding

autonomy for large-scale assembly. Proceedings of the

IEEE - Special Issue on Multi-Robot Systems , 94 (7),

1425-1444.

Sheridan, T., & Parasuraman, R., (2000). Human versus

automation in responding to failures: An expected-value

analysis. Human Factors , 42, 403-407.

Sierhuis, M., Bradshaw, J., Acquisti, A., Hoof, R., Jeers,

R., & Uszok, A. (2003). Human-agent teamwork and

adjustable autonomy in practice. In Proceedings of the

Seventh International Symposium on AI, Robotics and

Automation in Space. Nara, Japan.

Varakantham, P., Maheswaran, R., & Tambe, M. (2005).

Exploiting belief bounds: Practical POMDPs for personal

assistant agents. In Proceedings of the fourth international
joint conference on Autonomous agents and multiagent

systems (AAMAS).

1845

