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Abstract 

To meet the growing demands of the National Airspace System 

(NAS) stakeholders and provide the level of service, safety and 

security needed to sustain future air transport, the Next 

Generation Air Transportation System (NextGen) concept calls 

for technologies and systems offering increasing support from 

automated systems that provide decision-aiding and optimization 

capabilities. This is an exciting application for some core aspects 

of Artificial Intelligence research since the automation must be 

designed to enable the human operators to access and process a 

myriad of information sources, understand heightened system 

complexity, and maximize capacity, throughput and fuel savings 

in the NAS..  This paper introduces an emerging application of 

techniques from mixed initiative (adjustable autonomy), multi-

agent systems, and task scheduling techniques to the air traffic 

control domain.  Consequently, we have created a testbed for 

investigating the critical challenges in supporting the early design 

of systems that allow for optimal, context-sensitive function 

(role) allocation between air traffic controller and automated 

agents. A pilot study has been conducted with the testbed and 

preliminary results show a marked qualitative improvement in 

using dynamic function allocation optimization versus static 

function allocation. 

 Introduction   

According to the Federal Aviation Administration, 

“NextGen is an umbrella term for the ongoing, wide-

ranging transformation of the United States’ national 

airspace system.” Fundamental to the Joint Planning and 

Development Office’s (JPDO) definition of the Next 

Generation Air Transportation System (NextGen) is the 

notion that automated systems must coordinate with the 

human operator to “take advantage of the functions each 

can best perform” (JPDO, 2007). Under this specification, 
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automated tools should be designed to support the optimal 

allocation of tasks between the system and the human 

operators using these systems. It follows that function 

allocation strategies among operators and automated 

systems must be studied early in the design process to 

ensure that the impact of these function allocations can be 

fully realized in an implemented system.  

     Function allocation strategies can be either static or 

dynamic.  Static FA strategies assume that the automation 

and human will maintain unchanging roles and 

responsibilities.  Dynamic FA strategies adjust seamlessly 

and appropriately as required to balance workload and 

capitalize on the human’s and automation’s strengths.  

Here we present a testbed, referred to as the Airportal 

Function Allocation Reasoning (AFAR) testbed, for 

investigating the critical challenges in supporting the early 

design of systems that allow for optimal, context-sensitive 

function allocation between human air traffic controller 

and automated systems.  

AFAR applies the Artificial Intelligence research areas 

of mixed initiative (adjustable autonomy), multiagent 

systems, and task scheduling to the NextGen aviation 

environment. The testbed is designed to investigate the 

interaction between automation and human operators, 

specifically, adjustable autonomy between air traffic 

controllers managing aircraft on the airport surface (ground 

controllers) and automated agents capable of performing a 

subset of those associated tasks. Because the NextGen 

concept of operations (ConOps) involves new classes of 

functions and responsibilities, with relatively unstudied 

consequences, the testbed allows for assessing task 

allocation performance in terms of its adaptation to 

previously unplanned-for scenarios and changing ConOps. 

The intention is for early testing and analysis of human-

system interaction concepts with dynamic  function 

allocation that adjusts to the evolving goals, demands, and 

constraints of the operational environment. Consequently, 

the testbed uses dynamic function allocation strategies 
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(DFAS) that are represented by allocation policies that 

vary over time and circumstances. By casting function 

allocation as a problem of adjusting autonomy between 

human-automation (and human-human) links, one can 

leverage the current techniques for optimizing both 

strategy selection and strategy timing.  

Related Work 

One of the most fundamental challenges of building a 

human-multiagent team is that of “adjustable autonomy” 

(Reitsema et al. 2005); (Schurr, Patil, and Pighin 2006); 

(Scerri, Pynadath, and Tambe 2002); (Sellner et al. 2006);  

(Sierhuis et al. 2003); (Varakantham, Maheswaran, and 

Tambe 2005). Conventionally, adjustable autonomy refers 

to the ability of an agent to dynamically adjust its own 

autonomy, thereby altering the amount of control a human 

has over the agent at a particular time and context. Given 

the changing state of the environment and the team, it is 

beneficial for an agent to be flexible in its autonomy and 

not be forced to act either with full autonomy or with zero 

autonomy. The key to adjustable autonomy is when and 

where to transfer control of a decision.  For example, much 

work has focused on adjustable autonomy in robotic assets 

to better cope with the unpredictable nature of military 

environments (De Visser et al. 2006); (Freedy et al. 2008); 

(Parasuraman and Wickens 2008).  In this case, a multi-

agent planning tool based on a proxy framework with 

adjustable autonomy is used to facilitate human-robot task 

allocation. The overall approach is to enhance human-robot 

team effectiveness by matching function allocation to 

contextual and situational demands.  

In addition to adjustable autonomy, extensive work 

has been done in the last decade to evaluate the intricate 

interactions between automation and the human operators 

(Parasuraman and Riley 1997); (Parasuraman, Sheridan, 

and Wickens 2000). These solutions help support designers 

in developing systems and policies to exploit the 

capabilities of both human operators and automated 

systems.  Computational and formal models have also been 

recently developed including automation verification 

(Degani and Heymann 2002), Bayesian modeling 

approaches (Sheridan and Parasuraman 2000), and 

mathematical models of automation reliance and 

compliance (Dixon and Wickens, 2006). 

The Air Traffic Control Use Case 

The motivating example for the AFAR testbed involves 

human and automated agents sharing ground control 

responsibilities at Dallas/Fort Worth International Airport 

(DFW). The use case was developed based on 

contributions from three sources: (1) interviewing 

experienced pilots, (2) visiting DFW and Boston Logan’s 

control towers, and (3) interviewing experienced air traffic 

controllers.  The resulting scenario consists of 

approximately two dozen aircraft at DFW over a period of 

approximately 30 minutes.  During the scenario the surface 

operations duties were shared between a human ground 

controller and an automated agent.  Duties were shared for 

managing traffic and ensuring safe taxi coordination for all 

aircraft.  Responsibility for a given aircraft concluded 

when it was handed over to the local controller (a 

responsibility coordinated by a testbed agent) for departure 

or was parked at the designated terminal gate for arrivals.  

The scenario involved the management of arriving and 

departing traffic on the east side of DFW.  Arrivals were 

inbound on Runway (RWY) 17C, and departing aircraft 

took off from RWY 17R.  This configuration created a 

need to cross arriving traffic over the active departure 

runway.  Departing and arriving aircraft were assigned 

terminal gates, destinations, squawk codes, airframe types, 

and call signs. The airport configuration included the 

designation of standard departure and arrival routes, as 

well as several predetermined taxi routings.  

The simulation involved a ground controller position 

as the single human-in-the-loop participant. Researchers 

served as pseudo-pilots (one for departure and one for 

arrivals) managing all scenario aircraft to provide 

communications and manipulate aircraft taxi behavior as 

dictated by either the ground controller or automated agent.  

In order to manipulate the workload, attention allocation, 

and task prioritization, a number of experimental “events” 

were inserted during each run.  These ranged from small 

perturbations such as intentional read-back errors to more 

demanding situations such as a pilot reporting from near 

the departure queue that they do not yet have their 

weights/balances for takeoff.  The intent was to maintain 

realistic demands and interrupts that are likely to occur in 

operations.  The events were collected through interviews 

with commercial pilots and controllers to validate these 

situations.  

The AFAR Testbed 

The AFAR Testbed consists of four main applications: the 

AFAR JADE Agents, the AFAR User Interface, the DFAS 

Task Allocation Engine, and Aptima’s Distributed 

Dynamic Decision-making (DDD) simulation 

environment.  While running experiments, the air traffic 

controller participant views the ground controller user 

interface and interacts verbally with experimenter 

confederates (or pseudo-pilots) who play the role of the 

arriving and departing aircraft pilots. These pseudo-pilots 

view and interact with a different set of user interfaces.  

Meanwhile, the Decision Maker Proxy Agents monitor the 

completion of tasks by the ground controller participant 

and report progress to the Function Allocation Agent.  The 

Function Allocation Agent generate workflows based on 

the DFAS algorithm that specifies whether tasks should be 
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performed by the ground controller participant, or by 

automation.  If the task is assigned to the ground controller, 

the ground controller participant is required to initiate 

communications with the pseudo-pilots to complete the 

task.  If the task is assigned to automation, the pseudo-

pilots complete the task without requiring input from the 

participant. A schematic showing the interactions of these 

components is shown in Figure 1 followed by a discussion 

of each of these components in more detail. 

 

Figure 1: The AFAR Testbed architecture consists of 

four main components: AFAR JADE Agents, AFAR 

User Interface, DFAS Task Allocation Engine, and the 

DDD server. 

Agent Design 

There are two distinct agent architectures used in the 

AFAR Testbed.  The AFAR JADE Agents are based on the 

Java Agent Development framework. They consist of four 

types of agents: Function Allocation, Decision Maker 

Proxy, Solver, and DDD Client agents.   

The Function Allocation Agent generates work flows 

and adds them to the global task queue (i.e. generates an 

arrival work flow when it's informed a plane has arrived).  

It also maintains a list of active Decision Maker Proxy 

agents and their capabilities and assigns tasks to decision 

makers (e.g. Ground Controller or automation) based on 

input from the Solver Agents and the state of the global 

task queue.  

Decision Maker Proxy agents come in two varieties, one 

that represents a human and one that represents an 

automated system.  Decision Maker Proxy agents are 

responsible for detecting task completion and reporting 

progress to the Function Allocation Agent.   

Solver Agents are responsible for scheduling and 

assigning tasks. There are two different solver agents for 

the two conditions in the pilot study.  The DFAS Solver 

Agent applies the Dynamic Function Allocation Strategies 

algorithms when scheduling tasks and the Round Robin 

Solver applies a simple algorithm that statically distributes 

tasks between the Ground Controller and automation. 

The DDD Client Agent is responsible for subscribing to 

relevant DDD Simulation events and provides the Function 

Allocation and Decision Maker Proxy agents with the 

necessary information to accomplish their goals. 

 

Figure 2: The AFAR interface enhanced with dynamic 

map 

 The second distinct agent architecture that the AFAR 

Testbed uses is the DDD Agent Framework, a DDD- 

specific agent framework that is used to develop aircraft 

pilot agents and an automated Local Controller agent.  In 

general, the goal of these agents is to take the place of all 

the other decision makers and actors that would normally 

be involved in an air traffic control environment.  The pilot 

agents monitor their environment using the AFAR 

interface (shown in Figure 2) to avoid collisions and can 

take taxi instructions from the Ground Controller through 

the pseudo-pilots.  When given taxi instructions, they can 

navigate through the airport following the appropriate 

routes.  The automated Local Controller agent serves as the 

owner of all aircraft when they are not directly under the 

Ground Controller or automation’s control.  It gives 

instructions to the pilot agents during landings until they 

are handed off to the Ground Controller or automation, and 

handles the takeoff of departing aircraft. 

Dynamic Function Allocation Strategies 

The DFAS approach assumes that functions will be 

allocated across heterogeneous decision makers, where a 

decision maker is either an automated system (agent) or a 

human operator. As the name suggests, the two main 

characteristics of the function allocation techniques are that 

they must be dynamic (functions allocated based on real-

time state of the world, not static rules) and they must be 

strategic (functions are not only allocated for the current 

state of the world, but are predictive over a scheduling 

horizon).  The role of the DFAS component is to determine 

the task assignment between human air traffic controller(s) 

and automated agents.  As such, DFAS operates as a task 
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allocation scheduler in which DFAS determines which 

resource is most appropriate for what task(s) and when 

given the state, user preferences, and constraints in the 

operational environment. Some of the unique constraints 

and preferences that the DFAS engine must consider when 

creating a task assignment schedule, irrespective of the 

DFAS scheduling algorithm include: task quality and 

duration, the agent’s real-time workload and ability to 

multi-task, task precedence (order), penalties from 

switching tasks between agents, tardiness penalties, 

rescheduling frequency, and algorithm execution time. 

The preferences and constraints listed above are used 

as inputs into the DFAS engine as well as the world state.  

The world state (managed by the task manager) refers to 

the current list of tasks to be assigned, which tasks are 

currently assigned to whom, the tardiness of the tasks, and 

any available insight into the state of the task (for example, 

how close is a task from being completed).   The output of 

the DFAS engine is a schedule for each of the agents (who 

should be doing what and when).    

DFAS Solution Methods. Due to the discrete decisions 

involved, the task allocation problem is inherently 

combinatorial in nature and, therefore, very challenging 

from a computationally expense perspective.  More 

specifically, the problem falls into a class of NP-complete 

problems (Garey and Johnson 1979).  Many approaches 

have been proposed for solving the task allocation problem 

including utilizing Markov Decision Processes (MDP; 

Dolgov and Durfee 2006), discrete (DTS) and continuous 

time schedulers (Floudas and Lin 2004), and myriad 

heuristic methods (Pinedo 1992).  Because discrete-time 

schedulers are able to formulate constraints and objectives 

in a relatively straightforward manner and globally optimal 

results can be reached within a reasonable execution time, 

the authors have chosen to first implement the DTS 

approach. 

Discrete-Time Scheduler.  The discrete-time scheduler’s 

unique characteristic is that it breaks up the scheduling 

horizon into uniform time durations (often called shifts).  A 

schematic of the DTS approach is shown in Figure 3 where  

the goal is to assign agent (i) to task (j) during shift (k).  If 

an agent is assigned to a task then a fraction of the task is 

consumed during the shift (according to the task’s 

duration).  The fraction of the incomplete task remains for  

the agents to operate on during the following shift (k+1).  

To illustrate this concept, consider the case where a task’s 

duration is twice the shift interval: half of the task can be 

completed during shift, k, and half of the task remains for 

shift, k+1.  Resources are allocated to tasks until none of 

the task is remaining. 

An exemplary formulation of the DTS uses a mixed 

integer program (MIP) of the following form, 

 

 
(1) 

subject to: 

 

  (2) 

 

 
(3) 

 

  (4) 

 

  (5) 

. (6) 

The objective function in (1) shows that the MIP has 

three types of variables: X, Y, and Z. Xi,j,k is a binary 

variable that indicates if agent i is assigned to task j during 

shift k.  The continuous variable Yj,k indicates how much of 

task j remains unfinished after shift k.  Vi,j,k is the change in 

task assignment between shifts k-1 and k.  The objective 

function in (1) also shows that the MIP is balancing four 

objectives: minimize the cost of a task assignment 

(weighted by C), maximize the quality of the task 

assignment (weighted by Q), minimize the tardiness of a 

task (weighted by P), and minimize the change in an 

agent’s task assignment (weighted by S).  The constraints 

in (2) through (6) are explained below: 

Eq. (2) is the task consumption balance.  The amount of 

task j remaining at shift k is consumed by the agent 

assignment i where the task is consumed by at the rate 

Ri,j tasks per shift.  The rate is the shift duration divided 

by the task duration. 

Eq. (3) specifies that a task can only be assigned to one 

agent. 

Eq. (4) specifies the precedence.  An agent cannot be 

assigned to task j in shift k unless the preceding task, j’, 
is completed at shift k-1. 

Eq. (5) is the increase in task assignments between 

shifts. 

Eq. (6) indicates that the task assignments X are binary 

variables and Y and V are continuous variables. 

 

Figure 3: The discrete-time scheduler determines which 

agent is assigned to what task and at what time.  Tasks 

are divided into complete and incomplete portions. 
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To illustrate the algorithm, the task flows for two 

events have been generated.  The example includes four 

agents each of which is competent in a subset of the tasks 

and can accomplish the tasks at different durations.  In 

addition, workloads, quality, and cost values has been 

assigned to each of the competent agent/task duples.  The 

scheduling horizon was set at 15 minutes and the time 

interval was set at 15 seconds for a total of 60 shifts.  

Figure 4 illustrates the remaining fraction after each of the 

shifts in which green indicates that 100% of the task is 

remaining.  As the task is completed over time, the color 

shifts to red.  One can clearly see the propagation of tasks.  

As one task is finished, the agents can start working on 

completing the following task(s).  We also see in Figure 4 

that several of the tasks remain incomplete at the end of the 

planning horizon.  As the horizon recedes and tasks are 

completed, these tasks will be included in the scheduling 

horizon at the next reschedule.  

Figure 4: The amount of each task remaining at the end 

of each 15-second shift. 

The task assignment is shown in Figure 5 where a task 

assignment is indicated with a green dot.  Most of the time 

an agent is assigned to a single task.  However, 

occasionally agents are assigned to multiple tasks if the 

workload of the tasks does not exceed the agent’s capacity.  

Figure 5 also shows that the penalty on an agent switching 

tasks has the desired effect of keeping the agents 

designated to tasks.   There are no examples of a task being 

switched between agents as the task is being executed. 

AFAR Pilot Study 

To test the feasibility of employing DFAS concepts, we 

performed a pilot investigation using our DFW ground 

control simulator.  We ran two taxi scenarios requiring the 

participant (an experienced air traffic controller) to manage 

arriving and departing traffic safely and efficiently.  The 

two scenarios involved a moderate traffic load and both 

scenarios included a few off-nominal events to make the 

scenarios more interesting and challenging for the 

participant.    Several photographs of the AFAR setup are 

shown in Figure 6. 

 

Figure 5: An example agent task assignment schedule. 

The ground traffic control participant completed the 

two scenarios with and without the DFAS component 

managing the task allocation.  In the non-DFAS condition, 

automation still assisted the ground controller; however, 

the tasks were assigned according to a static round-robin 

heuristic.  The automation during the non-DFAS operation 

was preserved to prevent outcome differences from being 

confounded by an automation factor, but instead attempted 

to keep automation consistent with and without DFAS in 

order to engender a more controlled evaluation of the 

DFAS technology.  In both conditions, an automated agent 

could be assigned tasks of receiving the aircraft 

(acknowledge), providing taxi instructions, and granting 

permission to taxi.   

 
 

 
Figure 6: (Top) The experimental setup with the 

participant in the center and the pseudopilots on the 

left and right. (Left) The participant’s desk. (Right) 

Participant using the system. 
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Each of the participants received a training brief and 

two training trials to familiarize himself with the 

automation and user interface. The two experimental 

scenarios were run, one with the DFAS algorithms and one 

with the static function allocation (round robin). There 

were 2 settings for the static allocation which manipulated 

the number of aircraft under automated control. Each 

participant performed two experimental scenarios on two 

different days (one DFAS and one static each day), for a 

total of eight experimental trials.   The trial order 

pertaining to the inclusion of DFAS was balanced within 

and between participants.  

Subjective ratings of mental workload were captured 

via the NASA Task Load Index (TLX), developed by 

NASA Ames Research Center (Hart & Staveland, 1988).  

The NASA TLX is a multi-dimensional rating procedure 

that provides an overall workload score based on a 

weighted average of ratings on six subscales: Mental 

Demand, Physical Demand, Temporal Demand, Own 

Performance, Effort, and Frustration. The degree to which 

each of the six factors contributed to the workload 

associated with each automation condition, from the 

participants' perspectives, was determined by their 

responses to pair-wise comparisons among the six factors. 

Magnitude ratings on each subscale were then obtained 

after each scenario. Ratings of factors deemed most 

important in creating the workload of a task were given 

more weight in computing the overall workload score, 

thereby enhancing the sensitivity of the scale. Table 1 

provides the descriptive statistics for the NASA TLX data 

for each sub-scale, as well as for the composite workload 

score.  

Table 1: NASA TLX Subjective Workload Rating 

Descriptive Statistics 

Mean Standard Deviation 

Scale Static DFAS Static DFAS 

Mental  48.75 43.75 12.37 26.52 

Physical  27.50 12.50 17.68 0.00 

Temporal  55.00 43.75 28.28 30.05 

Performance 80.00 91.25 7.07 8.84 

Effort 57.50 36.25 7.07 30.05 

Frustration 25.00 6.25 28.28 1.77 

Composite 49.00 55.00 27.58 12.02 

While there were no statistically significant 

differences in workload ratings between the static and 

DFAS conditions (all p > 1.0), it is important to note the 

preliminary nature of this finding given the small dataset 

collected , as well as the variability in responses within the 

dataset. We therefore highlight a few trends that may bear 

significance in future studies: 

The dynamic function allocation condition showed a 

trend toward lower workload ratings across the “physical 

demand,” “temporal demand,” “effort,” and “frustration” 

sub-scales. 

Variability was high in ratings of “mental demand,” 

“temporal demand,” and “effort. These sub-scales were 

considered by the controllers (via the subscale 

ranking/paired comparison procedure) to be major 

contributors to overall perceptions of workload. 

“Physical demand” and “frustration” were considered to 

contribute the least to overall perceptions of workload. 

Although we lack the necessary data to draw statistically 

definitive conclusions, the results of the pilot study were 

encouraging.  Perhaps most telling are the words of the 

participants themselves.  When asked to qualitatively 

compare the runs with and without DFAS, the experienced 

ground controllers responded with the following 

comments: 

Participant 1: “Without a doubt, my temporal 

demand and mental workload increased substantially 

in the static [function allocation] environment. When 

working in DFAS mode, a feeling of great 

confidence came over me, knowing that DFAS 

would kick in and make my job manageable while 

traffic increased.” 

Participant 2: “[The DFAS function allocation] was 

easier because it acted as more of a manager.” 

Conclusions and Future Work 

In this paper we have introduced a testbed that is 

designed to evaluate adjustable autonomy technology early 

in the design cycle.  A use case involving ground control at 

DFW airport was developed to exercise the testbed and a 

pilot study was conducted involving two experienced air 

traffic controllers.  Although still preliminary, the results of 

the pilot study were encouraging in that the participants 

reported sufficient trust and confidence as well as DFAS’s 

ability to mitigate workload.  The testbed has shown to be 

easily configurable by running several operational 

scenarios utilizing two distinct function allocation 

algorithms: the round-robin heuristic and the DTS task 

allocation algorithm (DFAS).   In addition, the fidelity and 

user interface sufficiently captured the airport surface 

domain to create realistic interactions and workload for the 

participants. 

Results to date indicate that the flexibility and utility 

of the AFAR testbed will enable future investigation into 

human-system interaction and approaches to adjustable 

autonomy.  As such, the next steps in this project involve 

investigating other DFAS algorithms and including 

multiple participants with expanded roles and in more 

complex operational scenarios.  In addition, the testbed can 

be expanded to involve the air traffic control domain (in 

addition to ground control) including coordinating within 

airport multiplexes.  AFAR can also be expanded to 

domains outside of air traffic management into myriad 
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areas involving teams of humans and automated systems.  

Finally, we see the need to develop generate and deploy 

more comprehensive performance metrics to evaluate the 

allocation strategies.  While traditional metrics (e.g., 

accuracy, completion time) can be used for assessing total 

system performance, these methods have generally been 

extended from human performance measurement 

approaches and often lack sensitivity for assessing the 

complex performance of the collaborative human/ 

automation team.  
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