
A Testing Framework for
Mobile Computing Software

Ichiro Satoh, Member, IEEE Computer Society

Abstract—We present a framework for testing applications for mobile computing devices. When a device is moved into and attached

to a new network, the proper functioning of applications running on the device often depends on the resources and services provided

locally in the current network. This framework provides an application-level emulator for mobile computing devices to solve this

problem. Since the emulator is constructed as a mobile agent, it can carry applications across networks on behalf of its target device

and allow the applications to connect to local servers in its current network in the same way as if they had been moved with and

executed on the device itself. This paper also demonstrates the utility of this framework by describing the development of typical

network-dependent applications in mobile and ubiquitous computing settings.

Index Terms—Testing, mobile computing, mobile agent, network-dependent application.

�

1 INTRODUCTION

ADVANCES in wireless networking technology have
produced a shift in the nature of mobile computing

systems and applications. A new class of mobile computing
has enabled mobile devices to link up with servers through
wireless networks such as IEEE 802.11b and Bluetooth to
access information from these and delegate heavy tasks to
them. Another new class is context-sensitive devices that
have a distinct awareness of their current networks.

The focus of current research, however, is on the design
of network and system infrastructures and applications for
mobile computing. As a result, the task of testing software
has attracted little attention so far. This is a serious obstacle
in the growth of mobile computing, because the develop-
ment of software for mobile computing devices is very
difficult due to the limited computational resources of these
devices. Furthermore, the tasks are often tedious and
susceptible to errors, because changes in network connec-
tivity and locations may lead to sudden and unpredictable
changes in contextual information. That is, a change in
network and location may imply movement away from the
servers currently in use, toward new ones. For example, a
handheld computing device with a short-range radio link,
such as IEEE 802.11b or Bluetooth, carried across the floors
of an office building may have access to different resources,
such as printers and directory information for visitors, on
each floor. Therefore, to construct a efficient application
software, the developer must test it in the environments of
all the networks that the device might be connected to.
However, it is almost impossible for the developer to
actually carry a mobile computing device to another
location and connect it to networks in that location. In fact,

nobody wants to go up and down stairs carrying a mobile
device simply to check whether or not it can successfully
print out data at networked printers on its current floor.

This paper presents a new framework for testing
applications for network-enabled mobile computing. This
framework, called the Flying Emulator, addresses the
development of application-level-software running on
mobile computing devices that can be connected to servers
through short-range wireless networks. The key idea of the
framework is to introduce a mobile agent-based emulator of
a mobile device. The emulator performs application-
transparent emulation of its target device for application
software written in the Java language. Furthermore, since
the emulator is implemented as a mobile agent, it can carry
its software to remote networks according to patterns of
physical mobility and test the software in the environments
of those networks. It also allows the target software
successfully tested in the emulator to be executed on its
target mobile device without having to be modified or
recompiled.

The remainder of this paper is organized as follows:
Section 2 surveys related work and Section 3 explains the
framework for building and testing mobile computing
applications. Section 4 briefly reviews our mobile agent
system and then presents the design and implementation of
the framework. Section 5 demonstrates the usability of the
framework through two real-world examples. Section 6
discusses some future issues and Section 7 provides a
summary.

2 RELATED WORK

There are two different notions of mobility: logical and
physical. Physical mobility entails the movement and
reconnection of mobile computing devices between net-
works, while logical mobility involves software, such as
mobile code and mobile agents, that migrates between
different servers and may use different sets of services on
each of them, e.g., [5], [9], [16]. A typical problem in

1112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 12, DECEMBER 2003

. The author is with the National Institute of Informatics, 2-1-2
Hitotsubashi, Chiyoda-ju, Tokyo 101-8430, Japan.
E-mail: ichiro@nii.ac.jp.

Manuscript received 31 Dec. 2002; revised 6 July 2003; accepted 5 Aug. 2003.
Recommended for acceptance by M. Oivo and M. Morisio.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 118786.

0098-5589/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

physical mobility is that the environment of a mobile entity
can vary dynamically as it moves from one network to
another. A lot of research has been proposed to either
transparently mask variations in mobility at the network or
system level or adapt this to the current environment at the
application-level [1], [14], [15]. Nevertheless, current work
on these approaches has focused on a location-transparent
infrastructure for the applications and location-aware
applications themselves. Accordingly, the task of building
and testing applications has gained only limited attention.

Moreover, a typical mobile computing device has a less
powerful processor with less memory and a limited user
interface with a clamped keyboard and a small screen. It is
therefore difficult to build and debug the software for it
within the device itself. A popular and practical solution to
this problem is to offer a software-based emulator for the
target device. Actually, some mobile computing devices,
such as palm-sized PDAs and smart mobile phones, have
their own software-based emulators, which are designed to
run on workstations and simulate the application-level
execution environments of the devices. These emulators
have been widely used in the development of software for
such devices.

Cooperation between mobile computing devices and
servers within a domestic or office network may be
indispensable because it complements various missing
features in mobile devices. As a result, the correctness of
software running on the devices not only depends on its
internal execution environment, but also the external
environments provided by the network that it connects to.
On the other hand, mobile computing devices may be
disconnected from the current network and then recon-
nected to another network. As a device moves across
subnetworks, or joins or leaves a subnetwork, some new
servers become available from the software running on it or
it may no longer be able to access previous servers. Such
software must be tested in all the network environments
that the device could possibly be moved or attached to.

However, existing emulators are not always available for
the development of network-dependent software in the
sense that the software may have access to servers on
current subnetworks. This is because they were designed to
emulate some limited target device resources and it is
almost impossible for an emulator running on a standalone
computer to simulate the whole context that its target
device interacts with through networks. The best way to
solve this problem is for the developer to actually carry a
workstation running an emulator of the target device (or the
device itself) to run software and to attach it to subnetworks
in the current location. However, this is extremely laborious
for the developer and consequently should only be resorted
to in the final phase of software development.

Another approach enables software to run on a local
workstation and link up with remote servers through
networks to access particular resources and services
provided by remote networks, e.g., the InfoPad project at
Berkeley [10] and the network emulator of Lancaster
University [4]. However, accomplishing this in a responsive
and reliable manner is difficult, and the emulators cannot
remotely access all the services and resources that are only

available within the subnetworks because of security, such
as firewalls. Moreover, the approach is inappropriate in
testing software using service discovery protocols. Since a
mobile computing environment is dynamic, we require zero
user configuration and administration. To solve this
problem, several middleware systems, such as Jini [2] and
Universal Plug and Play (UPnP) [11], have often been used
to manage devices. These middleware systems use multi-
cast communications to discover their management servers
and devices, where multicast-based messages may only be
transmitted to the hosts within specified subnetworks.
Therefore, the target software to run on ubiquitous
computing devices must be tested within the subnetworks
that the devices can be connected to.

Logical mobility is just a new design tool for the
developers of distributed applications, while physical
mobility results from new requirements for distributed
applications. As discussed in [16], these two mobilities have
been almost unrelated thus far, despite their similarities.
Although many mobile agent systems have been released
over the last few years, few researchers have introduced
logical mobility, including mobile agent technology, as a
mechanism for extending and adapting context-sensitive
applications to changes in their environments by migrating
agents or codes to the applications and servers, e.g., [8], [12].
These approaches were designed as infrastructures for
executing context-aware applications, so the researchers did
not intend to test such applications. The framework
presented in this paper, however, is unique in terms of
both physical and logical mobility because it introduces
logical mobility as a methodology for building and testing
applications in physical mobility. We described an early
prototype implementation of this framework in a previous
paper [19], but the implementation only supported speci-
fied classes for I/O and network operations and was thus
not available in the testing software on ubiquitous
computers managed through multicast protocols. The
previous paper also lacked explanations on target applica-
tion software.

3 APPROACH

Wireless networking technology permits continuous access
to services and resources through the land-based networks,
even when a device’s location changes. Our goal, on the
other hand, is to build and test an application running on a
mobile computing device which may be connected to local
networks in the current location. The aim of this paper is to
present a framework for building and testing mobile
computing applications. An important target of this frame-
work is a network-dependent application, in the sense that
it is designed to run on a mobile computing device and may
often access servers on local networks in the device’s
current location through short-range wireless networks,
such as IEEE802.11b or Bluetooth. As the device moves
across networks, the environment may change. That is,
some new servers become available, whereas others may no
longer be relevant. Such an application must be tested in all
the network environments that the device could be moved
into and attached to. Furthermore, most mobile computing
devices, including personal digital assistants and mobile

SATOH: A TESTING FRAMEWORK FOR MOBILE COMPUTING SOFTWARE 1113

phones, support few debugging and profiling aids since

they have been kept simple to reduce power consumption

and weight.
To solve these problems, this framework introduces a

mobile agent-based emulator of a mobile computing device

for use with target application software. The key idea

behind the framework is the emulation of the physical

mobility of a ubiquitous or mobile computing device by

using the software’s logical mobility, which has been

designed to run on the device over various networks.

Physical mobility entails the movement and reconnection of

mobile computing devices between subnetworks (see Fig. 1),

while logical mobility involves software, such as mobile

codes and mobile agents, that migrates between hosts on

the subnetworks (see Fig. 2). The emulator supports

applications with not only the internal environment of its

own target mobile device, but also the external environ-

ment, such as the resources and servers provided in the

current network. The framework satisfies the following

requirements to accomplish this.

. Like other computer emulators, this framework
performs application-level emulation of its target
mobile device to support applications by incorpor-
ating a Java virtual machine.

. Depending on the movement patterns of its target
mobile device, the mobile agent-based emulator can
carry applications on behalf of the device to net-
works that the device may be moved into and
connected to.

. The emulator allows us to test and debug applica-
tions with services and resources provided through
its current network as if the applications were being
executed on the target device when attached to the
network.

. All applications successfully tested in the emulator
can still be performed in the same way without
being modified or recompiled.

Each mobile agent is just a logical entity and must thus be

executed on a computer. Therefore, this framework

assumes that each of the subnetworks to which the device

may be moved and attached has more than one special

stationary host, called an access point host, which offers a

runtime system for executing and migrating mobile agent-

based emulators. Each access point host is a runtime

environment for allowing applications running in a visiting

emulator to connect to local servers in its network. That is,

the physical movement of a mobile computing device from

one network and attachment to another is simulated by the

logical mobility of a mobile agent-based emulator with the

target applications from an access-point computer in the

source network to another access-point computer in the

destination network. As a result, each emulator is a mobile

agent and can thus basically carry not only the code, but

also the states of its applications to the destination, so the

carried applications can basically continue their processes

after arriving at another host as if they had been moved

with its targeted device.
This framework assumes that every target application

software must be written in JDK 1.1 or 1.2-compatible Java

language, including Personal Java. However, some typical

units of Java language, such as Java applications and Java

applets, are not always appropriate in developing applica-

tion software in mobile computing settings. This is because

these units are essentially designed to run in a static context

and lack any unified mechanism for reporting runtime

changes, such as network disconnection and suspension.

Instead, this framework introduces an application as a

collection of mobile agent-based components, which are

designed to be aware of such changes. The current

implementation is also built on a hierarchical mobile agent

system, called MobileSpaces [17]. The system is character-

ized by allowing a mobile agent to carry other mobile

agents to another location. Therefore, our mobile agent-

based emulator, which contains more than one target

application, is still a mobile agent and can travel and, thus,

migrate between subnetworks. Nevertheless, most Java

Applets and Java Beans can easily be translated into mobile

agents in the MobileSpaces. Actually, we implemented an

adapter for executing Java components, such as Java

Applets and Java Beans within these mobile agent-based

components, but it is not compatible with all kinds of

Applets and Java Beans because some existing Applets and

Java Beans manage their threads and input and output

devices in a deprecative manner.

1114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 12, DECEMBER 2003

Fig. 1. Physical mobility of mobile device. Fig. 2. Emulation of physical mobility through logical mobility.

4 THE FLYING EMULATOR FRAMEWORK

This section presents the prototype implementation of this

mobile agent-based framework, called Flying Emulator. As

we can see from Fig. 3, the framework has the following

three components:

. Mobile agent-based emulator: A mobile agent
capable of carrying the target application to specified
access-point hosts on remote networks on behalf of a
target mobile device.

. Application runtime system: Middleware, which
runs on a mobile device, to support the execution of
mobile agent-based applications.

. Remote control server: A graphical front-end to the
whole system, which allows us to monitor and
operate the moving emulator and its target applica-
tion by remotely displaying its graphical user-
interfaces on its screen.

In addition to the above, we provided a runtime system to

run on a mobile computing device and support the

execution of the tested application. As the framework is

constructed independently of the underlying system, it can

run on any computer with a JDK 1.1 or 1.2-compatible Java

virtual machine, including Personal Java, and the Mobile-

Spaces system.

4.1 MobileSpaces: A Mobile Agent System

Like other existing mobile agent systems, MobileSpaces can

offer mobile agents as computational entities that can travel

over networks under their own control. Furthermore, the

system is characterized by the notion of hierarchical mobile

agents. That is, the system allows multiple mobile agents to

be dynamically combined into a single mobile agent. Fig. 4

shows hierarchical mobile agents and their migration. Each

agent can directly access the services and resources offered

by its inner agents and it is responsible for providing its

own services and resources to the inner agents. This concept

is applicable in constructing the mobile agent-based

emulators presented in this paper, although it was initially

introduced for constructing large and complex applications

by assembling multiple mobile agents in distributed

computing settings.

4.2 Mobile Agent-Based Emulator

The mission of the mobile agent-based emulator is to carry
and test applications designed to run on its target mobile
device. Each mobile agent-based emulator is just a
hierarchical mobile agent of the MobileSpaces system. The
framework assumes that every target application is pro-
vided as a collection of mobile agent-based components; the
emulator can naturally contain more than one mobile agent-
based application inside itself and can migrate itself and its
inner applications to another place. Since such contained
applications are still mobile agents, both the applications
running on an emulator and the applications running on the
mobile device are mobile agents of the MobileSpaces system
and can thus be executed in the same runtime environment.
Actually, this framework basically offers a common runtime
system to both its target devices and access-point hosts, to
minimize differences between them as much as possible. In
addition, the Java virtual machine can actually shield the
target application from most features of the hardware and
operating system of the target mobile devices. Fig. 5
illustrates the correlation between the physical mobility of
a running device and the logical mobility of an emulator of
the device. As a result, the emulator is dedicated to
emulating the movement of its target device.

4.2.1 Emulation of Physical Mobility

Each emulator can have its own itinerary as a list of hosts
corresponding to the physical movement pattern of its
target mobile device. The list is a sequence of the tuples of
the network address of the destination, the length of stay,
and the name of the method to be invoked upon arrival. An
emulator can interpret its own itinerary and then migrate
itself to the next destination. Such an itinerary can be
dynamically changed by the emulator itself or statically
defined by the user through a graphical user interface
displayed on the remote control server. Moreover, the
developer can interactively control the movement of the
emulator through the remote control server.

When a mobile computing device moves in physical
space, it may be still running. However, the emulator
cannot be migrated over networks as long as its inner
applications are running because they must be suspended
and marshaled into a bitstream before being transferred to
the destination. To solve this problem, the framework
divides the life-cycle state of each application into the
following three phases:

. Networked running state: A target application is
running in its emulator on an access-point host and
is allowed to link up with servers on the network.

SATOH: A TESTING FRAMEWORK FOR MOBILE COMPUTING SOFTWARE 1115

Fig. 3. Architecture of framework.

Fig. 4. Migration of hierarchical mobile agents.

This state corresponds to that of a device that is
running and connecting to a network in the current
location.

. Isolated running state: The application is still
running in its emulator on an access-point host but
is prohibited from communicating with any servers
on the network. On disconnection, the application
enters an isolated running state.

. Suspended state: The suspended state means that
the emulator stops its inner applications while
maintaining their execution states. This state corre-
sponds to that of a device that is sleeping to save
battery life and it avoids the risk of accidental
damage while moving.

For example, the movement of a suspended and discon-
nected device corresponds to the suspended state. The
movement of a running and then disconnected device is
simulated by the combination of the isolated running state
on the source or destination host for a specified duration
and the suspended state only while migrating. Each
emulator maintains the life-cycle states of its inner applica-
tions. When the life-cycle state of an application is changed,
the emulator dispatches certain events to the application as
explained in the appendix. By using Java’s object serial-
ization package, the MobileSpaces marshal the heap blocks
of a program into a bitstream, but not its stack frames when
migrating them, so it is impossible for a thread object to
migrate from one virtual machine to another while
preserving its execution state.1 Instead, these events enable
an application that has one or more activities using the Java
thread library to explicitly stop and store them before
migrating over networks.

4.2.2 Emulation of Mobile Computing Devices

The Java VM supports instruction-level emulation of target
mobile devices and each emulator permits its inner
applications to have access to the standard classes

commonly supported by the Java virtual machine as long
as the target device offers them. In addition, each emulator
offers its inner applications the particular resources of the
target devices. The current implementation of this frame-
work supports emulators for two kinds of mobile comput-
ing devices: standard notebook PCs and pen-based tablet
PCs running Windows or Linux. Also, the emulators
support several typical resources for mobile computing
devices; e.g., file storage and user interfaces such as
displays, keyboards, and mouse-based pointing devices.
Fig. 6 has the structure of a mobile agent-based emulator
running an access-point host.

1. File Storage: Each emulator can maintain a database
to store files. Each file can be stored in the database
as a pair consisting of its file/directory path name
pattern and its content. Each emulator provides
basic primitives for file operation, such as creation,
reading, writing, and deletion and also allows a user
to insert files into it through its graphical user
interface.

2. Network: While anchored at an access-point host,
each emulator allows its inner application to directly
access most network resources from the host, such as
java.net and java.rmi packages. Thus, such a
carried application can directly establish TCP chan-
nels and exchange UDP packets. Since it is deployed
and executed within the domain of the current
subnetwork, it also can receive multicast packets
such as Jini’s and UPnP’s management messages
that are available in the domain. In the current
implementation, a moving emulator cannot have its
own network identifier, such as an IP address and
port number. However, this is not a serious problem
because most applications on a mobile device are
provided as client-side programs, rather than server-
side ones, as discussed in [7].

3. Input and Output Port: Each emulator can permit its
target application software to be Java’s communica-
tion APIs (Java COMM), if they are provided on the
device that the emulator runs on. Furthermore, the
framework offers a mechanism that allows its target
software to have access to equipment running on
remote computers via serial ports. The mechanism
consists of proxies whose interfaces are compatible

1116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 12, DECEMBER 2003

Fig. 5. Emulation of the movement of mobile computer by migrating
mobile agent-based emulator. (a) Applications running on a mobile
computer. (b) Applications on a mobile agent-based emulator

1. Several researchers have explored mechanisms for migrating all the
execution states of Java objects, including threads and stack frames.
However, these existing mechanisms are still premature to attain our goal
because they cannot transfer most computational resources and do not often
coexist with essential optimization techniques for the Java language.

Fig. 6. Mobile agent-based emulator running on access-point host.

with Java’s communication APIs and which can
forward the port’s signals between the emulator and
the remote-control server through TCP/IP channels.
In almost all Intranet situations, a firewall prevents
users from opening a direct socket connection to a
node across administrative boundaries.

4. User Interface: The user interfaces of most mobile
computers are limited by their screen size, color, and
resolution, and they may be not equipped with
traditional input devices such as keyboards and
mice. Each emulator can explicitly constrain only the
size and color of the user interface available from its
inner applications by using a set of classes for visible
content for the MobileSpaces system, called Mobi-
Doc [18]. As will be discussed, our framework
enables the developer to view and operate the user
interfaces of applications in an emulator on the
screen of its local computer, even when the emulator
is deployed at remote hosts.

Our framework enables the whole user interface of a
device, including the graphical user interface of target
applications, to be displayed on the screen of the remote
control server and operated from the standard input
devices of the server, such as the keyboard and mouse.
This mechanism is constructed on the Remote Abstract
Window Toolkit (RAWT) developed by IBM [6]. This toolkit
enables Java programs that run on a remote host to display
GUI data on a local host and receive GUI data from it. The
toolkit can be incorporated into each access-point host, thus
enabling all the application windows in a visiting emulator
to be displayed on the screen of the remote control server
and operated through the server’s keyboard and mouse.
Therefore, the developer can always test his/her target
applications, including their GUIs, within a desktop
computing environment and the access-point hosts do not
have to offer any graphics services or user-input devices.
The current implementation of the framework supports
emulators for three kinds of computing devices: standard
notebook PCs, pen-based tablet PCs, and palm-sized PDAs.

4.3 Access-Point Host

We assume that more than one access-point host would be
allocated in each network, to which the wireless device may
be attached. As previously mentioned, the framework is
built on the MobileSpaces mobile agent system. Each
access-point host is a server or workstation offering a
MobileSpaces runtime system for executing the mobile
agent-based emulator and migrating it to another access-
point host. The host should provide Java VM (JDK 1.2 or
later version), but does not need any custom hardware.
When an agent is transferred over a network, the runtime
system stores the state and codes of the agent, including its
software, in a bitstream defined by Java’s JAR file format,
which can support digital signatures for authentication. The
MobileSpaces runtime system supports a built-in mechan-
ism for transmitting the bitstream over networks by using
an extension of the HTTP protocol. In almost all intranets,
there is a firewall that prevents users from opening a direct
socket connection to a node across administrative bound-
aries. Since this mechanism is based on a technique called

HTTP tunneling, emulators can be sent outside the firewall
as HTTP POST requests and responses can be retrieved as
HTTP responses. Also, each access point host support IBM’s
Remote AWT to emulate the GUIs of the target software.

4.4 Remote Control Server

This server is a control entity responsible for managing the
whole system. It can run on a standard workstation that
supports Java. It can always track the locations of all the
emulators because each access-point host sends certain
messages to the control server whenever the moving
emulators arrive or leave. Moreover, the server acts as a
graphical front end for the system and, thus, allows the
developer to freely instruct moving emulators to migrate to
other locations and terminate, through its own graphical
user interface (Fig. 7). Moreover, incorporating with a
RAWT toolkit’s server, enables us to view and operate the
graphical user interfaces of targeted applications on behalf
of their moving emulators. It also can monitor the status of
all access-point hosts by periodically multicasting query
messages to them.

4.5 Application Runtime System on Mobile
Computing Devices

Like other mobile agents, each mobile agent in the
MobileSpaces system must be executed on runtime systems,
i.e., an agent platform, that can create, execute, transfer, and
terminate agents. Since applications designed for running
on the device are implemented as mobile agents, this
framework needs to offer a runtime system to each target
portable device. Each runtime system maintains the execu-
tion of applications. Moreover, to make applications aware
of environmental changes, each runtime system monitors
the environment of the device, including characteristics
such as network connectivity and location. Since this
framework introduces the publish-subscribe event model
used in the Abstract Window Toolkit of JDK 1.1 or later, the
system notifies interested applications by invoking certain
of their methods when detecting changes. Furthermore, it
provides a collection of service methods to allow applica-
tions to have access to the device and its external
environment, without any particular knowledge of the
operating system and hardware of its target device.

SATOH: A TESTING FRAMEWORK FOR MOBILE COMPUTING SOFTWARE 1117

Fig. 7. User interface of mobile agent-based emulator.

The reader might wonder whether a mobile agent system
is too large to run on portable devices. However, the
MobileSpaces runtime system is characterized by its
adaptability and its structure can thus easily be customized
as small as possible by removing additional functions,
including agent migration over networks. Also, the perfor-
mance of applications running on the minimal runtime
system is almost equal to that of the corresponding
applications directly executed on the Java virtual machine.

4.6 Security

Security is essential in mobile agent computing. The
framework is not serious in comparison with other mobile
agent applications because it is used in the process of
software development. Nevertheless, it can directly inherit
the security mechanism of the underlying mobile agent
system. To protect against the arrival of malicious mobile
agent-based emulators from agent hosts, the MobileSpaces
system supports a Kerberos-based authentication mechan-
ism for agent migration [21]. It authenticates users without
exposing their passwords on the network and generates
secret encryption keys that can selectively be shared
between mutually suspicious parties. The Java virtual
machine can also explicitly restrict agents so that they can
only access specified resources to protect hosts from
malicious agents.

5 EXPERIENCE

To illustrate the utility of the framework, this section
describes our experience in testing two typical network-
dependent applications designed to run on mobile comput-
ing devices.

5.1 Testing User Navigation System

This example illustrates the development of a location-
dependent information system for assisting visitors to some
buildings of Ochanomizu University like [1], [3] and then
compares this framework with other emulator-based
approaches presented in Section 2. The current implemen-
tation of the system provides each visitor with a wireless-
LAN enabled tablet PC, which can obtain various informa-
tion from servers allocated on the subnetwork of the current
location through an HTTP-based protocol via IEEE 802.11b
wireless networks. Each building has a subnetwork with
more than one server, called location information server, and
is covered by the coverage area of a wireless access-point
connected to the servers without any overlap in the ranges
of different buildings. Each location information server
periodically multicasts an advertising message to notify its
own network address to visiting tablet PCs within its
subnetwork through UDP multicast communication.2 When
a table PC moves from building to building, it receives an
advertising message from servers in the subnetwork of the
current building and then knows the network address of the
servers in the subnetwork. It then tries to access content,
such as maps, from the servers and displays the content on
its screen.

5.1.1 Software Testing

To test the system with this framework, we constructed a
mobile agent-based emulator for the tablet PC. The
developer can instruct the emulator to migrate to an
access-point host on the subnetwork of another building
through the remote control server. Also, since the emulator
can define its own itinerary among subnetworks, it can
precisely trace the movement of each visitor. The emulator
can carry a viewer application designed to run on the tablet
PC to the subnetwork of another building. It continues to
run the application in the subnetwork and permits the
application to directly receive UDP multicast packets,
which location information servers only transmit within
the domain of a subnetwork. We measured the processing
overhead of the emulator, but the performance of an
application running in an emulator on an access-point host
was not inferior to that of the same application running on
the target device, as long as the processor capability of the
host was equivalent to that of the device.3

By using the RAWT toolkit, this framework allows
application-software developers to view and operate the
GUIs of the target application on the screen of the remote
control server as shown in Fig. 8. Fig. 8a is a window of the
viewer application tested in the emulator. Fig. 8b is a user
interface of the control server for monitoring several
emulators and Fig. 8c shows a window of an emulator for
controling itself and its applications. Fig. 9 shows the target
tablet PC (Fujitsu PenNote Model T3 with Windows98)
running the viewer application. As illustrated in Fig. 8a and
Fig. 9, both the application running on the emulator and the
application running on the target device can present the
same of navigation information in the same location. That
is, the tested application can be performed in the target
device in the same way as if it were being executed in the
emulator. In addition, the software tested successfully in the
emulator could still be run in the same way without
modifying or recompiling it.

Furthermore, this example shows that the framework
can provide a powerful method for easily testing not only
application software but also for creating location-depen-
dent content, such as map and annotations about locations.

1118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 12, DECEMBER 2003

2. The current implementation uses a simple version of UPnP to locate
information servers.

3. In fact, the former is better than the latter because Java VM for desktop
or server computers is often faster than Java VM for mobile computing
devices.

Fig. 8. Screenshot of the remote control server when user navigation
system runs on the mobile agent-based emulator.

5.1.2 Discussion

Let us now compare the framework with the other two

existing approaches discussed in Section 2. As previously

mentioned, most existing emulators of mobile computing

devices have been designed for standalone software and are

thus not available in testing network-dependent software. A

few emulators support testing of network-dependent soft-

ware by means of the following two approaches.

5. Comparison with Field Testing Approach: This ap-
proach involves the developer carrying a work-

station running an emulator of the target tablet PC or

the tablet PC itself and testing the target software in

the emulator within the subnetwork in the current

location. The developer can directly view and

operate the GUI of the map viewer application on

the workstation or the device. Like our framework,

this approach permits the map viewer application to
receive the advertising packets that the location

information servers multicast within the subnetwork

because the application is running within the

domain of the subnetwork. However, the developer

walk between the buildings carrying the workstation

or the device simply to check whether or not the

application is displaying the proper content accord-

ing to the buildings. This task is extremely cumber-
some for the developer. Our framework, however,

can replace the physical mobility of the developer

with the logical mobility of a mobile agent-based

emulator and it thus enables the application to run

and link up with servers in the subnetwork.
6. Comparison with Network-Enabled Emulator Approach:

A few emulators enable software to run on a local

workstation and link up with location information

servers, on target networks that their target devices
may connect to, through networks. Unfortunately,

such existing emulators are not available since their

purpose is testing particular devices. Instead, we

constructed a network-enabled emulator for Java-

based software by removing our mobile agent-based

emulator’s mobility.

The approach has two disadvantages, which our frame-
work does not have. Some subnetworks often restrict the
reachable range of multicast packets within their domains
due to the need for reducing network traffic and security.
Therefore, unlike our framework, this approach needs a
mechanism for forwarding UDP packets from location
information servers in subnetworks, which the target
devices may be moved and connected to, to the map
viewer application, so that the application running in a
network-enabled emulator on the workstation outside the
subnetworks cannot receive advertising packets multicast
from servers on the subnetworks. The cost of the mechan-
ism also is inevitable. We implemented proxies for
forwarding UDP multicast packets beyond the domains of
subnetworks through UDP unicast communication and
deployed these proxies at hosts in the subnetworks.
Actually, it took about a few milliseconds for our prototype
proxies to forward packets to the application.

This approach resulted increased latency and network
traffic in communication between the target application and
servers, unlike ours, because the application in an emulator
had to remotely communicate with the servers via routers
and gateways, whereas the target device could be directly
connected to the servers. This is a serious problem in testing
applications in gathering a large volume of data from
servers, vice versa. The reader may wonder about the
network traffic and latency in IBM’s RAWT toolkit.
However, since it only transfers small packets correspond-
ing to Java’s GUI APIs instead of bitmaps, it does not
seriously affect network costs and, thus, enable the
developer to view and operate the GUI of the application
in a reasonable response time even when the application
runs in remote subnetworks.

5.1.3 Remarks

The framework presented in this paper can be viewed as
being between two existing approaches, i.e., field testing
emulator and network-enable emulator. It can alleviate the
disadvantages of each through the advantages of the other.
Therefore, it should complement the two existing ap-
proaches but not exclude them.

5.2 Testing Plug-and-Play Management System

Next, we illustrate that our framework is useful in testing
application-level protocols for ubiquitous computing de-
vices. In a previous project [13], we implemented a subset of
the UPnP protocol written in Java. Using this framework, we
tested the interoperability of our UPnP implementation and
other UPnP-aware devices. UPnP [11] is an infrastructure for
managing various devices such as smart appliances,
embedded computers, and PCs. It uses a multicast-based
management protocol, called Simple Service Discovery
Protocol (SSDP), to announce a device’s presence to others
as well as to discover other devices or services. For example,
a joining device sends out a multicast message to advertise
its services to the UPnP’s control points. Like the previous
application, UPnP aware-software for such a device must be
testedwithin the domain of subnetworks that the devicemay
be connected to. Therefore, we constructed a mobile agent-
based emulator just as a carrier for the software. When the
emulator arrives at an access-point host within the domain,

SATOH: A TESTING FRAMEWORK FOR MOBILE COMPUTING SOFTWARE 1119

Fig. 9. User navigation system running on pen-based tablet PC.

the software it carries can send out an advertisement
multicast message and receive search multicast messages
from other devices in the domain as if the emulator’s target
were joined to the domain, as shown in Fig. 10.

This example demonstrates that our framework can

provide a powerful methodology for testing the interoper-

ability of application-level protocols, limited within speci-

fied subnetworks for reasons of security and reduced

network traffic. While it is impossible to measure the

framework’s benefits in a quantitative manner, it eliminates

the task of the developer having to carry and connect

his/her target device to subnetworks to verify whether

software designed for running on the device can success-

fully coordinate with servers or other devices. Moreover,

the framework can test client-side software, which is

managed by using other service discover mechanisms, such

as Jini [2]. Since a mobile agent-based emulator enables its

target software to access Java’s standard classes for network

processing provided by the current access-point hosts, the

software can interact with Jini’s servers by using Java’s RMI

and multicast APIs.

6 FUTURE WORK

The current implementation of the framework relies on the

JDK 1.1 security manager. Although our framework should

only be used just as a development tool, we plan to enhance

security and access control. This framework does not

support any disconnection operations or addressing

schemes for mobile devices. These have been left open for

future work. Also, the current implementation supports

three kinds of Java-enabled portable computing devices:

notebook PCs, pen-based tablet PCs, and PDAs. However,

the framework can basically support mobile agent-based

emulators of any devices with JDK 1.1 or a later version,

including Personal Java. We plan to support other devices,

including information appliances. Our approach can com-

plement existing software-development methodologies for

ubiquitous computing as well as mobile computing. We are

therefore interested in preparing tools to integrate our

approach with other methodologies. The location-aware

mobile agent infrastructure we developed incorporates RF-

based and infrared-based tag sensors [20] and the frame-

work we propose should be able to support these.

7 CONCLUSION

We presented a framework for building and testing
networked applications for mobile computing. It was
inspired by the lack of methodologies available for
developing context-aware applications in mobile comput-
ing settings. It aimed to emulate the physical mobility of
portable computing devices through the logical mobility of
applications designed to run on them. We designed and
implemented a mobile agent-based emulator for portable
computing devices. Each emulator could perform an
application-level emulation of its target device. Since they
were provided as a mobile agent in the MobileSpaces
system, they could carry and test applications designed to
run on its target portable device in the same way as if they
had been moved with and executed on the device. Our early
experience with the prototype implementation of this
framework strongly suggested that the framework could
greatly reduce the time needed to develop networked
applications in mobile computing settings. We also believe
that the framework is a novel and useful application area
for mobile agents and, thus, makes a significant contribu-
tion to mobile agent technology.

APPENDIX

APPLICATION PROGRAM

As previously mentioned, each application, which can be
tested in our mobile agent-based emulators, is composed of
more than one mobile agent-based component. However,
typical Java software units, including Java applets and Java
beans, can easily be modified to such components by
implementing the following listener interface.

interface ApplicationListener

created(); // invoked after creation

terminating(); // invoked before termination

networked();

// invoked after network enabled

isolated();

// invoked after network disconnected

suspending(); // invoked before suspension

resumed(); // invoked after resumption

}

The above interface specifies callback methods invoked by
the emulator and the runtime system on the target device
when the life-cycle state of an application, such as the
networked running state, isolated running state, and
suspended state changes. Each application must define
the proper processes in each of these methods to hook and
handle such changes. Fig. 11 has the state-transition
diagram of an application.

1120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 12, DECEMBER 2003

Fig. 10. Emulation of (a) the plug-and-play operation of ubiquitous
computing device (UPnP client) by (b) the migration of the emulator for
the device between access-point hosts.

For example, suppose that a mobile agent-based emu-

lator is just about to migrate from its current host to another

host. An application in the emulator is notified through the

following process:

1. The isolated() method of the application is

invoked to handle disconnection from the network,

and then the application must release resources,

such as sockets and RMI remote references, which

are captured by the application and be prohibited

from connecting to any servers.
2. Next, the suspending() method of the application

is invoked to instruct it to do something, e.g., closing

its graphical user interface, and then the application
is marshaled into a bit-stream.

3. The emulator migrates to the destination as a whole

with all its inner applications.
4. After the application is unmarshaled from the bit-

stream, its resumed() method is invoked to do

something, for example, redrawing its graphical user

interface.
5. After the networked() method is invoked, the

application is permitted to connect to servers on the
current networks.

Fig. 12 illustrates the correlation between an application

running on a mobile computing device and that on its

emulator during the above process.

REFERENCES

[1] G.D. Abowd, C.G. Atkeson, J. Hong, S. Long, R. Kooper, and M.
Pinkerton, “Cyberguide: A Mobile Context-Aware Tour Guide,”
ACM Wireless Networks 3, pp. 421-433, 1997.

[2] K. Arnold, A. Wollrath, R. Scheifler, and J. Waldo, The Jini
Specification. Addison-Wesley, 1999.

[3] K. Cheverst, N. Davis, K. Mitchell, and A. Friday, “Experiences of
Developing and Deploying a Context-Aware Tourist Guide: The
GUIDE Project,” Proc. ACM/IEEE Conf. Mobile Computing and
Networking (MOBICOM ’2000), pp. 20-31, 2000.

[4] N. Davies, G.S. Blair, K. Cheverst, and A. Friday, “A Network
Emulator to Support the Development of Adaptive Applications,”
Proc. USENIX Symp. Mobile and Location Independent Computing,
USENIX, 1995.

[5] A. Fuggetta, G.P. Picco, and G. Vigna, “Understanding Code
Mobility,” IEEE Trans. Software Eng., vol. 24, no. 5, May 1998.

[6] International Business Machines Corporation, “Remote Abstract
Window Toolkit for Java,” http://www.alphaworks.ibm.com/,
1998.

[7] J. Jing, “Client-Server Computing in Mobile Environments,”
ACM Computing Survey, 1999.

[8] K. Kangas and J. Roning, “Using Code Mobility to Create
Ubiquitous and Active Augmented Reality in Mobile Comput-
ing,” Proc. ACM/IEEE Conf. Mobile Computing and Networking
(MOBICOM ’99), pp. 48-58, 1999.

[9] B.D. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

[10] M. Le, F. Burghardt, and J. Rabaey, “Software Architecture of the
Infopad System,” Proc. Workshop Mobile and Wireless Information
Systems, 1994.

[11] “Universal Plug and Play Device Architecture Version 1.0,”
Microsoft Corporation, June 2000, http://www.upnp.org/
UpnPDevice_Architecutre_1.0.htm.

[12] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes, “Hive:
Distributed Agents for Networking Things,” Proc. Symp. Agent
Systems and Applications/Symp. Mobile Agents (ASA/MA ’99), 2000.

[13] T. Nakajima, I. Satoh, and H. Aizu, “A Virtual Overlay Network
for Integrating Home Appliances,” Proc. Int’l Symp. Applications
and the Internet (SAINT ’02), pp. 246-253, Jan. 2002.

[14] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn,
and K.R. Walker, “Agile Application-Aware Adaptation for
Mobility,” Proc. ACM Symp. Operating System Principles, 1997.

[15] C. Perkins, “IP Mobility Support,” Internet Request For Comments
RFC 2002, 1996.

[16] G. Roman, G. Pietro, and A.L. Murphy, “A Software Engineering
Perspective onMobility,” The Future of Software Eng.,A. Finkelstein,
ed., pp. 241-258, 2000.

[17] I. Satoh, “MobileSpaces: A Framework for Building Adaptive
Distributed Applications Using a Hierarchical Mobile Agent
System,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS
’00), pp. 161-168, Apr. 2000.

[18] I. Satoh, “MobiDoc: A Framework for Building Mobile Compound
Documents from Hierarchical Mobile Agents,” Proc. Symp. Agent
Systems and Applications/Symp. Mobile Agents (ASA/MA ’00), 2000.

[19] I. Satoh, “Flying Emulator: Rapid Building and Testing of
Networked Applications for Mobile Computers,” Proc. Conf.
Mobile Agents (MA ’01), Dec. 2001.

[20] I. Satoh, “Physical Mobility and Logical Mobility in Ubiquitous
Computing Environments,” Proc. Conf. Mobile Agents (MA ’02),
Oct. 2002.

[21] I. Satoh, “Configurable Network Processing for Mobile Agents on
the Internet,” Cluster Computing: A J. Computer Software and Comm.,
vol. 7, no. 1, 2001.

Ichiro Satoh received the BE, ME, and PhD
degrees in computer science from Keio Uni-
versity, Japan, in 1996. From 1996 to 1997, he
was a research associate in the Department of
Information Sciences, Ochanomizu University,
Japan, and from 1998 to 2000, he was an
associate professor in the same department.
Since 2001, he has been an associate professor
at the National Institute of Informatics, Japan.
His current research interests include distributed

and mobile computing. He received Information Processing Society of
Japan (IPSJ) paper award, IPSJ Yamashita SIG research award, and
Japan Society for Software Science and Technology (JSSST) Takaha-
shi research award. He is a member of six learned societies, including
the ACM and the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

SATOH: A TESTING FRAMEWORK FOR MOBILE COMPUTING SOFTWARE 1121

Fig. 11. Callback method invocations in life-cycle state-transition.

Fig. 12. Movement of computing device and migration of corresponding
mobile agent-based emulator.

