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A text-mining analysis of the human phenome
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A number of large-scale efforts are underway to define the relationships between genes and proteins in
various species. But, few attempts have been made to systematically classify all such relationships at the
phenotype level. Also, it is unknown whether such a phenotype map would carry biologically meaningful
information. We have used text mining to classify over 5000 human phenotypes contained in the Online
Mendelian Inheritance in Man database. We find that similarity between phenotypes reflects biological
modules of interacting functionally related genes. These similarities are positively correlated with a
number of measures of gene function, including relatedness at the level of protein sequence, protein
motifs, functional annotation, and direct protein–protein interaction. Phenotype grouping reflects the
modular nature of human disease genetics. Thus, phenotype mapping may be used to predict candidate
genes for diseases as well as functional relations between genes and proteins. Such predictions will further
improve if a unified system of phenotype descriptors is developed. The phenotype similarity data are
accessible through a web interface at http://www.cmbi.ru.nl/MimMiner/.
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Introduction
Functional annotation of genes is an important challenge

once the sequence of a genome has been completed. Gene

annotation encompasses a variety of functional attributes,

from structural motifs, through cellular function, to

associations with specific functions and processes at the

level of the organism.

Apart from descriptors at the gene and protein level, the

phenotype effect of a mutated or deleted gene forms part of

its functional annotation. Systematic mutation and RNA

interference screens have been performed for selected

phenotypes in Drosophila. melanogaster, Caenorhabditis.

elegans, and Saccharomyces. cerevisiae.1–3 Also for Mus.

musculus, an ambitious project to mutagenize most or all

genes has been conceived.4

Previous studies have correlated various attributes of

human genes, such as predicted function or amino-acid

sequence length, with the chance of causing a disease.5–7

However, only limited attention has been paid to the

grouping of (disease) phenotypes into a matrix as a means

of predicting biological relations between genes and

proteins. Such systematic grouping of genes by their

associated phenotypes may be referred to as phenomics.

The existence of specific disease phenotype groups

suggests that phenomics is possible in humans. Also, there

are large numbers of naturally occurring mutations and

we have a detailed knowledge of the phenotypes that are

associated.8,9 Qualitatively, the human mutation data set

surpasses that of most model organisms, because we can

detect and describe human anomalies in more detail than
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in other species.10 Specific examples illustrate that indivi-

dual genes that cause a given phenotype tend to be linked

at the biological levels as interacting proteins, as compo-

nents of a multiprotein complex, or as steps in a

biochemical pathway.

We note that current human disease phenotype data

set(s) such as Online Mendelian Inheritance in Man

(OMIM) are far from ideal for bioinformatics purposes as

they were not designed with the intention to system-

atically describe phenotypes. Therefore, this study can only

provide proof of concept, and certainly not a finished

product. Our analyses show that, these limitations not-

withstanding, there is a detectable association between

phenotype clusters and the function of the underlying

genes. We have further devised and used a system for

assigning similarity scores, which allows all genes with

known phenotypes to be compared. This approach is very

different from that which uses an artificial division into

predetermined entities.11 We have classified over 5000

disease phenotypes in humans into a single human

phenome system. Given that the human phenome reflects

the biology of the system, any phenotype classification

should reflect other measures of gene function at least to

some extent. We have therefore compared the organization

of genes within this human phenome map to their known

interactions, and similarities at multiple levels including

sequence, protein motifs, and assigned gene ontology (GO)

functions. Our analyses show that for similar human

disease phenotypes, there is indeed a consistent association

at multiple levels of gene annotation.

The phenotype similarity data are accessible through a

web interface (http://www.cmbi.ru.nl/MimMiner/). This

interface, called the ‘MimMiner’, enables the user to

retrieve the similarity ranking for a specific OMIM

phenotype.

Methods
The OMIM database

The OMIM (November 25, 2004) database12 contains

record-based textual information, one gene or one genetic

disorder per record. OMIM also contains literature refer-

ences and links to other databases. We have used the full-

text (TX) and clinical synopsis (CS) fields of all records that

describe genetic disorders. We will refer to this combina-

tion of the TX and CS fields as a ‘record’.

OMIM is a rich data set containing 16357 TX records of

which 5132 describe a disease phenotype (semi-automati-

cally selected, manually verified). The remaining records

contain variation, mutation, gene/protein, or other in-

formation.

OMIM was originally designed to be read by humans, not

by computer. We have automatically extracted the pheno-

typic features from OMIM using text analysis techniques.

Creation of ‘feature vectors’

We used the anatomy (A) and the disease (C) sections of

the medical subject headings vocabulary (MeSH) to extract

terms from OMIM. MeSH terms and their plurals and

components are concepts. MeSH provides a standardized

way to retrieve information that uses different terminology

to refer to the same concepts. Its size and internal

hierarchical structure make it a rich dictionary, which is

needed to match the OMIM texts. MeSH concepts serve as

phenotype features characterizing OMIM records: every

entry in the feature vectors represents an MeSH concept.

The number of times the terms for a given concept are

found in an OMIM record reflects the concept’s relevance

to the phenotype.13,14 Nonspecific concepts like ‘syn-

drome’ or ‘disease’ were excluded.

Refinement of the feature vectors

MeSH concepts can be very broad like ‘Eye’ or more specific

like ‘Retina’. MeSH includes a concept hierarchy that

describes relationships such as ‘Eye’– ’Retina’– ’Photorecep-

tors’. ‘Eye’ is called a hypernym of ‘Retina’, which in turn is

a hypernym of ‘Photoreceptors’, etc. Conversely, ‘Retina’ is

called a hyponym of ‘Eye’. To ensure that the concepts

‘Eye’ and ‘Retina’ are recognized as similar, we use the

MeSH hierarchy to encode this similarity in the feature

vectors by increasing the value of all hypernyms as

described in (Figure 1)

rc :¼ rc;counted þ

P

rhypo0s

nhypo;c
:

For any concept c, its relevance rc becomes the actual count

of the concept in a document rc,counted plus the relevance

sum of the concept’s hyponyms rhypo’s. This sum is divided

by the number of hyponyms nhypo,c. This equation is

applied iteratively from the most detailed level in the

MeSH tree, till the highest hypernym level is reached. Not

all concepts in the OMIM records are equally informative.

For example, ‘retina pigment epithelium’ occurs rarely,

and thus provides more specific information than very

frequently occurring terms such as ‘Brain’. We allowed for

differences in the importance of concept frequencies by

using the inverse document frequency measure15

gwc ¼ log2
N

nc
:

The inverse document frequency or global weight of

concept c (gwc) is the logarithm of the total number

of records analyzed (N; N¼5080) divided by the number of

records that contain concept c, nc. Not all OMIM records

contain equally extensive descriptions. These differences

will make a comparison between records difficult because

the diversity and the frequency of concepts in the larger

records will exceed those in the smaller records. Equation
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(3) was used to (partly) correct for these record size

differences.15

rc ¼ 0:5þ 0:5 �
rc
rmf

The local weight of concept c in a record is a function of

the concept’s frequency rc divided by the frequency of the

most occurring MeSH concept in that record, rmf. The three

feature vector corrections were applied in the order of

equations (1)–(3).

Comparing OMIM records

The similarity between OMIM records can be quantified by

comparing the feature vectors that are expanded and

corrected (equations (1)–(3)). Similarities between feature

vectors were determined by the cosines of their angles

(equation (4)).16

sðx; yÞ ¼

P

l

i¼1

xiyi
ffiffiffiffiffiffiffiffiffiffiffi

P

l

i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffiffi

P

l

i¼1

y2i

s

The similarity between the feature vectors X and Y

(s(X,Y)) is a function of their respective concept frequen-

cies xi and yi. The index i runs from 1 to the number of

MeSH concepts l.

Phenotype–genotype correlations

The matrix of all pairwise vector similarities was denoted

the phenomap. A subset of this phenomap containing the

1653 OMIM records for which the causative gene and

protein are known was used as a starting point for

determining the relation between phenotypic similarities

on the one hand and genotypic similarities on the other.

All 1653 phenotypes associated with a protein in the

UniProt database17 were then compared to four genotype-

related data sets. The average of 10 randomized pheno-

maps was used as a control for background signal. Feature

vectors were randomly permutated using Fisher–Yates

shuffling18 before computation of the phenomap.

The PFAM database19 was used to determine whether

pairs of genes share similar domains.

To check if genes are similar at the sequence level, we

compared the proteins associated with the 1653 pheno-

types from the UniProt database in an all-against-all

Smith–Waterman analysis20 (Blosum-90). Sequence pairs

with an alignment e-value better than 10�6 were consi-

dered similar.21

Protein–protein interactions were extracted from the

interaction section of the HPRD database22 and used to

Figure 1 Example of concept expansion using the MeSH hierarchical structure. The concept ‘Photoreceptors’ (with MeSH descriptor: D010786) is
found twice in an OMIM record. Expansion of this concept gives the hypernym ‘Retina’ (D012160). The relevance of the concept ‘Retina’ is derived
from ‘Photoreceptors’ according to equation (1). ‘Retina’ has seven descendants or hyponyms, thus its relevance becomes 1/7�2 (for two times
‘Photoreceptors’). Similarly, Retina’s hypernym ‘Eye’ (D005123) has 11 hyponyms, so that ‘Photoreceptors’ contributes 1/11�1/7�2 (¼0.026) to
the relevance of ‘Eye’. (Squared brackets indicate the MeSH tree position and a ‘þ ’ sign that there are more specific concepts underneath).
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check whether the proteins are part of the same complex or

interact in any other way.

The GO database23 and the GO annotations (GOA)24

were used to determine if two genes fall within the same

functional category.

Two genes/proteins were considered related when they

shared at least three GO terms at the sixth annotation

level.25 Annotations at the more detailed levels (level 7, 8,

etc) were converted to the corresponding annotation at the

sixth level. For example, the RDS protein [UniProt:P23942]

has the detailed annotation ‘visual perception’ at level 7

[GO:0007601], which gets converted to the more general

‘sensory perception of light’ [GO:0050953] at level 6.

Clustering

Multidimensional scaling methods did not show evident

clusters, which makes every clustering attempt intrinsically

subjective. In order to objectively visualize the relations

between the phenotypes, we performed average-link

clustering that results in a tree structure.26 This tree can

be explored at http://www.cmbi.ru.nl/MimMiner/.

Results
Feature vectors

A total of 5132 OMIM records (31%) describe a disease

phenotype, and their TX and CS fields were analyzed for

the presence of concepts from the anatomy (A) and disease

(C) sections in the MeSH thesaurus. For 5080 OMIM

records, we could match one or more MeSH terms.

Comparing OMIM records

The 5080�5080 pair-wise feature vector similarities form

the phenomap. The distribution of these similarity scores is

shown in Figure 2a. We used multi-dimensional scaling

methods to test whether the phenotypes form distinct

groups. The goal of these methods is to detect meaningful

underlying dimensions from high-dimensional data. For

computational reasons, we used a sample that contains

only the OMIM records with a CS field. Principal

component analysis, classic multidimensional scaling,

and independent component analysis implementations

from the ‘R’ software package27 were used, but none of the

methods showed evident groups. This suggests that the

human phenotypes when based on MeSH terms form a

continuous spectrum rather than distinct classes (data not

shown).

For each OMIM record, the most similar of the other

5079 records was identified (Figure 2b). We asked whether

moderately similar phenotype pairs might still yield

reasonable hypotheses. For gene-finding in humans, this

appeared to be the case in a number of instances. Even in

the 0.3–0.4 bin, individual cases displayed potentially

relevant phenotypic similarities. For example, ‘Fibromus-

cular Dysplasia of Arteries’ [OMIM:135580] and ‘Cardio-

myopathy, Familial Hypertrophic’ [OMIM:192600] have a

phenotypic similarity score of 0.31, the ninth most similar

score. The observation that these conditions are clinically

inter-related is supported by two case reports.28,29

Next, we asked if clinically different conditions caused

by mutation of the same gene were likely to be detected as

having considerable phenotype overlap by our system.

Indeed, approximately 40% of phenotypes caused by allelic

mutations were more similar to each other than to any

other phenotype in the data set (data not shown).

The conclusion is that the more phenotypes resemble

each other, the more likely they are to share an interaction

or pathway. However, we cannot define a general cutoff for

similarity scores because even low-scoring OMIM records

Figure 2 Histograms of phenotype similarity scores. (a) Histogram
of all pairwise phenotype similarity scores of the 5082 phenotype
records. The vertical axis is logarithmic; most phenotype–phenotype
pairs have a low similarity score. (b) The best scores for all phenotypes
in the disease phenotype datas et (nearest-neighbor similarity).
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can occasionally contribute to our understanding of the

diseases.

Phenotype–sequence similarity correlations

We asked whether the similarity at the phenotype level

predicts similarity in gene/protein function. The causative

gene/protein is known for 1653 of the 5080 OMIM records

that describe a phenotype (33%). The corresponding

1653� 1653 phenomap was extracted from the total

phenomap. These 1653 phenotypes linked to 2168 corre-

sponding protein sequences (1401 unique sequences).

Sequences were extracted from the UniProt database and

used to calculate all-against-all Smith–Waterman sequence

alignments. Figure 3a shows the fraction of significant

sequence alignment similarities as a function of the

phenotype similarity scores. The percentage of phenotype

pairs for which the causative proteins are similar increases

with increasing phenotype similarity score from 0.6% to a

maximum of 26.6%. Approximately half of these are owing

to different mutations in the same gene causing similar

phenotypes. For example, ‘Robinow–Sorauf syndrome’

[OMIM:180750] and the related ‘Saethre–Chotzen syn-

drome’ [OMIM:101400] are both caused by a mutation in

TWIST1 [UniProt:Q15672]. The other relations are owing

to mutations in different genes that share sequence

similarity. For example, the ‘Rufous Oculocutaneous

Figure 3 Phenotype similarity versus genotype relation categories. (a) Sequence similarity (Smith–Waterman, threshold e-value 1e�6). (b)
Sharing of at least one PFAM domain. (c) Protein–Protein interactions according to the HPRD database. (d) Sharing of three or more GOA at the sixth
or more detailed level. The 0.8–0.9 and 0.9–1.0 phenotype similarity bins suffer from low counts. The average signal of 10 randomized phenomaps is
at the level of the two lowest bins (data not shown).
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Albinism’ [OMIM:278400] and ‘Albinism, Oculocutaneous,

Type IB’ [OMIM:606952] phenotypes show 0.68 pheno-

typic similarity. These diseases are caused by mutations in

the TYRP1 [UniProt:P17643] and TYR [UniProt:P14679]

proteins, respectively, that are 43% identical at the

sequence level. Mutations in TYRP1 also cause ‘Oculocu-

taneous Albinism Type 3’ [OMIM:203290].

Many proteins have multiple functional domains. If two

proteins share a functional domain, then mutations may

disrupt the same process and thereby lead to similar

phenotypes. This can be true, even if the full protein

sequences do not share significant sequence identity.

Figure 3b shows the percentage sequence pairs that share

a PFAM domain as a function of the phenotype similarity

scores. The majority of pairs that share a PFAM domain

(67% or 119/181, disallowing the same gene in the 0.5–0.6

bin) also share significant overall sequence similarity. Only

in a minority did sequence comparison based on domain

sharing add new information compared to overall se-

quence similarity. For some phenotype pairs, the proteins

lack significant overall sequence identity, but do share one

or more common structural features. For instance, ‘Long Qt

Syndrome 3’ [OMIM:603830] is caused by a mutation in

SCN5A [UniProt:Q14524] and shares phenotypic charac-

teristics with ‘Jervell And Lange–Nielsen Syndrome’

[OMIM:220400] that can be caused by a mutation in

KCNQ1 [UniProt:P51787]. These two proteins have an ‘Ion

Transporter’ domain in common [PFAM:PF00520].

Phenotype–protein interaction correlations

We checked which of the 1653�1653 pairs have an

interaction described in the HPRD (Figure 3c). Although

the HPRD dataset is sparser than the other datasets, and

thus reveals fewer relations, 54% of these HPRD relations

were not yet detected by the sequence alignments or the

PFAM analyses. To check whether possible relations can

still be found in the lower similarity ranges, we performed a

detailed inspection on the 212 protein interactions that

are listed in the HPRD for pairs that have a phenotypic

similarity between 0.3 and 0.4. Over 50% of the relations

suggested a plausible reason for the phenotypic similarities.

For example, ‘Wiskott–Aldrich Syndrome’ [OMIM:301000]

and ‘Fleisher Syndrome’ [OMIM:307200] are caused by

mutations in WAS [UniProt:P42768] and BTK [Uni-

Prot:Q06187], respectively. WAS and BTK do not share

significant sequence similarity, nor do they share a PFAM

domain. However, both are involved in cell growth

regulation and cytoskeleton processes.30 WAS is phos-

phorylated by BTK, leading to activation of the Arp2/3

complex.31 In general, despite its sparse nature, the HPRD

provided biologically plausible information.

Phenotype–functional process correlations

Various excellent databases describing pathway informa-

tion are available, for example, KEGG,32 BRENDA,33

Reactome,34 etc. Most of these databases focus on meta-

bolic pathways, whereas less than 10% of the OMIM

phenotype records relate to metabolic disorders. To get an

impression of possible functional relations between genes

and proteins, we compared their GOA. We defined GO

similarity by the sharing of at least three GOA at the sixth

or more detailed GO level.25 The signal we find is well

above the average of 10 randomized matrices (B7%) over

all bins. The percentage of pairs that share three or more

GOA increased as a function of the phenotypic similarity

(Figure 3d). Compared to the three other sets, 76% of the

relations were new. A random set of 50 of the 786 proteins

that share three or more GOA in the 0.5–0.6 bin were

inspected in more detail. A plausible reason for the

phenotypic similarities was found in 37 of these 50 cases.

Unlike in Figure 3a–c, less than half of the relations are

owing to a defect in the same gene, which suggests the

criterion of sharing three GOA at the sixth level is less

stringent than in the other data sets.

Nevertheless, sharing GOA can be regarded as a relatively

nonspecific characterization of gene function with a high

noise level (Figure 3d). Overall, when the genotype by

phenotype relations were normalized using random

phenomaps, the HPRD was most efficient in providing

nonrandom gene–gene relationships (Figure 4).

Discussion
We have developed a text-mining approach to map

relationships between more than 5000 human genetic

Figure 4 Histogram of normalized genotype relations as a function
of phenotype–phenotype similarity. All values are corrected for
random information levels. Although the HPRD data set contains
fewer relations than the other sets, the normalized signal is more than
two times as strong, reflecting the quality of the HPRD data set. The
0.8–0.9 and 0.9–1.0 phenotype similarity bins suffer from low counts.
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disease phenotypes from the OMIM database. OMIM does

not contain a standardized system for scoring phenotypes.

We decided to use OMIM for this initial analysis because

it is still by far the most comprehensive of available

databases. The resulting phenotype matrix has a number of

characteristics that suggest that it (or similar systems based

on more comprehensive phenotyping efforts) might be a

useful addition to functional genomics tools such as the

HPRD and KEGG. As expected, we find that different

phenotypes associated with mutations of a single gene

show considerable overlap. Such allelic conditions are each

others best phenotypic hit in 40% of the cases. After

exclusion of allelic conditions, there remained a positive

correlation between phenotypic similarities on the one

hand, and sharing of gene sequence, protein motifs,

functional annotation, and known protein interactions

on the other (Figure 3). In these comparisons, we found a

relatively high level of noise for GO. We believe that our

finding that all gene attributes correlate with phenotype

sharing can be explained by assuming that human

phenotypes reflect disturbance of functional modules,

more than of individual genes. One striking finding was

that biologically meaningful relationships were mostly

detected in the small fraction of the phenotype relations

with a similarity score greater than 0.4 (Figure 3). The

combined data suggest that we may indeed use phenotypic

relationships as general indicators of biological and func-

tional interactions at the gene and protein levels.

Several applications can be envisaged for the phenomap.

First, our analysis suggests that the phenotype matrix may

aid in the prediction of candidate genes for the 3400 traits

listed in OMIM whose molecular basis remains to be

defined. Second, it is conceivable that one would take

phenotypic relationships as the starting point for bio-

chemical and cell biological experiments in order to prove

a suspected link at the gene and protein levels. Experi-

ments of this type have already been shown to be

successful (eg polycystic kidney disease (PKD1, PKD2),

tuberous sclerosis (TSC1, TSC2), breast and ovarian cancer

(BRCA1, BRCA2), and Fanconi anemia (FANCA-G)).35–38

Finally, there may well be a point in pursuing large-scale

phenotype analyses using more precise measures of the

phenotypes themselves. OMIM was not designed as a

structured database for phenotype analysis. Indeed, it does

not contain rules for feature assignment and most of the

phenotype information collected by our text-mining

approach derives from free text fields. A more standardized

method for phenotype description including frequency

estimates for each feature would greatly increase the yield

of the analyses of genotype–phenotype correlations.39

Phenotype clustering reflects the modular nature of

human disease genetics. Thus, the phenomap may be used

to predict candidate genes for diseases. Such predictions

will further improve if a unified system of phenotype

descriptors is developed.
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