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Abstract

Image texture is useful in image browsing, search and retrieval. A texture descriptor based on a multiresolution

decomposition using Gabor wavelets is proposed. The descriptor consists of two parts: a perceptual browsing component

(PBC) and a similarity retrieval component (SRC). The extraction methods of both PBC and SRC are based on

a multiresolution decomposition using Gabor wavelets. PBC provides a quantitative characterization of the texture's

structuredness and directionality for browsing application, and the SRC characterizes the distribution of texture energy

in di!erent subbands, and supports similarity retrieval. This representation is quite robust to illumination variations and

compares favorably with other texture descriptors for similarity retrieval. Experimental results are provided. ( 2000

Elsevier Science B.V. All rights reserved.
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1. Introduction

The recent advances in digital imaging and com-

puting technology have resulted in a rapid accumu-

lation of digital media in the personal computing

and entertainment industry. In addition, large col-

lections of such data already exist in many scienti"c

application domains such as the geographic in-

formation systems (GIS) and medical imaging.

Managing large collections of multimedia data

requires development of new tools and technolo-

gies. This is evident in the current MPEG-7 stan-

dardization e!ort whose objective is to provide a set

of standardized tools to describe the multimedia

content [9,15,16].

At the core of the MPEG-7 is a set of descriptors

for audio-visual content. In [16] a descriptor is

de"ned as a representation of a feature. A descrip-

tor de"nes the syntax and semantics of the feature

representation. Examples of low-level visual fea-

tures include color, shape, motion, and texture.

This paper describes a texture feature descriptor

that is being proposed to the MPEG-7 standard

[18]. Key functionalities supported by this descrip-

tor include image browsing and similarity-based

retrieval.

Image texture has emerged as an important vis-

ual primitive to search and browse through large

collections of similar looking patterns. An image

can be considered as a mosaic of textures and

texture features associated with the regions can be

used to index the image data. For instance, a user

browsing an aerial image database may want to
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identify all parking lots in the image collection.

A parking lot with cars parked at regular intervals

is an excellent example of a textured pattern when

viewed from a distance, such as in an airphoto.

Similarly, agricultural areas and vegetation patches

are other examples of textures commonly found in

aerial and satellite imagery. Examples of queries

that could be supported in this context could in-

clude `Retrieve all Landsat images of Santa Bar-

bara which have less than 20% cloud covera or

`Find a vegetation patch that looks like this

regiona. To support image retrieval or browsing, an

e!ective representation of textures is required.

One of the widely used representations of tex-

tures is the texture feature proposed in [17] and its

improved version in [6]. The texture feature used in

[17,6] is based, to some extent, on models of human

texture perception. More recently, several random-

"eld-based texture models [10,14] and multiscale

"ltering methods [3,13] have been studied. Use of

texture for content-based retrieval has been ex-

plored by several researchers [6,11,12]. Among

these, features computed from Gabor "ltered

images appear quite promising. A comprehensive

evaluation of using Gabor features can be found in

[11,13]. More recent evaluation and comparison

using other texture features also support the obser-

vation that the orientation and scale-selective Gabor

"ltered images capture relevant texture properties

for applications such as image retrieval [8].

The proposed texture descriptor is based on

Gabor "ltering [11,13]. The descriptor has two

parts: The "rst part relates to a perceptual charac-

terization of texture in terms of structuredness,

directionality and coarseness (scale). This repres-

entation is useful for browsing type applications

and coarse classi"cation of textures. We call this

part the perceptual browsing component (PBC).

The second part provides a quantitative description

that can be used for accurate search and retrieval.

This is referred to as the similarity retrieval com-

ponent (SRC). The SRC component is described in

detail in an earlier paper [13]. Both of the compo-

nents are derived from a multiresolution Gabor

"ltering. Key features of this descriptor are

f It captures both the high-level perceptual

characterization (in terms of directionality,

structuredness, and coarseness of a texture), as

well as a robust quantitative characterization at

multiple scales and orientations.

f Feature extraction is simple, involving image

convolutions with a set of masks. The "lters are

based on a 2-D Gabor wavelet decomposition.

Image convolutions can be e$ciently imple-

mented in hardware and software.

f Multiple applications can be supported by the

descriptor. For example, by using PBC, brows-

ing of image database could be performed (e.g.,

show textures that are structured and are oriented

at 903). The SRC can be used for query by

example type applications wherein similarity re-

trieval is needed.

The paper is organized as follows. The next section

provides a brief introduction to Gabor "lters. Com-

puting the PBC is described in Section 3 and

Section 4 details SRC computation. Experimental

results are provided in Section 5. Section 6 con-

cludes with discussions.

2. Gabor 5lter bank [13]

The use of Gabor "lters in extracting texture

descriptors is motivated by several factors. The

Gabor representation has been shown to be opti-

mal in the sense of minimizing the joint two-dimen-

sional uncertainty in space and frequency [4].

These "lters can be considered as orientation and

scale tunable edge and line detectors, and the statis-

tics of these micro features can be used to charac-

terize the underlying texture.

A two-dimensional Gabor function and its

Fourier transform can be written as

g(x, y)"A
1

2pp
x
p
y
BexpC!

1

2A
x2

p2
x

#
y2

p2
y
B

#2pj=xD, (1)

G(u, v)"expG!
1

2C
(u!=)2

p2
u

#
v2

p2
v
DH, (2)

where p
u
"1/2pp

x
and p

v
"1/2np

y
. A class of

self-similar functions, refered to as the Gabor

wavelets, is now considered. Let g(x, y) be the
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Fig. 1. The contours indicate the half-peak magnitude of the

"lter responses in the Gabor "lter dictionary. The "lter para-

meters used are ;
)
"0.04, ;

-
"0.05, K"6 and S"4 [6].

mother wavelet. Then a self-similar "lter dictionary

can be obtained by appropriate dilations and trans-

lations of g(x, y) through the generation function

[13]:

g
mn

(x, y)"a~mg(x@, y@), a'1, m, n"integer

x@"a~m(x cos h#y sin h) and

y@"a~m(!x sin h#y cos h), (3)

where h"np/K and K is the total number of ori-

entations. The scale factor a~m in (3) is meant to

ensure that the energy is independent of m. This set

of functions form a non-orthogonal basis of func-

tions for the multiresolution decomposition [13].

The non-orthogonality of the Gabor wavelets

implies that there is redundant information in the

"ltered images, and the following strategy is used to

reduce this redundancy. Let ;
-
and ;

)
denote the

lower and upper center frequencies of interest. Let

K be the number of orientations and S be the

number of scales in the multiresolution decomposi-

tion. Then the design strategy is to ensure that the

half-peak magnitude supports of the "lter re-

sponses in the frequency spectrum touch each other

as shown in Fig. 1. This results in the following

formulas for computing the "lter parameters p
u
and

p
v

(and thus p
x

and p
y
) [13].

a"(;
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)
D
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(4)

where=";
)

and m"0, 1,2, S!1. In order to

eliminate sensitivity of the "lter response to abso-

lute intensity values, the real (even) components of

the 2-D Gabor "lters are biased by adding a con-

stant to make them zero mean (This can also be

done by setting G(0, 0) in (2) to zero.) Filtering the

image I(x, y) with g
mn

(x, y) results in

=
mn

(x, y)"PI(x, y)gH
mn

(x!x
1
, y!y

1
) dx

1
dy

1
,

(5)

where * indicates the complex conjugate.

3. Perceptual browsing component (PBC)

From the multiresolution decomposition, a given

image is decomposed into a set of "ltered images.

Each of these images represents the image informa-

tion at a certain scale and at a certain orientation.

The PBC captures the regularity (or the lack of it)

in the texture pattern. Its computation is based on

the following observations:

f Structured textures usually consist of dominant

periodic patterns.

f A periodic or repetitive pattern, if it exists, could

be captured by the "ltered images. This behavior

is usually captured in more than one "ltered

output.

f The dominant scale and orientation information

can also be captured by analyzing projections of

the "ltered images.

Based on the above observations, we propose the

following format for the PBC:

PBC"[v
1

v
2

v
3

v
4

v
5
]. (6)

f Regularity (v
1
): v

1
represents the degree of regu-

larity or structuredness of the texture. A larger

value of v
1

indicates a more regular pattern.

Consider the two patterns in Fig. 2. Pattern

Fig. 2(a) is intuitively more `regulara than Fig. 2(b),
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Fig. 2. Two examples of regularity of textures (a) regular pattern

(b) irregular pattern.

and hence should have a larger v
1

compared to

Fig. 2(b).

f Directionality (v
2
, v

3
): These represent the two

dominant orientations of the texture. The accu-

racy of computing these two components often

depends on the level of regularity of the texture

pattern. In our implementation, the orientation

space is divided into 303 intervals.

f Scale (v
4
, v

5
): These represent two dominant

scales of the texture. Similar to directionality, the

more structured the texture, the more robust the

computation of these two components.

The PBC computation is a two step procedure.

The "rst step is the analysis of each "ltered

output. The objective of this step is to determine

the existence of a repetitive pattern. The

second step is performed on all "ltered outputs

that are identi"ed as having some kind of

regularity.

3.1. Analysis of each xltered image and

candidate selection

To identify if a "ltered image is repetitive or not,

the projections of each "ltered image is computed

and analyzed. The regular projections would be

identi"ed and further grouped to "nd dominant

regularity of projections. The detail of the analysis

is given below step by step.

Projection: For each "ltered image, the projec-

tions along horizontal and vertical directions are

computed. For an N]N image, the horizontal

projection P
H

and vertical projection P
V

are

de"ned as

P(mn)
H

(l)"
1

N

N
+
k/1

=
mn

(l, k) and

P(mn)
V

(k)"
1

N

N
+
l/1

=
mn

(l, k), (7)

where l, k"1,2, N, =
mn

(l, k) represents the

(m, n)th "ltered output. For simplicity in notation,

we drop the index (m, n) and the subscripts (H and

V) in the following discussion.

Autocorrelation: Consider now a projection P(l).

The normalized autocorrelation function (NAC) is

de"ned as

NAC(k)"
+N~1

m/k
P(m!k)P(m)

J+N~1
m/k

P2(m!k)+N~1
m/k

P2(m)
. (8)

Fig. 3 shows the horizontal projections of texture

pattern (a) in Fig. 2.

Peak detection: The local peaks and valleys of the

NAC(k) are then identi"ed. For the detected peaks

and valleys, their position and magnitude are

recorded. Let M be the number of peaks and N

be the number of valleys. Let p}posi(i), p}magn(i)

(i"1, 2,2,M) be the positions and magnitudes of

these peak points, respectively, and let v}posi( j),

v}magn( j) ( j"1, 2,2, N) be the positions and

magnitudes of the valley points, respectively. The

contrast of the projection is then de"ned to be

contrast"
1

M

M
+
i/1

p}magn(i)!
1

N

N
+
j/1

v}magn(i). (9)

Peak Analysis: Given a peak sequence p}posi(i)

including all the peaks detected form a projection

and the number of peaks is M, the average of the

distances among the successive peaks, dis, and the

square root of the standard deviation of distances,

std are computed. Let

c"
std

dis
. (10)

A lower variance in the distances between peaks

implies a more `consistenta repetitive pattern.

A threshold can then be set to distinguish between

regular and irregular patterns. If c is smaller than

a pre-selected threshold ¹
1
, the corresponding pro-

jection is considered to represent a repetitive or

4 B.S. Manjunath et al. / Signal Processing: Image Communication 000 (2000) 000}000
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Fig. 3. NAC of horizontal projections of all the 4]6 "ltered images from image T001.01. The projections labeled with &*' are the detected

potential candidates and those also labeled with &#' are the "nal candidates after clustering.

regular pattern. Those projections that pass this

threshold are then checked for consistency.

A simple agglomerative clustering [5] in the two-

dimensional std}dis space is then used to remove

the outliers.

Fig. 3 shows the NAC of the 24 horizontal projec-

tions for the image T001.01 (shown in Fig. 2(a)).

The projections marked with `*a are the ones that

pass the threshold test. Fig. 4(a) shows the distribu-

tion of std}dis of these potential candidates.

Fig. 4(b) shows the results after the clustering.

Those projections that pass the consistency check

are marked with a `#a in Fig. 3. A similar

analysis is performed on the vertical projection

as well.

From those projections that passed the consist-

ency check, we identify the ones with the maximum

contrast. Let (mH(H), nH(H)) denote the scale and

orientation indices, respectively, of the horizontal

projection with the maximum contrast. Similarly,

let (mH(<), nH(<)) denote the scale and orientation,

respectively, of the vertical projection with max-

imum contrast. Then, we have

PBC[v
4
]"mH(H) and PBC[v

2
]"nH(H),

PBC[v
5
]"mH(<) and PBC[v

3
]"nH(<).
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Fig. 4. Clustering of potential candidates: the left "gure shows the distribution of potential candidates from the projections shown in

Fig. 3 and the right one shows the "nal candidates after clustering.

3.2. Computing the Structuredness (PCB[v
1
])

The method of measuring the degree of the struc-

turedness is based on the following observations on

the distribution of candidate vectors.

f For strong structured textures, their periodicity

could be captured by multiple projections } the

candidates chosen from the above procedure.

Typically, these candidates are neighbors in the

scale-orientation space.

f If the texture is not structured or only weakly

structured, the distribution of the candidates, if

they exist, is usually sparse and the neighboring

relationship can rarely be detected.

If such a consistency in the neighboring projections is

detected from the projections in the candidate set, this

would result in a larger credit, indicating a stronger

structuredness. Based on these observations, the can-

didate projections are further classi"ed as follows:

3.2.1. Candidate classixcation

C
1
: For a speci"c candidate, we can "nd at least

one other candidate at its neighboring scale or

orientation. The value associated with this class is

<
1
"1.0.

C
2
: For a speci"c candidate, we can "nd at least

one another candidate distributed at the same scale

or orientation, but no candidate is located at its

neighboring scale or orientation. The value asso-

ciated with this class is <
2
"0.5.

C
3
: The candidate is the only one distributed at

its scale and orientation. The value associated with

this class is <
3
"0.2.

At this stage, each of the candidate projections

has an associated value computed based on the

above classi"cation. Let

M"
3
+
i/1

N
i*
<

i
, (11)

where N
i

is the number of candidate projections

classi"ed as C
i
. M is calculated for the horizontal

(M
H
) and vertical (M

V
) projections. Let

M
*.'

"M
H

#M
V

(12)

M
*.'

is quantized into N
v

bins by using option

decision tree classixer [2]. The larger the value of

M
*.'

is, the more structured the corresponding

texture is. In our current implementation, N
v
"4.

Consequently, each image is associated with

a number B
*.'

, B
*.'

3M1,2, N
v
N, to indicate which

bin an image belongs to.

PBC[v
1
]"B

*.'
.
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Fig. 5. PBC of some Brodatz textures.

4. Extraction of similarity retrieval component

(SRC)

4.1. Computing the similarity retrieval component

(SRC)

The mean k
mn

and the standard deviation p
mn

of

the magnitude of the transform coe$cients are used

to form the SRC:

k
mn

"PPD=mn
(x, y)D dx dy and

p
mn

"J::(D=
mn

(x, y)D!k
mn

)2 dx dy. (13)

The similarity retrieval component (SRC) vector is

now constructed using k
mn

and p
mn

. For S scales

and K orientations, this results in a vector

SRC"[k
11

p
11 2 k

SK
p
SK

].

Note the double index on the vector elements. In

the experiment, we use four scales S"4 and six

orientations K"6, resulting in a feature vector

SRC"[k
11

p
11 2 k

46
p
46

]. (14)

4.2. Distance measure for similarity retrieval

component (SRC)

To perform the similarity retrieval, a distance

measure is de"ned on the proposed feature vector.

Consider two image patterns i and j. Then the

distance between the two patterns is de"ned to be

d(i, j)"+
m

+
n

d
mn

(i, j), (15)

where

d
mn

(i, j)"K
k(i)
mn

!k(j)
mn

a(k
mn

) K#K
p(i)
mn

!p(j)
mn

a(p
mn

) K, (16)

a(k
mn

) and a(p
mn

) are the standard deviations of

the respective features over the entire database,

and are used to normalize the individual feature

components.

5. Experiment results

5.1. Browsing using PBC

The parameters values used in the experiments

are: ;
-
"0.04, ;

)
"0.5, S"4, K"6 (in Eqs. (3)

and (4)) and N
v
"4. Thus, the resulting Gabor

"lter set has six orientations (303 intervals) and four

scales.

The PBC vectors for some of the Brodatz texture

images [1] are shown in Figs. 5 and 6. The size of

the images in the original Brodatz album is

512]512. For evaluation purpose, each 512]512

B.S. Manjunath et al. / Signal Processing: Image Communication 000 (2000) 000}000 7
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Fig. 6. Browsing example: patterns having similar PBC to the query pattern (on the left). The PBC values are shown below each texture.

image is divided into four 256]256 subimages.

Each of the images shown in Fig. 5 is just one of the

four subimages of each texture image. The PBC[v
1
]

has values between 1 and 4 (N
v
"4). It could be

observed that for the structured images, the estimated

directions and scales match the perceived images very

well. But the scale and direction estimates are not

very reliable for textures with low values for PBC[v
1
].

The PBC computations are subjectively evaluated

as follows. The 30 texture images from Fig. 5 were

shown to "ve di!erent individuals. They were asked

to quantify the texture structuredness, directionality

and scale on the same scale as our PBC computa-

tion. The median values of each of the components

are used for comparing with the PBC values com-

puted by our method. For the computer-generated

PBC values, we use the median of the values from

the four sub-images of each texture.

For the structuredness component PBC[v
1
], the

computer and human generated values are within

one value deviation for 28 of 30 images. If we

consider values greater than or equal to 2 as repres-

enting the structured texture, the computed PBC

values result in 17 structured and 13 non-structured

textures. This is in good agreement with the human

observers who agree with 16/17 (structured) and

12/13 (non-structured).

The computed dominant directions are also in

good agreement with the human observers for the

textures rated as structured. In 12 out of 16, the

results are in complete agreement. It is observed

that if a texture has horizontal and vertical pat-

terns, the algorithm would pick up the correspond-

ing diagonals as the directions. For the dominant

scales, the human subjects had di$culty rating

the textures on a scale of 4 and provided only one

dominant scale for each pattern. It would have

been more convenient, perhaps, to use the three

scales } "ne, medium and course } for the subjective

tests. For the structured textures, the subjective and

computed values for the "rst dominant scale were

in agreement within one value deviation. Our pro-

posed method did quite well in identifying scales for

textures that had pattern at two signi"cantly di!er-

ent scales. See, for example, T053 and T055 in

Fig. 5, which contain pattern at di!erent scales.

5.2. Similarity retrieval using SRC

In [13] we provided a comprehensive compari-

son with other state-of-art texture descriptors. The

Brodatz texture album [1] is used in those experi-

ments. This includes two descriptors based on

orthogonal wavelets, SRC and [3], and one based

on multiresolution simultaneous autoregressive

model (MR-SAR) [14]. The SRC compares quite

favorably with those other texture descriptors. The

main observations from [13] are:

f In general, feature components corresponding to

higher frequencies have better discriminat-

ing performance. However, decomposing the

8 B.S. Manjunath et al. / Signal Processing: Image Communication 000 (2000) 000}000
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Fig. 7. Similarity retrieval using SRC on an airphoto database: (a) the region retrievals from areas containing some buildings; (b) an

example of retrieving a part of the runway of an airport; and (c) retrievals containing an image identi"cation number.

high-frequency bands further in the tree-struc-

tured wavelet representation of [3] often leads to

a decrease in performance, indicating that these

features are not very robust.

f Experiments with di!erent orthogonal wavelet

transforms indicate very little variation in perfor-

mance with respect to the choice of "lters.

f The marginal improvement of the tree structured

wavelet features comes at the expense of having

a much larger feature vector, which adds to the

overhead associated with indexing and searching.

f It is important to explore di!erent similarity

measures for each of the di!erent sets of features.

For example, using the Mahalanobis distance

instead of the Euclidean distance improved the

performance from 64% to 73% for the MR-SAR

features. Normalized Euclidean distance worked

better for all the others.

B.S. Manjunath et al. / Signal Processing: Image Communication 000 (2000) 000}000 9
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f For Brodatz images, the best results using the

Gabor features were obtained using four scales

and six orientations within each scale.

In [11], we provided an application to search and

retrieve of aerial photographs using the SRC de-

scriptor. Some retrieval examples on the airphoto

database are shown in Fig. 7.

6. Discussions

We have presented a texture descriptor for

browsing and similarity retrieval applications.

A comprehensive evaluation of its performance in

similarity retrieval is given in [13]. The browsing

component extends its functionality, and enables

coarse level classi"cation of the database.

In the UCSB digital library project, the descriptor

is used to facilitate query by example in a large aerial

photograph database. The proposed texture descriptor

provides a robust representation of many geographi-

cally salient features such as housing developments,

parking lots, highways, airports, and agricultural

regions. Details of this work can be found in [11].

The proposed descriptor has been used in other

application domains as well. For example, in [8],

researchers from IBM have reported applying this

texture descriptor to an image database related to

petroleum exploration. They concluded that the

Gabor feature set outperforms other texture fea-

tures (computed using the quadratic-mirror "lter,

the discrete cosine transform, and the orthogonal

wavelet transform) by a wide margin on their

benchmark dataset. This is consistent with our

earlier observation.
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