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A texture tensor to quantify deformations
Miguel Aubouy, Yi Jiang, James A. Glazier, François Graner

Abstract Under mechanical deformation, most materials
exhibit both elastic and fluid (or plastic) responses. No
existing formalism derived from microscopic principles
encompasses both their fluid-like and solid-like aspects.
We define the statistical texture tensor to quantify the
intuitive notion of stored deformation. This tensor links
microscopic and macroscopic descriptions of the material,
and extends the definition of elastic strain.

Keywords Strain, Connected network, Elasticity of
disordered media, Deformation and plasticity

A typical mechanical experiment applies a given macro-
scopic distortion to a test sample and measures the re-
sulting macroscopic force exerted by the material, or vice
versa. The goal is to find the constitutive equation, which
relates the macroscopic stress tensor to an independent
descriptor of the material’s response. We know the rele-
vant descriptor to use for two extreme cases, elastic solids

Received: 1 November 2002

M. Aubouy
SI3M∗, D.R.F.M.C., CEA, 38054 Grenoble Cedex 9, France
∗U.M.R. n◦ 5819: CEA, CNRS and Univ. Joseph-Fourier

Y. Jiang
Theoretical Division,
Los Alamos National Laboratory,
New Mexico 87545, USA

J. A. Glazier
Indiana University,
Department of Physics,
Swain West 159, 727 East Third Street,
Bloomington, IN 47405-7105, USA

F. Graner
Laboratoire de Spectrométrie Physique∗∗, BP 87,
38402 St Martin d’Hères Cedex, France
∗∗U.M.R. n◦ 5588: CNRS and Univ. Joseph-Fourier
Address for correspondence: graner@ujf-grenoble.fr
Fax: (+33) 4 76 63 54 95, BP 87, 38402

We thank M. Asipauskas, S. Courty, B. Dollet, F. Elias,
S. Ifadir, E. Janiaud and G. Porte for discussions. YJ is sup-
ported by the US DOE under contract W-7405-ENG-36. JAG
acknowledges support from NSF, DOE and NASA contracts
NSF-DMR-0089162, DOE-DE-FG0299ER45785 and NASA-
NAG3-2366, the French Ministère de l’Enseignement Supéri-
eur, and hospitality at the LSP.

and isotropic fluids: the gradient of the displacement and
the velocity field, respectively.

While stress is unambiguously defined [1,2], strain ad-
mits more than one definition. Classical linear (or even
non-linear) elasticity operationally defines the strain by
comparing the current microscopic state to a fixed micro-
scopic reference state [3–5]. But most materials, having
both an internal structure which stores elastic energy and
the flexibility to allow rearrangements, lie between ideal
fluids and purely elastic solids. Not only do we lack their
exact constitutive relations, we do not know what descrip-
tors apply.

In this paper we propose an operational definition of
the deformation which we can measure in experiments and
simulations in terms of averages of microscopic quantities:
the statistical texture tensor, a state function of the mate-
rial. Its variations measure the elastic strain of an object
under arbitrary deformations, without requiring the mi-
croscopic details of a reference state.

Unlike Ref. [6] which starts from a coarse grained mass
density, which is appropriate for granular materials, we
consider a network structure. Our generic material is a
network of sites connected by links, which can detach from
and reattach to other sites (Fig. 1). Site and link defini-
tions depend on the material:

(i) In cellular patterns, a site is the meeting point of
cells. Two sites connect if their cells share an edge.
This situation applies, for instance, to grain bound-
aries in crystals [7], compact 2D or 3D aggregates of
biological cells, or Voronoi tesselations

Fig. 1. A network of interconnected sites. The representative
volume element V at position �R is a square in two dimensions;
its volume is V . Microscopically, �r is the position of a site which
here has three links (unoriented vectors �� )
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(ii) If links are physical objects, sites need not be. In liq-
uid foams, links are bubble edges, while sites are the
vertices where they meet. In gels of polymers, links
are macromolecules; sites are knots.

(iii) If sites are undeformable objects, as in hard granular
materials, they link if their separation is less than a
cut-off distance. Since such a cut-off is arbitrary, it
must be chosen consistently throughout the analysis.

(iv) When two sites exert a force on each other, they are
linked. This is the case, e.g., for atoms or molecules in
crystalline and amorphous solids, or deformable gran-
ular materials. We then have to specify a cut-off on
their interaction force (Cauchy scheme): again, such
an arbitrary cut-off must be chosen consistently.

Note that, even in cases (ii) and (iv), the strain re-
mains purely geometric and does not depend explicitly on
stresses and forces, as seen in 3D foams where the films
determine the stress [8] while the edges determine the sta-
tistical strain.

For simplicity, we consider only point-like isotropic
sites, i.e. the average link length is much larger than the
site size, and the unstressed material is mesoscopically iso-
tropic [9]. Neither restrictions is essential: we could relax
them by extending our definitions.

At the microscopic level, we describe our material by
the positions {�rs} of the sites {s} in a d-dimensional space
(Fig. 1). The topology T is the list of all pairs (s, s′) of sites
connected by a link �� = (�x, �y, ...) = �rs′ −�rs. The topolo-
gy changes when perturbations create or destroy a link or
a site.

A continuous description interpolates between this
microscopic level of description and a macroscopic de-
scription in terms of the shape and size of the network
boundaries. We define an intermediate mesoscopic level
(Fig. 1). We cut the network into representative volume
elements, V(�R) of volume V , at position �R: small enough
that their properties are constant over the box; but large
enough that each piece contains enough links to compute
statistical properties and average out microscopic details.
In each volume element we define all statistical quantities
as averages over all links in V(�R). The number of neigh-
bours of each site must be much smaller than the number
of links in V(�R). We thus require that the topology re-
mains “short-range;” while the neighbours s′ of a site s
may change, their number must remain bounded.

Our fundamental definition is the texture tensor:

M (�R) ≡
〈

�� ⊗ ��
〉

. (1)

Here (�� ⊗ �� )ij = �i�j is the “dyadic” (or “outer” or “ten-

sor”) product. M is symmetric, and has positive eigen-

values. M occurs in many different physical contexts: the
Steiner Tensor [10–12], order parameters of nematics [13],
molecular moments of inertia ([14] p. 116–119), or textures
of granular materials [15]. The texture tensor quantifies
our mental image of a network; large eigenvalues corre-
spond to directions of stretching (Fig. 2).

This definition (1) encompasses all materials where a
mesoscopic scale exists, i.e., most cases. It requires that a
thermodynamic limit exists for all extensive and intensive

Fig. 2. Texture tensor M (eq. 1) superimposed on a snapshot
of a simulated two-dimensional foam. The foam flows steadily
from left to right around a fixed round obstacle. We calculate
the texture tensor over a box almost as small as the bubble
size, by averaging over 50 successive images. The texture ten-
sor is symmetric with two positive eigenvalues. We represent it
as an ellipse, with the long axis (resp. small axis) proportional
in length to the largest (resp. smallest) eigenvalue and point-
ing along the corresponding eigenvector. We see compression
deformation in front of the obstacle, and stretching behind it

quantities, i.e. statistics on larger volumes decrease the
relative amplitude of fluctuations (these microscopic fluc-
tuations might remain visible on the scale of the sample
size if the sample is small [16] or if the lattice is ordered
[17]). We assume no correlations between the volume ele-
ments, which we must check. Materials that display net-
works of forces, avalanches or fractures thus require careful
treatment. For materials in ergodic steady flow, time av-
erages also reduce fluctuations and the network acts as a
continuous medium down to scales as small as the average
link length (Fig. 2).

If each region has an isotropic reference state [9], then

M0 = M0 Id, where Id is the identity tensor in d dimen-
sions. All its relevant information lies in the scalar
M0 =

〈
�20

〉
/d, i.e. in the mean squared link length in this

state [18].

We now define the “statistical strain” U as:

U (�R) ≡ log M − log M0

2
, (2)

where the tensor log M has the same axes as M but
eigenvalues equal to the logarithm of those of M .

Eq. (2) is operational: U quantifies the deformations
visible locally in each region of an image, such as exten-
sion, compression, shear, or dilation (Fig. 2). U also sat-
isfies other requirements for the definition of strain. It is
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invariant under rotation, translation and transposition of
indices. It is a true function of state; it depends explicitly
only on the current state and the reference state, not on
the detailed history of the material. It is mesoscopic;
it reflects only statistically significant features of the
network. Its definition (eq. 2) accomodates topological
changes and thus the plastic regime.

Finally, we prove that whenever the classical definition
of the strain tensor applies, it coincides with our statisti-
cal strain U . Under an arbitrary elastic deformation from
an initial, equilibrium, isotropic state to a final state, we
have:

U=
1
2

(
w + w

t
)

+ O
(
w2) . (3)

Here we do not make any assumptions about the micro-
scopic displacements. The displacement field �u(�R) is the
difference between states in the region V(�R), initially at
position �R. When �u(�R) is differentiable, the distortion ten-
sor w= [�∇⊗�u]t = ∂ui/∂rj quantifies the deformation from
initial to final state. The proof goes as follows:

As a first step, we have to prove that the average
over the surface element �ndS (or line elements, in two
dimensions), denoted 〈.〉�n, of any function g(�� ) of the links
which actually cross this surface, relates to its bulk aver-
age, denoted 〈.〉, as:

∀�n, 〈g〉�n 〈�j〉 nj = 〈g�j〉 nj . (4)
Here 〈�j〉 depends on the orientation chosen for the link;
it must be chosen consistently along the surface, for in-
stance along the orientation of �n. On the other hand, if
g is an odd function of the link ��, i.e. g(−�� ) = −g(�� ),
then the quantity g(�� )�� does not depend on the arbitrary
orientation choosen for the link; in that case, 〈g�j〉 does
not depend on �n, so that we can omit �n in what follows.

To prove this first step, eq. (4), we remark that for any
elementary section �dS = �ndS of C, oriented by the unit
vector �n, the probability for a link to cross �dS is propor-
tional to:

ρ�� · �n dS P (�� ) d3��,

where ρ is the average density of links, and P is the
probability distribution function of the links ��. Hence the
sum of g taken over all links crossing �dS is:

∑
�dS g(�� ) =

ρ
∫∫∫

g(�� ) �� · �n dS P (�� ) d3��. In particular, with g = 1 we
obtain the number of links crossing �dS:

ρ

∫ ∫ ∫
�� · �n dS P (�� ) d3��.

Combining both proves eq. (4).
At this point, it is interesting to apply eq. (4) to the

forces. By definition [3,4], the stress σ is the tensor such
that, ∀�n:

σijnj dS =
∑
�dS

τi,

where �τ is the tension (force) supported by the link ��.
With g(�� ) = τi, eq. (4) yields:

σ= ρ〈�τ ⊗ �� 〉,

providing a statistical interpretation of the stress tensor
as an average over all links [8].

Now, we can prove eq. (3). By the definitions of �u and
w, we can write:

〈
δ��

〉�n

= 〈δ�r 〉�n (�R + 〈�� 〉�n) − 〈δ�r 〉�n (�R)

= �u(�R + 〈�� 〉�n) − �u(�R)

= w
t
〈
��
〉�n

+ O
(
w2) . (5)

With g(�� ) = δ�i, eq. (4) yields:

〈
δ�� ⊗ ��

〉
=

〈
δ��

〉�n

⊗
〈
��
〉

,

which inserted into eqs. (1) and (5) yields:

M = M0 + M0w + w
t
M0

= M0

(
I + w + w

t
)

+ O
(
w2) . (6)

Combining eqs. (2) and (6) proves eq. (3).

Hence the statistical strain U coincides with the elastic
strain. Note that in the (rare) cases where the microscopic

displacements are affine, then �� = (I + w
t
) ��0, ∀��. This

statement is very strong since each link (and not only the
average) obeys eq. (5); in this case, eq. (3) is easier to
demonstrate.

In summary, we have proposed a statistical character-
ization of deformation. It averages the microscopic details
of the current pattern and of the reference state, to keep
only the physical features statistically relevant at large
scales. Hence, different microscopic configurations which
are statistically identical correspond to the same statis-
tical strain (for instance, ductile metals like soft steel or
aluminium have almost unchanged Young’s modulus even
much beyond their yield strain [19]) so, although different
applied strains correspond to different microscopic struc-
tures, they have the same statistical strain, the same static
stress and the same mechanical response for any physically
reasonable static constitutive relation. Or, in a steadily
flowing material, U is constant; we thus provide an opera-
tional definition for the thermodynamic stored strain that
Porte et al. [20] introduced to allow a theoretical descrip-
tion of shear-induced phase transitions.

This definition invites re-analysis of existing data, as
well as experimental, numerical and theoretical tests. In a
companion paper we have sucessfully performed such tests
on an experiment which forces a two-dimensional foam to
flow through a small constriction [21].
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