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A texture tensor to quantify deformations: the example
of two-dimensional flowing foams
Marius Asipauskas, Miguel Aubouy, James A. Glazier, François Graner, Yi Jiang

Abstract In a continuum description of materials, the
stress tensor field σ quantifies the internal forces the
neighbouring regions exert on a region of the material.
The classical theory of elastic solids assumes that σ de-
termines the strain, while hydrodynamics assumes that
σ determines the strain rate. To extend both successful
theories to more general materials, which display both
elastic and fluid properties, we recently introduced a de-
scriptor generalizing the classical strain to include plastic
deformations: the “statistical strain,” based on averages
of microscopic details (“A texture tensor to quantify de-
formations” M.Au., Y.J., J.A.G., F.G, companion paper,
Granular Matter, this issue). Here, we apply such a statis-
tical analysis to a two-dimensional foam steadily flowing
through a constriction, a problem beyond reach of both
traditional theories, and prove that the foam has the
elastic properties of a (linear and isotropic) continuous
medium.
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A “plastic” deformation means that microscopic rear-
rangements take place in the material, so that the mi-
croscopic pattern does not return to its initial condition
even after the applied force has ended. An example of a
highly heterogeneous one in a viscoelastic material is a
two-dimensional foam steadily flowing through a constric-
tion (Fig. 1). This apparently simple example is utterly
intractable from the perspective of both elasticity theo-
ry [1] and Navier-Stokes [2] treatments. In this paper, we
present a new approach to analyse complex flows of dis-
ordered materials.

We prepare the foam by blowing air into the bottom of
a column of soap solution. The solution is 10% commer-
cial dishwashing detergent (“Ivory” brand) and 5% glyc-
erol. Its surface tension, measured by the Noüy method,
is γ = 28.5 ± 0.1 mN.m−1. Filtered air blows at a steady
flow rate of 0.08 cm3.s−1 through an 18-gauge (0.084 cm
ID) stainless steel needle with a 90◦ bevel. Bubbles are
homogeneous in size (<5% dispersity), and float to the
top of the column in random positions. The foam is dry,
with a relative fraction of fluid <3%. Since a bubble edge
(a film of soap solution) has two interfaces with air, its
line tension λ is λ = 2γh = 28.5 µN.

Bubbles enter a horizontal channel, a Hele-Shaw cell
made of two parallel Plexiglas plates h = 0.5 mm apart,

Fig. 1. Two-dimensional foam flowing through a constriction.
The 10 cm (551 pixel) wide field of view shows only the end of
the 1 m long horizontal channel
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1 m long, and 10 cm wide (Fig. 1). The average bubble ve-
locity is 0.1 cm.s−1. The generation of new bubbles forces
the mass of bubbles down the channel, in plug flow (free
slip boundary conditions) if the channel were uniform. A
5-mm wide constriction near the end of the channel forces
the flow to be heterogeneous. Beyond the constriction the
bubbles reexpand into the full width channel for a short
distance and then fall from the open channel end (no stress
boundary conditions) into a collection vessel. The volume
variations during the transit time (50 s) across the field of
view, due to pressure differences or diffusion of gas from
one bubble to its neighbours, are below our pixel induced
detection limit of 2%.

All measurements we present use 60 × 60 pixel sliding
boxes (“representative volumes”), meaning that we do not
evaluate them within 30 pixels of the channel walls; and
average over 2800 successive images of a 30 Hz movie. To
measure the “Eulerian” velocity field, we track the cen-
ter of mass of each bubble between two successive images
and add the velocities of all bubbles in the same volume.
The velocity field is smooth and regular (Fig. 2), quali-
tatively indicating that the foam behaves as a continuous
medium.

To obtain a more quantitative characterization, we
measure the stress in the foam. Stress has dissipative and
elastic components; the pressure inside the bubbles and
the network of bubble edges contribute to the latter. Since
the pressure stress is isotropic, it does not contribute
to the elastic normal stress difference σxx − σyy (as mea-
sured for granular materials [3]) or the shear stress σxy,
entirely due to the network. Dimensionally, σ is of the
order as the line tension λ (which, in a 2D foam, is the
same for all edges: here 28.5 µN) divided by a typical
bubble size.

We measure locally the network stress in each “repre-
sentative volume element,” that is, a square box, centered

Fig. 2. Velocity field in the foam (in arbitrary units, the same
scale for each arrow)

around the point of measurement, of a mesoscopic size:
larger than a bubble, but much smaller than the channel
width. We proceed as follows. We identify the bubble edg-
es which cross the boundaries of the volume [4]. We de-
termine the tension �τ = λê of each edge, where ê is the
unit vector tangent to the edge. We determine the average
force �f on a boundary element d�S by vectorially adding
these tensions and obtain σ defined by: fi = σijdSj [1,
5]; equivalently, we may use an average over all links to
improve the statistics [6,7].

Clearly, the stress field is strongly heterogeneous (Fig.
3). The upstream influence of the constriction becomes
visible as the lobe where σxx − σyy changes sign.

To characterize the deformation of the bubbles, we
consider a volume V(�R) around the position �R. In this
volume, we list all pairs (�r, �r ′) of positions of neighboring
vertices connected by one bubble edge. From the vector
�� = �r ′ − �r, we construct the tensor �� ⊗ �� = (�i�j). This
tensor averaged over V(�R) defines the local “texture ten-
sor” M(�R):

Mij = 〈�i�j〉V(�R),

see details in the companion paper [7]. This symmetric
tensor has two strictly positive eigenvalues, both of order〈
�2

〉
, the largest being in the direction in which bubbles

elongate. It reflects at large scales the relevant features
of the actual microstructure of the material. For instance,
Fig. 4 shows an example of M(�R) measured in the flow-
ing foam experiment of Fig. 3. This texture tensor M(�R)
thus quantifies the qualitative impression of compression
or elongation we obtain by looking at the bubbles in each
region of Fig. 1. The smooth and continuous variations of
the statistical strain tensor field in space validate treating
the foam as a continuous medium.

We have defined the “statistical strain tensor” [7]:

U(�R) =
1
2

(
log M(�R) − log M0

)
.

Fig. 3. Snapshot of the foam (Fig. 1) with regions colored
according to the sign of the experimental value of the normal
elastic stress difference σxx − σyy: blue ×, negative; black ◦,
zero within error; red +, positive; green �, values we omit in
Fig. 5
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Fig. 4. Experimental measurement of M(�R), superimposed on
a snapshot of the foam (Fig. 1). Since M is a real symmetric
tensor with strictly positive eigenvalues, we display it as an
ellipse, the length of each axis (in arbitrary units, the same
scale for each ellipse) being proportional to an eigenvalue. We
omit data on boxes touching the channel wall

Here the reference value M0 is chosen in the undeformed,
isotropic foam far upstream of the constriction (a choice
that plays no role in elastic properties): M0 = 〈�20〉I/2,
where I is the identity tensor, here in two dimensions. By
definition, we calculate the tensor log M by rotating M to
a basis where it is diagonal, taking the logarithm of its ei-
genvalues, then rotating it back into the initial basis (this
definition is more convenient than the equivalent one us-
ing a development as an infinite series). Hence log M has
the same axes as M , and is real and symmetric.

The “statistical strain” tensor U reduces to the usu-
al definition of strain u in the validity limits of classical
elasticity [7]. It is purely geometric, and does not explic-
itly depend on stresses and forces. It applies to a whole
general class of materials with both elasticity and plastic
rearrangements, whether 2D or 3D, whenever we can ex-
perimentally measure the relevant information: whether
detailed (list of microscopic positions and links) or mes-
oscopic averages (quantities related to M). It is a state
variable, constant in a steady flow, and is not necessarily
homogeneous through the whole sample, allowing a
thermodynamic description of non-equilibrium complex
fluids [8].

Do the elastic stress and the statistical strain relate
deterministically? In Fig. 5 we plot the normal stress dif-
ference σxx −σyy versus Uxx −Uyy; in this representation,
the isotropic contributions (of M0 in U , and of the pres-
sure stress in σ) play no role, hence we refer only to the
foam’s current state. Each data point is a measurement
which derives from averages at one position of the foam:
data sources are the same as in Figs. 3 and 4. That is,
in principle Fig. 5 measures a constitutive relation from a
single image; in practice, we average 2800 similar images
to improve the precision.

Fig. 5. Plot of U versus σ. The color code is the same as in Fig.
3, showing the sign of the normal stress difference σxx − σyy:
blue, negative; black, zero within error bars; red, positive. We
omit data from the boxes touching the channel wall. The black
line is a linear fit. On the same graph, we plot σxy (violet) vs
Uxy, shifted by −1 mN.m−1 for clarity

Since M , and hence U , is completely independent of
σ [7], the high correlation between U and σ apparent in
Fig. 5 reflects the physical constitutive relation required to
treat the foam as a continuous medium, in which details of
the microstructure appear only through mesoscopic aver-
ages. Since different applied strains uappl can correspond
to the same σ, such a relation does not appear in classical
σ vs. uappl plots [6].

Moreover, the relation between U and σ is linear over
the whole range covered by this experiment. The slope of
Fig. 5 measures 2µ, where µ is the shear modulus of the
foam, much beyond the validity regime of classical elastic-
ity. We find, for the xx − yy component:

µxx−yy = 3.00 ± 0.005 mN.m−1.

The foam is nearly isotropic, since we find almost the same
value for the xy component:

µxy = 3.06 ± 0.01 mN.m−1.

Note that we find similar values, 3.00 ± 0.01 mN.m−1

and 3.01 ± 0.01 mN.m−1 respectively, for a foam flowing
relatively to a fixed round obstacle (data not shown). A
regular “honeycomb” hexagonal lattice has an isotropic
shear modulus µh = λ/(�

√
3), hence with the same ten-

sion and average bubble area 〈A〉 it would have a shear
modulus µh = 0.465 λ/

√〈A〉 = 2.52 mN.m−1 [9–11]. Our
value µ = 3.0 is higher: µ/µh = 1.2. This difference is
likely due to the side length disorder

〈
�2

〉
/ 〈�〉2 = 1.22 of

the foam. How µ/µh depends on the microstructure and
its disorder is an open problem [12].

We have performed the following tests of the validity of
our method. We have checked the agreement between our
measurement of statistical strain and the classical strain,
first analytically on a honeycomb lattice, then numerically
on a disordered simulated foam kept in the elastic regime
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[13]. We have checked that if we increase the size of the
volume element, we decrease the fluctuations, and thus
the upper and lower values of σ and U in Fig. 5, but the
slope and hence µ are unchanged. Finally, the value of
the shear stress tensor field or shear modulus, resulting
from our image analysis, predicts the force exerted by the
flowing foam on an obstacle. We have tested it against an
independent, macroscopic measurement of the force, and
found that they agree (S. Courty et al., in preparation).

In summary, we have measured the stress, the texture
tensor and the statistical strain for a 2D flowing foam.
We have shown that the 2D foam behaves like a linear
and isotropic continuous material.
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