
A Textured Object Recognition Pipeline for Color and Depth Image

Data

Jie Tang and Stephen Miller and Arjun Singh and Pieter Abbeel

Abstract— We present an object recognition system which
leverages the additional sensing and calibration information
available in a robotics setting together with large amounts
of training data to build high fidelity object models for a
dataset of textured household objects. We then demonstrate
how these models can be used for highly accurate detection
and pose estimation in an end-to-end robotic perception system
incorporating simultaneous segmentation, object classification,
and pose fitting. The system can handle occlusions, illumination
changes, multiple objects, and multiple instances of the same
object. The system placed first in the ICRA 2011 Solutions
in Perception instance recognition challenge. We believe the
presented paradigm of building rich 3D models at training time
and including depth information at test time is a promising
direction for practical robotic perception systems.

I. INTRODUCTION

Object recognition in unstructured scenes is a challenging

area of ongoing research in computer vision. One important

application lies in robotics, where the ability to quickly and

accurately identify objects of interest is crucial for general-

purpose robots to perform tasks in unstructured everyday

environments such as households and offices.

The specific problem of perception for robotics has a

number of unique features which differentiate it from other

problems in computer vision. A general object recognition

system needs to deal with a vast number of different objects.

One way of dealing with this is by introducing hierarchy, do-

ing recognition on the category level instead of the instance

level. The challenge of generalizing from a few instances to

an entire category of objects remains difficult, and numerous

benchmarks and challenge problems like Caltech 256 [1] and

PASCAL VOC [2] exist to help drive progress in this area.

By contrast, for a specific robot in a specific environment,

the number of unique objects is relatively small (perhaps on

the order of hundreds). This makes it possible to treat it as

an instance recognition problem, gathering a large amount

of training data per object. In addition, a robot can take

advantage of data from multiple sensing modalities such as

cameras and depth sensors.

Perception for robotics also presents additional challenges

which are not present in category-level object recognition

benchmarks. Real world environments are highly cluttered,

contain many occlusions, and frequently contain five or ten

different objects in the same scene. Robots must often avoid

or manipulate objects in their environment. This means that a

robotic perception system needs to accurately localize objects

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, Berkeley, CA 94709 {arjun, pabbeel,
jietang, sdmiller,}@eecs.berkeley.edu

after detecting them. Additionally, for a robot to react quickly

to changes in its environment, a robotic perception system

needs to operate in near real time.

In this paper we present an approach for instance recog-

nition and object localization in cluttered everyday scenes

using color images and depth information.

Our system consists of a separate, offline training stage

and an online test stage. During training, we are given color

images and point clouds of each object from multiple views

taken from a Kinect [3] sensor. These images are used to

build a full point cloud from which we construct a 3D mesh

model of the object (Section III-B). Next, we extract local

image features from each training image and register them

to the 3D model to create object models (Section III-C).

Finally, we extract global descriptors from the full point

cloud (Section III-D).

At test time, given a new color image and point cloud (pos-

sibly containing multiple objects), our approach segments the

scene into individual objects by fitting a supporting plane and

using depth information (Section IV-A). For each segmented

object, we generate multiple object hypotheses using our

extracted global and local feature models (Section IV-B). We

then recover the pose of the object using our object models.

(Section IV-D). Finally, we enforce global scene consistency

checks to rule out geometrically incompatible hypotheses and

refine our segmentation, rerunning the detection and pose

recovery steps as necessary. (Section IV-F).

We present experiments (Section V) on a recent Kinect-

based textured object dataset, demonstrating the benefits of

simultaneous segmentation, object detection, and 3D pose

recovery. An earlier version of our system placed first in

the inaugural Solutions in Perception Challenge instance

recognition challenge, held by Willow Garage at ICRA

2011 [4]. Figure 1 shows an example test image and test point

cloud, together with the object detections and localization

made by our pipeline.

II. RELATED WORK

There have been several previously published approaches

to joint object recognition and pose recovery in the literature.

Gordon and Lowe [5] use SIFT features and structure from

motion to register a camera pose against a known object

model. Our work is inspired by the MOPED system by Collet

et al. [6], [7], which uses SIFT features to build sparse,

3D local descriptor representations of textured objects at

training time; at testing time, SIFT features are extracted,

matched, and used to obtain a pose estimate. Our approach

incorporates depth information at multiple stages of the

(a) (b) (c)

Fig. 1. (a) Example test image (b) Example test point cloud (c) Sample object detections.

TABLE I

SUMMARY OF NOTATION

Symbol Description

I ∼ a color image (III-A)
C ∼ a point cloud (III-A)
p ∼ a 6DOF pose for an object (III-A)
y ∼ a training label for an object (III-A)
C ∼ a full object point cloud (III-B)
D ∼ a 3D mesh model (III-B)
x ∼ a 2D point of interest (III-C)
z ∼ a 3D point of interest (III-C)
f ∼ a 128-dimensional SIFT descriptor (III-C)
M ∼ a 3D object model (III-C)
H ∼ global object descriptors (III-D)

processing pipeline. During training we build 3D mesh

models in addition to 3D metric feature representations, and

at test time we use depth to segment objects and verify

scene consistency. Our framework supports additional global

descriptors such as color in the classification process.

A number of different approaches have been presented for

incorporating depth information. Several approaches rely on

extracting feature descriptors from the depth data, including

spin images [8], point feature histograms [9], [10], or his-

tograms of oriented gradients on the depth image [11], [12].

Several recent datasets have been created using the Kinect

sensor to gather color and depth images of household objects.

The textured object training data and testing data used in

this paper comes from the Solutions in Perception challenge

at ICRA 2011 [4]. Lai et al. [11] recently presented a

larger color and depth image dataset for category and object

recognition, containing both textured and untextured objects.

III. MODELING OBJECTS

A. Overview

An overview of our object recognition and pose recovery

pipeline is given in Figure 2. A summary of the notation

used in the remainder of this paper is given in Table I.

At training time, we require a set of NI labeled training

instances ({Ii, Ci}, {pi, yi}), i = 1, ..., NI , where yi speci-

fies an object label, Ii is a color image containing one object,

the object yi, Ci is an associated 3D point cloud containing

position and color information, and pi is the 6DOF pose of

the camera and depth sensor in a known reference frame.

Ideally, for each unique object yl, l = 1, ..., NL, there exist

multiple training instances with yi = yl together covering

all visible areas of the object. Using the image and point

cloud data, we create a 3D point cloud C
yl , a 3D mesh

model Dyl , a 3D object model Myl mapping image features

to 3D locations, and a set of global object descriptors Hyl

(hue histograms) for each of the NL unique objects in our

training set.

B. Building 3D Models

Since we are given the camera pose pi associated with

each image and point cloud pair (Ii, Ci), we can create a

complete 3D point cloud model Cyl by combining the known

camera poses to register all point clouds belonging to object

yl into a single coordinate frame. We then segment away the

table plane and perform Euclidean distance-based clustering

to extract the actual object1, keeping the largest cluster.

This 3D point cloud model C
yl is at best a noisy rep-

resentation of the actual object due to sensor errors and

camera pose measurement errors.2 To address this, we used

an off-the-shelf Poisson surface reconstruction tool [14] to

construct a 3D mesh model Dyl for each object yl. Poisson

reconstruction smoothly regularizes inconsistencies in the

full 3D point cloud and fills in small unobserved gaps in

the model.

C. 3D Object Models

Given the 3D mesh model D
yl , we can use our known

camera poses pi to project D
yl onto each training image

Ii which contains object yl = yi in our training set. This

projection is used as an accurate segmentation mask for the

object.3 After applying the mask to get a segmented image,

we extract 2D SIFT [15] interest points {xir}, r = 1, ..., NR

and associated feature descriptors {fir}, r = 1, ..., NR
4,

and project them onto D
yl to get a 3D location zir =

1We used an off the shelf Euclidean clustering algorithm available in PCL
[13]

2This initial alignment could in principle be improved by aligning the
point clouds using e.g. an iterative closest points (ICP) algorithm, but the
3D mesh modeling process already performs some level of denoising.

3In practice we also include a buffer region of size NSegment around the
edge of the object

4We used OpenCV’s SIFT library in our implementation [16].

Fig. 2. Overview of our training and testing pipelines. Red boxes correspond to steps which make use of point cloud and depth information. Green boxes
correspond to steps which make use of global color information. Blue boxes correspond to steps which make use of local SIFT feature information.

Proj(xir, pi,D
yi).5 We ignore interest points which do not

project onto D
yl .

The collection of all such SIFT descriptor and 3D point

pairs {(zir, fir)} forms an object model Myl which consists

of a sparse collection of 3D locations with associated SIFT

feature descriptors. The SIFT features can be used in a bag-

of-words-style object classifier [18], while the 3D locations

enable fast, accurate pose recovery.

D. Hue Histogram Descriptors

Given the full 3D point cloud C
yl for object yl, we

simulate synthetic views of the point cloud from NJ camera

poses {p̂j}, j = 1, ..., NJ around the object.6 For each

simulated pose p̂j , we construct a global color histogram

descriptor Hj using only points visible from that view. We

first convert RGB to HSV. Points in the cloud which have

very low or very high saturation have unreliable hue readings

and are therefore counted in one of two special low saturation

or high saturation bins, respectively. For points with medium

saturation, we construct a 25-dimensional histogram of hue

values using a soft binning scheme.7

5In practice we precompute the 2D locations of every face in Dyl visible
from camera pose pi, and check to see which face contains xir using a
point-in-polygon algorithm [17]. We then intersect a ray from pi through
xir with the given face to get 3D location zir .

6In practice, we generate synthetic poses 0.5m away from the object, at
36 different azimuths φ from 0 to 2π and 9 different inclinations θ from
π/4 to 3π/4.

7Our soft binning scheme divides the count for a given hue value between
the two closest histogram bins. If x is the hue value, and xi, xj are the
centers of the closest and 2nd closest histogram bins i, j, respectively, we

would add weight
x−xi

xj−xi
to bin i and

xj−x

xj−xi
to bin j. We normalize the

final hue histogram.

Our final color descriptor is normalized and has 27 dimen-

sions, 25 for hue and 2 for low and high saturation. For each

object yl, the collection of hue histograms Hj for each pose

p̂j forms the global descriptor model Hyl .

IV. OBJECT DETECTION

At testing time, we are given a color image and point cloud

(I, C) (possibly containing multiple objects), and the goal is

to recover the set of labels and poses {yk, pk}, k = 1, ..., NK

for each of the NK objects in the input data. Our system first

segments and clusters the scene into potential objects using

supporting plane and depth information. Next, we extract

local SIFT features and a global hue histogram from the

image, and use a Naive Bayes Nearest Neighbor classifier

to match them against our object models and global color

models {Myl , Hyl}, l = 1, ..., NL. This yields a likelihood

for each potential object label yl. For the best scoring object

label hypotheses, we use the SIFT feature matches and our

3D object models M
yl to estimate a pose using RANSAC.

We then run a series of geometric verification steps to match

our learned 3D models M
yl ,Dyl against the observed scene.

High probability object detections are removed from the test

image and point cloud. The detection pipeline is repeated

on any remaining object clusters to recover from underseg-

mentation errors. Finally, oversegmentations are handled by

merging together consistent object hypotheses which occupy

the same region of space.

A. Segmentation

Given a color image I and point cloud C of a scene,

we first attempt to locate large planar surfaces in C using

RANSAC [19]. Large planar surfaces are interesting because

we assume objects must be supported by a table or ground

plane. Each candidate plane is represented as a surface

normal plus an offset. If multiple planar surfaces share the

same normal and offset (within a tolerance ǫPlane), we merge

the two surfaces into one. For each planar surface, we find

what parts of the point cloud (if any) lie above the plane.

All supporting plane hypotheses with more than NPlane points

lying above it are treated as possible supporting planes.

The remainder of the pipeline processes each support-

ing plane hypothesis separately. For each supporting plane

hypothesis, we remove all points which do not lie above

the plane, and run a Euclidean distance-based clustering

algorithm on the remaining point cloud to obtain individual

object point clouds {Cm}, m = 1, ...,M . These point

clouds are reprojected onto the original test image I to

obtain M masked image and point cloud pairs {Im, Cm} as

segmentation candidates for the object classification stage.

B. Object Classification using NBNN

For each test frame, the segmentation phase produces a set

of segmentations {Im, Cm}. For each segmented object we

extract SIFT interest points and descriptors (xmr, fmr) from

the masked image Im, and a hue histogram Hm (Section

III-D) from the point cloud Cm.

We use a Naive Bayes Nearest Neighbor (NBNN) classi-

fier [20] to match the hue histogram and SIFT descriptors

against our trained object models {Myl , Hyl}. The likelihood

of an object label y given a set of descriptors {fr}, H is given

by

P (y|{fr}, H) ∝ P (y)P ({fr}, H|y)

∝ P (H|y)
∏

r

P (fr|y)

Here we have assumed a uniform prior over object la-

bels and that feature descriptors are conditionally indepen-

dent given an object label (the Naive Bayes assumption).

To model P (fr|y), we use kernel density estimation: if

fl1, ..., flNR
are the descriptors in the feature model M

yl

for object yl, then

P (fr|yl) =
1

NR

NR∑

i=1

K(fr − fli)

where K(fr−fli) = exp(−‖fr−fli‖
2
2/(2σ

2)) is a Gaussian

Parzen kernel function.

The core insight behind NBNN is that SIFT descriptors

are high dimensional and are therefore sparsely distributed

throughout the space. Since the kernel function K(·) drops

off exponentially with distance, the distance between fr
and its nearest neighbor flNN(r) can be used to compute

an efficient approximation of P (fr|yl). Therefore, the log

likelihood of each object label can be computed as

logP (yl|{fr}, H) = α‖H−HlNN‖22+
∑

r

‖fr−flNN(r)‖
2
2

where flNN(r) = argmini ‖fr−fli‖
2
2 is the nearest neighbor

to fr in M
yl (HlNN is defined analogously for the hue

histogram descriptor). The above log-likelihood allows us

to create a ranked list of the most likely object hypotheses

{ymn}, n = 1, ..., NSIFT for each input segmentation m.

C. Pose Recovery

For each of the NSIFT most likely object hypotheses, we

next determine the most likely corresponding 6DOF pose.

Given an object hypothesis yl, for each of the SIFT interest

points and descriptors (xmr, fmr) extracted from the color

image Im, we first find the nearest neighbor flNN(r) of fmr

in our 3D object model Myl . Since each descriptor flNN(r)

has a corresponding 3D location zlNN(r), this lets us match

each 2D interest point xmr with its true 3D location zlNN(r).

If we knew the true pose pm of the object, it would satisfy

xmr = Proj(zlNN(r), pm), i.e. each 2D interest point xmr is

the projection of the 3D location zlNN(r) onto the image

plane of a camera located at pm.

However, because we may have incorrect 2D to 3D

matches, instead of looking for an exact matching pose, we

find the pose pm which minimizes the squared error between

our 2D points and the 2D reprojections of the corresponding

3D locations. More concretely, if we let x = Proj(z, p) be

the 2D projection of a 3D point z onto the image plane given

by camera pose p, our optimization problem becomes:

pm = min
p

∑

r

‖xmr − Proj(zlNN(r), p)‖
2
2 (1)

This problem is nonlinear because of the projection operator.

We solve this using a Levenberg-Marquardt nonlinear least

squares algorithm [21], [22].8

Because we use nearest neighbors in SIFT descriptor space

to generate our 2D / 3D correspondences, some of our

correspondences are likely to be incorrect. We account for

this using RANSAC. For each iteration of RANSAC, we

solve Equation (1) on a random subset of our 2D / 3D

correspondences. For each pose pm, we count the number of

correspondences which are explained by pm by evaluating

f(pm) =
∑

r

1(‖xmr − Proj(zlNN(r), pm)‖22 < ǫRANSAC)

and retain the pose pm with the highest number of matching

correspondences after NRANSAC iterations.

D. Geometric Pose Verification

Following the pose fitting step, each candidate pose

{(ymn, pmn)} (where (ymn, pmn) corresponds to the nth

candidate object label and pose for the mth segmentation) is

subject to a geometric pose verification step which attempts

to account for SIFT features present in the image Im which

were not matched to the label ymn. We project the 2D

locations xmr of all SIFT features fmr detected in Im onto

8In practice, we use a fixed position (0,0,1) and a random quaternion
whose components are chosen uniformly ∈ [−1, 1] as the initial guess for
Levenberg-Marquardt optimization.

the 3D object model Dymn (using our candidate pose pmn)

to obtain a 3D position zmr for each descriptor fmr. This

includes SIFT features which did not match the object during

the initial pose recovery step. We then search the 3D object

model Mymn for a 3D feature point / SIFT descriptor pair

(zmnr, fmnr) such that zmr lies within a local neighborhood

of zmnr and fmr lies within a local neighborhood of fmnr.9

Poses are sorted by the number of matches between the 3D

positions of the test image features and the 3D object model.

The intuition for this pose verification step is to ensure

that most SIFT features found in the image can be explained

by the given object and pose hypothesis. This allows us to

correct for SIFT features which were incorrectly matched

during the initial classification step. It also helps reject errors

in object classification and pose recovery.

The output of the pose verification step is a pose hypoth-

esis (ym, pm) for segmentation m. We run a final round

of Levenberg-Marquardt pose optimization on pm (Equation

(1)) using all consistent 2D / 3D feature matches.

If multiple object hypotheses (ymn, pmn) pass the geo-

metric pose verification test, we take the object hypothesis

(ym, pm) which yields the most consistent 2D / 3D feature

matches in the test image Im.

E. Recovering from Undersegmentation

Undersegmentations result in a candidate object which

actually consists of several objects contained in the same

cluster. When this occurs, the classification and pose verifi-

cation steps can match only one of the objects correctly.

To amend this, after we have finalized our correct object

hypotheses ym we remove the points in the test point cloud

C contained in the bounding volume of any object. We then

re-segment the modified point cloud C ′ to get new candidate

objects {I ′m, C ′

m}, and run them through the classification,

pose-fitting, and geometric verification stages of our pipeline.

F. Scene Consistency

After all candidate objects {Im, Cm} have been processed,

our system checks all accepted object hypotheses (ym, pm)
for overlaps. If two hypotheses have the same object label,

and their bounding volumes overlap, we merge the two

hypotheses by keeping the pose with more consistent SIFT

feature matches. This helps eliminate spurious matches due

to oversegmentation, where an object that is split into two

object clusters generates two object hypotheses with roughly

equivalent poses. We do not modify object hypotheses which

overlap but do not share the same object label.

In addition, a separate check ensures that each object

hypothesis (ym, pm) is consistent with the original point

cloud C.10

Fig. 5. Cumulative histogram of the rank of the true object after global
and local feature matching but before geometric pose verification on the
Willow challenge dataset. The true object lies in the top 15 over 95% of
the time.

V. EXPERIMENTS

A. Datasets

We evaluated our training and testing pipeline on two

textured household object datasets (which we refer to as

Willow and Challenge) and one synthetic textured object

dataset (which we refer to as NIST) used for the Solutions

in Perception Challenge [4]. The household object datasets

contained 35 rigid, textured, household objects provided by

Willow Garage (Figure 3). These objects were imaged using

a Kinect sensor on a calibrated turntable rig, providing 360

degree coverage at a single azimuth angle. The Willow

household object data set was released before the competition

and contained roughly 1000 training instances. Each instance

consisted of a Kinect point cloud, a color image, and a

ground truth pose for a particular object at a particular

azimuth. The Willow dataset also contained roughly 500

test instances consisting of Kinect point clouds and color

images. Each of these frames contained multiple objects.

The Challenge dataset was used for the challenge itself,

and also contained roughly 1000 training instances of the

same 35 household objects as the Willow dataset, together

with 120 test instances (Kinect frames) containing a total

of 434 objects. Finally, the synthetic textured object dataset

consisted of 15 synthetic textured objects provided by NIST

(Figure 4). This NIST dataset was used only for the challenge

and consisted of 450 training instances (Kinect frames, color

images, and ground truth pose of a single object) and roughly

400 test instances containing 831 object instances.

9More precisely, we require that ‖zmnr − zmr‖22 ≤ ǫPose and

‖fmnr − fmr‖22 ≤ ǫFeature.
10This is done by projecting the 3D bounding volume of each object

hypothesis onto the observed test image. A percentage PA of the area of
the image occupied by the projection of the 3D bounding volume must
also be occupied by the projection of the observed point cloud. For our
experiments we use PA = 30%.

Fig. 3. Five of the thirty-five textured household objects from the Willow and Challenge dataset [4].

Fig. 4. Five of the fifteen synthetically made NIST challenge objects.

Figure V-B shows some examples of the test data for both

Willow and NIST datasets. 11

Building a single object model using our training pipeline

on 35 training image / point cloud pairs takes about 7

minutes.12 Running our object recognition pipeline on a

single color image / point cloud pair (with a 35 object

database) takes about 20 seconds. All tests were run on a

6-core 3.2GHz Core i7 with 24GB of RAM.

B. Instance Recognition

We first evaluate the performance of our pipeline in a

single object recognition and pose recovery setting. For

this experiment, we used the training data from the Willow

dataset to build our object models, and the training data from

the Challenge dataset as the test set. Each frame of the test

set contains exactly one object in an unknown pose.

Our detection pipeline achieved a precision of 96.72%
at a recall of 97.44% at this task. Out of the 35 house-

hold objects, 23 were correctly detected 100% of the time.

For the other 12 objects, Table II shows the object-object

confusion matrix. The vertical axis shows the true object

label, and the horizontal axis shows the label our algorithm

reported. Entries along the diagonal represent the percentage

of correct classifications; off-diagonal entries represent mis-

classifications.

C. Multiple Instance Recognition

We also evaluate the performance of our pipeline on

the Willow, Challenge, and NIST testing data. Each of the

test sets can contain multiple objects in the same frame.

We report our precision-recall results in Table III as Wil-

low, Challenge, and NIST respectively. We also report the

11For all of our experiments, we used the following parameter set-
tings: NSegment = 15, ǫPlane = 0.1, NPlane = 100, α = 2, NSIFT =
15, ǫRANSAC = 16, NRANSAC = 750, ǫFeature = 0.5, ǫPose = 0.25cm

12About 95% of the time is spent building the 3D object model (extracting
SIFT interest points and descriptors and determining their 3D location).

precision and recall of our older version, which was the

winning entry to the Solutions in Perception challenge at

ICRA 2011 on the Challenge dataset. Our contest entry

did not handle multiple table hypotheses, lacked the final

scene consistency check, and did not attempt to recover from

undersegmentation.

The Willow test set was significantly more difficult than

the Challenge test set. Many test frames contained 6 different

objects, creating more instances of partially occluded objects,

distractor objects which were not part of the training data,

and objects lacking in distinctive texture. The actual dataset

used in the challenge was hand-curated to only contain

objects with significant texture.

Our current algorithm performed the best on the NIST test

set. The presence of distinctive synthetic color and texture

on the NIST objects makes it an easier benchmark than the

real world Willow objects.

Our current algorithm also performs very well for object

recognition for textured household objects, achieving preci-

sion and recall rates above 90% for challenging scenes with

multiple objects and occlusions.

Figure 7 shows a histogram of our translation and rotation

errors for correct detections on the Challenge dataset. Our

approach excels at accurately recovering pose, consistently

yielding translation and rotation errors of under 5cm and 10

degrees.13

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an end-to-end instance

recognition approach for textured objects. Our system ex-

ploits depth information at training by constructing 3D mesh

and feature models, and verifying object hypotheses by

matching them against the observed geometry during testing.

13The evaluation metric used for the ICRA 2011 challenge weighted
precision, recall, and pose error together into a single number. See the
Solutions in Perception website [4] for more details.

TABLE II

CONFUSION MATRIX FOR THE SINGLE OBJECT INSTANCE RECOGNITION EXPERIMENT. RESULTS ARE REPORTED FOR THE THIRTY-FIVE WILLOW TEST

OBJECTS. THE VERTICAL AXIS SHOWS THE TRUE OBJECT LABEL, AND THE HORIZONTAL AXIS SHOWS THE LABEL OUR ALGORITHM REPORTED.

MISSING OBJECT LABELS WERE CORRECTLY DETECTED 100% OF THE TIME.

1 3 4 5 6 7 10 11 13 16 17 20 23 24 25 27 29 30 31 32 33 34 35

1 98.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0
3 0 98.6 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 1.4 98.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 98.4 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6
17 0 0 0 2.8 0 0 0 0 0 2.8 87.8 1.9 0 0 0 0 0 1.9 0 0 0 0 2.8
20 0 0 0 0 0 1.7 0 0 0 0 0 93.2 0 0 0 0 0 0 1.7 0 3.4 0 0
24 0 0 0 0 0 1.4 0 0 1.4 0 0 0 0 94.4 0 0 0 1.4 0 0 0 0 1.4
25 0 0 0 0 0 0 0 0 0 0 0 0 2.7 0 97.3 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0 0 94.3 0 0 0 0 4.3 0
30 0 0 3.3 0 0 0 0 0 3.3 0 0 0 0 0 0 0 0 93.4 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0 0 97.2 0 1.4 0
33 1.4 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 96.8 0.9 0

(a) (b) (c) (d) (e) (f)

Fig. 6. Sample test data for the NIST (a), (b) and Willow (c), (d), (e), (f) data sets.

(a) (b)

Fig. 7. Histograms of localization errors on the challenge data set for (a) rotation (b) translation. Results are reported for the contest entry on the Challenge
data set.

This paradigm for incorporating depth information allows

us to incorporate invariance to 3D transformations into the

training procedure, and allows for effective, practical instance

recognition. Taking this approach further, we would like to

investigate extensions to non-rigid or textureless objects. We

would also like to investigate high fidelity 3D rendering

approaches to verification.

VII. ACKNOWLEDGMENTS

This work was supported in part by NSF under award IIS-

0904672 and by Intel. J.T. was supported by the Department

of Defense (DoD) through the National Defense Science &

Engineering Graduate Fellowship (NDSEG) Program. We

thank Ziang Xie for his contributions.

REFERENCES

[1] G. Griffin, A. Holub, and P. Perona. The Caltech-256. Technical
report, California Institute of Technology, 2007.

TABLE III

PRECISION AND RECALL RESULTS FOR THE CURRENT PIPELINE AND

THE ICRA 2011 CONTEST ENTRY.

Precision Recall

Willow (Current System) 88.75% 64.79%
Challenge (Current System) 98.73% 90.23%
NIST (Current System) 97.24% 97.70%
Challenge (ICRA 2011 Contest) 95.30% 84.10%

[2] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challenge
2010 (VOC2010) Results. http://www.pascal-network.

org/challenges/VOC/voc2010/workshop/index.html.
[3] Microsoft Kinect. http://www.xbox.com/en-us/kinect.
[4] Solutions in Perception Instance Recognition Challenge, ICRA

2011. [web page] http://opencv.willowgarage.com/

wiki/SolutionsInPerceptionChallenge.
[5] Iryna Gordon and David G. Lowe. What and Where: 3D Object

Recognition with Accurate Pose. In Jean Ponce, Martial Hebert,
Cordelia Schmid, and Andrew Zisserman, editors, Toward Category-

Level Object Recognition, volume 4170 of Lecture Notes in Computer

Science, pages 67–82. Springer, 2006.
[6] Alvaro Collet, Dmitry Berenson, Siddhartha S. Srinivasa, and Dave

Ferguson. Object Recognition and Full Pose Registration from a Single
Image for Robotic Manipulation. In IEEE International Conference

on Robotics and Automation, pages 48–55, Kobe, May 2009. IEEE.
Best Vision Paper Award Finalist.

[7] Manuel Martinez Torres, Alvaro Collet Romea, and Siddhartha Srini-
vasa. MOPED: A Scalable and Low Latency Object Recognition and
Pose Estimation System. In Proceedings of ICRA 2010, May 2010.

[8] A.E. Johnson and M. Hebert. Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 21(5):433 –449, may 1999.
[9] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast Point

Feature Histograms (FPFH) for 3D Registration. In The IEEE

International Conference on Robotics and Automation (ICRA), Kobe,
Japan, 05/2009 2009.

[10] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu.
Fast 3D Recognition and Pose Using the Viewpoint Feature His-

tograms. In Proceedings of the 23rd IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
10/2010 2010.

[11] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A Large-Scale
Hierarchical Multi-View RGB-D Object Dataset. In The IEEE Inter-

national Conference on Robotics and Automation (ICRA), Shanghai,
China, 05/2011 2011.

[12] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. volume 1, pages 886–893, 2005.

[13] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In International Conference on Robotics and Automation,
Shanghai, China, 2011 2011.

[14] Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson
Surface Reconstruction. In Alla Sheffer and Konrad Polthier, editors,
Symposium on Geometry Processing, volume 256 of ACM Inter-

national Conference Proceeding Series, pages 61–70. Eurographics
Association, 2006.

[15] David G. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision, 60(2):91–110,
2004.

[16] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software

Tools, 2000.
[17] W. Randolph Frankin. PNPOLY - Point Inclusion in Polygon

Test. [web page] http://www.ecse.rpi.edu/Homepages/
wrf/Research/Short_Notes/pnpoly.html, Dec. 2009.

[18] G. Salton and M. J. McGill. Introduction to Modern Information

Retrieval. McGraw-Hill, 1983.
[19] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus:

A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography. Commun. ACM, 24(6):381–395, June
1981.

[20] Oren Boiman, Eli Shechtman, and Michal Irani. In Defense of Nearest-
Neighbor Based Image Classification. In CVPR. IEEE Computer
Society, 2008.

[21] Jorge Moré. The Levenberg-Marquardt Algorithm: Implementation
and Theory. In G. Watson, editor, Numerical Analysis, volume 630
of Lecture Notes in Mathematics, pages 105–116. Springer Berlin /
Heidelberg, 1978. 10.1007/BFb0067700.

[22] M.I.A. Lourakis. levmar: Levenberg-Marquardt Nonlinear Least
Squares Algorithms in C/C++. [web page] http://www.ics.

forth.gr/˜lourakis/levmar/, Jul. 2004. [Accessed on 31
Jan. 2005.].

