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A TGV-Based Framework for Variational Image Decompression, Zooming, and
Reconstruction. Part I: Analytics∗

Kristian Bredies† and Martin Holler†

Abstract. A variational model for image reconstruction is introduced and analyzed in function space. Specific
to the model is the data fidelity, which is realized via a basis transformation with respect to a Riesz
basis followed by interval constraints. This setting in particular covers the task of reconstructing
images constrained to data obtained from JPEG or JPEG 2000 compressed files. As image prior,
the total generalized variation (TGV) functional of arbitrary order is employed. The present paper,
the first of two works that deal with both analytical and numerical aspects of the model, provides a
comprehensive analysis in function space and defines concrete instances for particular applications.
A new, noncoercive existence result and optimality conditions, including a characterization of the
subdifferential of the TGV functional, are obtained in the general setting.
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1. Introduction. The aim of this work is to provide a comprehensive analysis and concrete
applications for a general, regularization-based model for image reconstruction. Specific to this
model is the data fidelity, which is realized via interval constraints for the coefficients of some
basis transformation of the L2-space. The original motivation for this type of data constraint
comes from JPEG decompression [50], where we aim at reconstructing an image subject to
interval constraints of the blockwise cosine transform of the image. As image prior, the total
generalized variation (TGV) [17] functional of arbitrary order is incorporated, and the model
is formulated for multichannel images, particularly color images. A formal definition of the
variational problem setting can be given as

min
u

TGVk
α(u) + IUD

(u),

where TGVk
α, the TGV functional of order k, generalizes the total variation (TV) functional by

incorporating higher order smoothness information, and IUD
is the convex indicator function

of the set UD, i.e., IUD
(u) = 0 if u ∈ UD and infinity else. The set UD is formally given as

UD = {u | (Au)i ∈ Ji}
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TGV-BASED IMAGE RECONSTRUCTION. PART I: ANALYTICS 2815

with A a Riesz basis transformation operator and (Ji)i nonempty closed (not necessarily
compact) intervals. In the application to JPEG decompression, one can obtain quantized co-
efficients of a blockwise cosine transform of the unknown, original image from the compressed
file. Variational JPEG decompression with TGVk

α regularization can then be realized in the
proposed setting by defining A to be a blockwise cosine transform and the intervals (Ji)i to
reflect the data loss due to quantization.

The present paper is the first of two papers that cover both a detailed analysis and the
numerical realization of the problem setting of interest. This first part provides the analysis
and defines concrete applications in function space, while the second part [16] deals with the
numerical realization in a discrete setting.

Our work is motivated by previous papers on a TV-based JPEG decompression model [12]
and on applications of TGV for regularized JPEG decompression [13] and for wavelet-based
zooming [14]. The present paper provides, for the first time, a unified framework for all these
settings and significantly extends the previous works both on the analysis and application
sides. In terms of analysis, we deal with a general class of problems in function space that
incorporate the TGV functional of any order for regularization and allow for arbitrary Riesz
bases to describe the data constraints. A new, noncoercive existence result is obtained for
this setting that allows a large class of interval constraints on the transform coefficients.
Optimality conditions, including a characterization of the subdifferential of TGV, lay the basis
for obtaining information about the structure of solutions. In terms of applications, we are
able to obtain regularized reconstructions from both JPEG and JPEG 2000 compressed color
images, extracting the information required for data fidelity from the encoded files. As a third
application, a variational zooming method can also be derived from the general setting. These
applications are realized in the second paper [16], where we use a unified algorithmic setup
that yields globally convergent reconstruction algorithms in all cases. There, we define duality-
based stopping criteria for the algorithm that allow us to estimate optimality in terms of the
objective functional and an adaptive stepsize strategy that is needed to obtain a reasonably
fast method in the case of JPEG 2000 decompression. For JPEG decompression, multicore
CPU and GPU implementations are also presented.

As methods to improve standard decompression and zooming techniques are an active field
of research, there exists a variety of works in this direction. In particular, the improvement
upon standard JPEG decompression is an active research topic [45, 13, 12, 47, 1, 42, 46,
55]. While, in contrast to that, variational approaches designed explicitly for JPEG 2000
decompression are quite rare, the problem of wavelet coefficient inpainting is closely related
and has been previously investigated in [52, 54, 22, 44, 23]. As for zooming techniques, we
refer the reader to [41] for an overview and to [14, 2, 21, 39, 37, 24, 20] for methods that are
related to our approach. For a more detailed discussion of existing techniques for each of the
applications of interest, we ask for the reader’s patience until the corresponding subsections
4.2, 4.3, and 4.4.

In contrast to application-oriented approaches, there are, besides the above-mentioned
TV-based model of [12], to the best knowledge of the authors, no publications available that
explicitly deal with a similar type of general problem setting in function space as it is done in
the present work.

The present first part of our work is formulated in function space and deals with theD
ow

nl
oa

de
d 

05
/0

3/
19

 to
 1

43
.5

0.
47

.1
47

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2816 KRISTIAN BREDIES AND MARTIN HOLLER

analysis of the model. Its main section is section 3, where the model is defined and existence
as well as optimality results are obtained. After that, concrete applications such as JPEG
and JPEG 2000 decompression as well as variational image zooming are introduced, and
appropriate frameworks are defined in function space in section 4. The second paper considers
the discrete setting, deals with the algorithmic realization of the applications, and provides
experimental results [16].

2. Functional-analytic background. The aim of this section is to briefly introduce nota-
tion and mathematical concepts that are of particular relevance for this work, such as functions
of bounded variation, the TGV functional, and the concept of Riesz basis. By d ≥ 2 and m
we always denote natural numbers, typically the dimension of the domain and the range of
functions, respectively. By Ω ⊂ R

d we denote a bounded Lipschitz domain. For the sake of
brevity, we further denote the integral of a function φ over a set E with respect to a measure
μ by

∫
E φdμ instead of

∫
E φ(x)dμ(x), when the integration variable is clear from the context.

Integration with respect to the Lebesgue measure is denoted by
∫
E φ.

2.1. Total variation and spaces of bounded variation.
Definition 2.1. Let B(Ω) be the Borel σ-algebra of sets in Ω. A mapping B(Ω) → R

m is
called an R

m-valued finite Radon measure on Ω if it is σ-additive and μ(∅) = 0. We denote
the variation of an R

m-valued finite Radon measure μ by |μ| : B(X) → R, defined as

|μ|(E) = sup

{ ∞∑
i=0

|μ(Ei)|
∣∣∣∣∣ (Ei)i≥0 in B(Ω) pairwise disjoint, E =

∞⋃
i=0

Ei

}
,

and by M(Ω,Rm) the space of all finite Radon measures on Ω.
The following classical result can be found in [3, Theorem 1.54].
Proposition 2.1. The space M(Ω,Rm) equipped with ‖μ‖M := |μ| is a Banach space. Fur-

ther, it can be identified with the dual of C0(Ω,Rm) with the duality pairing

〈μ, φ〉 =
∫
Ω
φ dμ :=

m∑
i=1

∫
Ω
φi dμi

for μ = (μ1, . . . , μm) ∈ M(Ω,Rm), φ = (φ1, . . . , φm) ∈ C0(Ω,Rm), and the norm ‖ · ‖M
coincides with the dual norm.

Note that by 〈·, ·〉 we always denote a duality pairing.
Definition 2.2. We define the total variation (TV) functional TV : L1

loc(Ω,R
m) → R∪{∞},

for u = (u1, . . . , um) ∈ L1
loc(Ω,R

m), as

TV(u) = sup

{
m∑
i=1

∫
Ω
ui divφi

∣∣∣∣∣ φ = (φ1, . . . , φm)T ∈ C1
c (Ω,R

m×d), ‖φ‖∞ ≤ 1

}
,

where ‖φ‖∞ = supx∈Ω
√∑m

j=1 |φj(x)|2 and | · | denotes the Euclidean norm on R
d. We further

define the space of functions of bounded variation

BV(Ω,Rm) = {u ∈ L1(Ω,Rm) | TV(u) <∞}D
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TGV-BASED IMAGE RECONSTRUCTION. PART I: ANALYTICS 2817

and

‖u‖BV = ‖u‖L1 +TV(u).

Functions of bounded variation are well known, particularly in the field of mathemati-
cal image processing, and have been extensively studied in the literature. We repeat some
properties of functions of bounded variation that are most relevant to our work and refer the
reader to [3, 31, 56] for proofs and further information.

Proposition 2.2. A function u = (u1, . . . , um) ∈ L1(Ω,Rm) belongs to BV(Ω,Rm) if and
only if there exist finite Radon measures Duj = (D1uj , . . . ,Dduj) ∈ M(Ω,Rd), 1 ≤ j ≤ m,
such that ∫

Ω
uj divφ = −

∫
Ω
φ dDuj ∀φ ∈ C∞

c (Ω,Rd).

Proposition 2.3. The functional TV is proper, convex, and lower semicontinuous in
L1(Ω,Rm). Further, TV(u) = 0 if and only if there exist constants c1, . . . cm such that
u = (c1, . . . , cm).

Proposition 2.4. The embedding

i : BV(Ω,Rm) ↪→ Lp(Ω,Rm)

is continuous for 1 ≤ p ≤ d
d−1 and compact for 1 ≤ p < d

d−1 .

Proposition 2.5. Let u ∈ L1(Ω,Rm). Then u ∈ BV(Ω) if and only if there exists a sequence
(un)n in C∞(Ω,Rm) such that

‖un − u‖L1 → 0 and TV(un) → TV(u).

2.2. The total generalized variation (TGV) functional. In this subsection we introduce
the total generalized variation (TGV) functional for vector-valued functions. It will serve as
the regularization term for the general image reconstruction problem settings in this work. The
TGV functional can be considered as generalization of the TV functional that incorporates
higher order smoothness. It still allows for jump discontinuities while, in contrast to TV, at
the same time being able to employ higher order derivatives in smooth regions, hence avoiding
the well-known staircasing effect.

The TGV functional was originally introduced in [17], and a generalization to the vector-
valued case was presented in [11]. We refer the reader to [17] for a more detailed motivation
and further properties and to [15] for its analysis in the context of inverse problems. Fur-
ther topological properties relating the second order TGV functional to the first order TV
functional were provided, for instance, in [19, 8].

Definition of the TGV functional requires the notion of spaces of symmetric tensors
Symk(Rd) and of tensor fields, i.e., functions mapping to spaces of symmetric tensors. We
again refer the reader to [17] for an introduction of these spaces in the context of the TGV
functional and provide, for the reader’s convenience, a short summary in the appendix. In
addition, the appendix also covers tuples of symmetric tensors, denoted by Symk(Rd)m, which
are required for the definition of the vectorial TGV functional as follows.

Definition 2.3. We define the vectorial TGV functional of order k ∈ N and with parametersD
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2818 KRISTIAN BREDIES AND MARTIN HOLLER

α = (α0, . . . , αk−1) ∈ (0,∞)k, for u ∈ L1
loc(Ω,R

m), as

(2.1) TGVk
α(u) = sup

{∫
Ω
udivk ξ

∣∣∣∣∣ ξ ∈ Ck
c (Ω,Sym

k(Rd)m),

‖divl ξ‖∞ ≤ αl, l = 0, . . . , k − 1

}
.

The norm ‖ · ‖∞ of the above definition takes the pointwise supremum with respect to a
Frobenius-type tensor norm that results from an inner product, and we refer the reader to the
appendix for further information. Note that we abuse notation by using the same notation as
for the classical TGV functional. Also, when it is clear from the context, we will henceforth
not mention the order k and the parameter vector α.

Remark 2.1. The above definition of the TGV functional is not the only possible general-
ization to vector-valued functions. In fact, the choice of norm on Symk(Rd)m influences this
definition. The current choice has the advantage that we remain in a Hilbert space setting and
hence can identify Symk(Rd)m with

(
Symk(Rd)m

)∗
with the same norm (see also [11]). In the

context of color or hyperspectral image processing, different choices of norms on Symk(Rd)m

might further enhance reconstruction quality, and we refer the reader to [33] and [18, section
6.3] for a discussion of suitable color norms.

Similar to the scalar case, we define the space BGVk(Ω,Rm) as the set of all L1(Ω,Rm)
functions such that the TGV functional is finite.

Definition 2.4. We define

(2.2)
BGVk(Ω,Rm) =

{
u ∈ L1(Ω,Rm) | TGVk

α(u) <∞
}
,

‖u‖BGVk = ‖u‖1 +TGVk
α(u).

As one would hope, basic properties of the TGVk
α functional and the space BGVk(Ω) can

easily be transferred to the vectorial TGVk
α functional and the space BGVk(Ω,Rm). The basis

for that is the following observation, which is provided in [11, Proposition 2].
Proposition 2.6. There exist constants c, C > 0 such that, for any u = (u1, . . . , um) ∈

L1
loc(Ω,R

m),

c
m∑
i=1

TGVk
α(ui) ≤ TGVk

α(u) ≤ C
m∑
i=1

TGVk
α(ui).

We now summarize basic properties of the TGVk
α functional for vector-valued functions.

These assertions can either be shown to be similar to the scalar case or follow from the
equivalence of Proposition 2.6 (see [17]).

Proposition 2.7. The following statements hold:
1. TGVk

α is a seminorm on the normed space BGVk(Ω,Rm).
2. TGVk

α and TGVk
α̃ are equivalent for α̃ ∈ (0,∞)k.

3. BGVk(Ω,Rm) is a Banach space.
4. TGVk

α is proper, convex, and lower semicontinuous on each Lp(Ω,Rm), 1 ≤ p ≤ ∞.D
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5. TGVk
α(u) = 0 for u ∈ L1

loc(Ω,R
m) if and only if each ui, i ∈ {1, . . . ,m}, is a polyno-

mial of degree less than k.
In particular, equivalence of TGVk

α and TGVk
α̃ for different α, α̃ ∈ (0,∞)k justifies the

notion of BGVk(Ω,Rm) independently of α.
Next we want to transfer two important results, shown in [15] for the scalar TGV func-

tional, to the vector-valued case. These results are the minimum representation for TGVk
α

and the topological equivalence of BGVk to BV. The proof of the minimum representation
can be done almost exactly as in [15]; thus we provide only a short sketch.

Proposition 2.8. For any u ∈ L1(Ω,Rm) we have

(2.3) TGVk
α(u) = min

vi∈BD(Ω,Symi(Rd)m),
i=1,...,k,

v0=u, vk=0

k∑
i=1

αk−i‖Evi−1 − vi‖M,

where BD(Ω,Symi(Rd)m) = BD(Ω,Symi(Rd))m is the space of m-fold symmetric tensor fields
of bounded deformation (see [10]), and Ev denotes the symmetrized derivative of a tensor field
v; see the appendix.

Sketch of proof. Defining

X = C1
0(Ω,Sym

1(Rd)m)× · · · × Ck
0 (Ω,Sym

k(Rd)m),

Y = C1
0(Ω,Sym

1(Rd)m)× · · · × Ck−1
0 (Ω,Symk−1(Rd)m),

the linear operator

Λ ∈ L(X,Y ), Λv =

⎛
⎝ −v1 − div v2

· · ·
−vk−1 − div vk

⎞
⎠ ,

and the proper, convex, and lower semicontinuous functionals

F : X → ]−∞,∞], F (v) =
k∑

l=1

I{‖·‖∞≤αk−l}(vl)−
∫
Ω
udiv v1,

G : Y → ]−∞,∞], G(w) =

{
0 if w = 0,

∞ else,

it follows that

TGVk
α(u) = sup

v∈X
−F (v)−G(Λv).

Applying [4, Corollary 2.3], we then obtain

TGVk
α(u) = min

w∗∈Y ∗ F
∗(−Λ∗w∗) +G∗(w∗).

Rewriting the right-hand side to become (2.3) and using Proposition A.1 in the appendix, i.e.,

Ew∗
i ∈ M(Ω,Symi+1(Rd)m) ⇒ w∗

i ∈ L1(Ω,Symi(Rd)m), 1 ≤ i < k,D
ow

nl
oa

de
d 

05
/0

3/
19

 to
 1

43
.5

0.
47

.1
47

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2820 KRISTIAN BREDIES AND MARTIN HOLLER

the assertion follows.
The basic result for topological equivalence follows immediately from the scalar case, as

shown in [15], and Proposition 2.6.
Proposition 2.9. Let Pk−1 : Ld/(d−1)(Ω,Rm) → ker Ek be a linear, continuous, and onto

projection. Then, there exists a constant C > 0, depending only on k, m, α, Ω, and Pk−1,
such that

(2.4) ‖Du‖M ≤ C
(‖u‖1 +TGVk

α(u)
)

as well as ‖u− Pk−1u‖d/(d−1) ≤ C TGVk
α(u)

for all u ∈ Ld/(d−1)(Ω,Rm).
Topological equivalence and an embedding result now follow trivially.
Corollary 2.1. There exists a λ > 0 such that, for all u ∈ BV(Ω,Rm),

TV(u) ≤ λ(‖u‖1 +TGVk
α(u)).

In particular, there exist C > c > 0 such that, for all u ∈ BV(Ω,Rm),

c(‖u‖1 +TGVk
α(u)) ≤ ‖u‖1 +TV(u) ≤ C(‖u‖1 +TGVk

α(u)).

Corollary 2.2. For 1 ≤ p ≤ d
d−1 the space BGVk(Ω,Rm) is continuously embedded into

Lp(Ω,Rm). If, moreover, 1 ≤ p < d
d−1 , the embedding is compact.

Thus, since by Corollary 2.1 BV(Ω,Rm) � BGVk(Ω,Rm) as Banach spaces, we will in the
following only use the notion BV(Ω,Rm).

We will require a smooth approximation of functions in BV(Ω,Rm) and BD(Ω,Symk(Rd)m)
in a suitable topology. As these spaces are large, the topology has to be chosen sufficiently
weak to achieve such approximations. The notions of strict convergence and weak-star con-
vergence play an important role in this context, and we refer the reader to [15, 10] for results
in these topologies. The approximation result needed in this work is the following.

Proposition 2.10. For any l ∈ N, v ∈ BD(Ω,Syml(Rd)m), and w ∈ BD(Ω,Syml+1(Rd)m),
there exists a sequence (φn)n in C∞(Ω,Syml(Rd)m) such that

‖φn − v‖d/(d−1) → 0 and ‖Eφn − w‖M → ‖Ev − w‖M as n→ ∞.

Proof. A straightforward adaptation of [15, Lemma 5.4] to the vector-valued case gives a
sequence (ψn)n in C∞(Ω,Syml(Rd)m) ∩ BD(Ω,Syml(Rd)m) such that

‖ψn − v‖1 → 0 and ‖Eψn − w‖M → ‖Ev −w‖M as n→ ∞.

Now as BD(Ω,Syml(Rd)m) is continuously embedded in Ld/(d−1)(Ω,Syml(Rd)m) (see [10, The-
orem 4.16]), we can transfer Lp-mollification arguments (see [31, section 4.2], for instance) and
replace the L1 convergence of (ψn)n by Ld/(d−1) convergence. Further, as the φn are in partic-
ular contained in W 1,1(Ω,Symk(Rd)m) and Ω is a bounded Lipschitz domain, we can exploit
standard Sobolev approximation techniques (see [31, Theorem 4.2.3]) to approximate each φn
by ψn ∈ C∞(Ω,Symk(Rd)m) with respect to the W 1,1-topology, and the result follows.D
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2.3. The notion of Riesz basis. The concept of a Riesz basis extends the classical notion
of an orthonormal basis.

Definition 2.5. Let H be a Hilbert space. We say that a sequence (an)n in H is a Riesz
basis of H if span({an|n ∈ N}) is dense in H and there exist 0 < A ≤ B such that, for any
c = (ci)i∈N ∈ 	2, we have

(2.5) A
∑
n∈N

c2n ≤ ∥∥∑
n∈N

cnan
∥∥2
H

≤ B
∑
n∈N

c2n.

If (an)n is an orthonormal basis, (2.5) holds with A = B = 1. Thus, orthonormal bases
are indeed Riesz bases. An important property of any Riesz basis (an)n is the existence of a
dual sequence (ãn)n that again is a Riesz basis.

Proposition 2.11. Let (an)n be a Riesz basis of a Hilbert space H. Then, there exists a
sequence (ãn)n, the dual Riesz basis, such that (ãn)n is also a Riesz basis of H and

(ai, ãj)H = δi,j =

{
1 if i = j,

0 else.

Proof. See [53, Theorem 1.9].
As can be shown, the notion of the Riesz basis is the most general basis concept that

ensures that a sequence is complete and that the resulting basis transformation is continuous
and continuously invertible. Hence Riesz bases fit our data modeling very well in a general
image reconstruction setting later on. There we mainly deal with componentwise bases, e.g.,
m possibly different Riesz bases (ain)n, i = 1, . . . ,m, of L2(Ω), and aim at reconstructing
images contained in a set given as

UD = {u ∈ L2(Ω,Rm) | (ain, ui)L2 ∈ J i
n for all n ∈ N, i = 1, . . . ,m}

with (J i
n) being closed intervals.

The following remark emphasizes the connection of m componentwise Riesz bases to Riesz
bases in L2(Ω,Rm). Also, in particular, interval restrictions such as those above naturally
transfer to vector-valued bases.

Remark 2.2. For i = 1, . . . ,m let (ain)n be Riesz bases of L2(Ω). Then (an)n = (a1n, . . . , a
m
n )n

defined by

ain =

{
aik for i = j + 1 with n− 1 = km+ j, k, j ∈ N0,

0 else

is a Riesz basis of L2(Ω,Rm). Further, given any u = (u1, . . . , um) ∈ L2(Ω,Rm), and intervals
(J i

n)n for 1 ≤ i ≤ m, n ∈ N,

(ain, ui)L2 ∈ J i
n for all 1 ≤ i ≤ m,n ∈ N,

is equivalent to
(an, u)L2 ∈ Jn for all n ∈ N,

where each Jn corresponds to one J i
n.D
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2822 KRISTIAN BREDIES AND MARTIN HOLLER

3. The general reconstruction model. This is the main section of the work, where we
study the general, TGVk

α regularized reconstruction model. As already mentioned, the original
motivation for this model was the application to artifact-free JPEG decompression. However,
due to a general problem statement, it will be applicable to a broad class of problems in
mathematical imaging. In particular, as will be discussed in subsection 4.1, the existence
result that we obtain is applicable to any inverse problem with the forward map being a
linear continuous operator between Hilbert spaces. We will start with a brief motivation
followed by a definition and analysis of the model in a function space setting. Note that we
will, without further comment, make use of the notation introduced in section 2.

3.1. Problem statement. Before we state the minimization problem and a set of generic
assumptions, which make the problem setting precise, we would like to briefly sketch the orig-
inal motivation for our considerations—a model for artifact-free JPEG decompression [1, 12].
For a detailed introduction to this topic we ask for the reader’s patience until subsection 4.2.

The JPEG image compression standard is lossy; i.e., most of the compression is achieved
by leaving out information that is believed to be less important for visual image quality.
To identify such information, JPEG first applies a blockwise cosine transform to the given,
uncompressed image. Following the assumption that high frequency brightness variations are
less important for visual image quality, the associated cosine coefficients need only be stored
with low accuracy. To this aim, the coefficients are divided by appropriate quantization
values, according to a predefined quantization table, and subsequently rounded to integer.
The resulting data undergoes a further lossless encoding and is, together with the quantization
table, finally stored in the compressed file. Due to the quantization, this data does not
provide enough information to determine a unique source image of the compression process.
Standard JPEG decompression ignores this by simply using the rounded integer data for
reconstruction. In contrast to that, our approach is to incorporate these data uncertainties
into the model. Using the quantization matrix that is provided by the compressed file, it is
possible to define a set of block-cosine coefficient data, whose quantization would coincide with
the given, compressed data. Denoting this set of basis coefficient data D and the blockwise
cosine transformation operator BDCT, we can formally define the (convex) set of possible
source images for a given compressed JPEG file by

UD = {u | BDCT(u) ∈ D}.

Thus, reconstructing an image from the file corresponds to choosing one element of UD.
While the standard decompression method essentially picks an arbitrary element, our approach
makes a choice according to a predefined image model, which is realized by employing the
TGV functional as regularization term in a variational problem.

Expressed in a more abstract way, TGV regularized JPEG decompression hence means to
minimize the TGV functional subject to interval constraints for the coefficients of some basis
transformation of the unknown. By allowing a general class of linear basis transforms and
interval constraints to realize data fidelity, not only the application to JPEG decompression,
but also different decompression scenarios, such as JPEG 2000 [48] or DjVu [9] decompression,
can be covered. Additionally, standard imaging problems such as zooming and in-painting
also fit into this setting. This motivates an analytical investigation of this type of variationalD
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approach in a general setting. To this aim, we consider the minimization problem

(3.1) min
u∈L2(Ω,Rm)

TGVk
α(u) + IUD

(u),

where we use a set of generic assumptions, which are discussed below, and are given as

(A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω ⊂ R
2 is a bounded Lipschitz domain, m ∈ N,

(an)n in L2(Ω,Rm) is a Riesz basis,

(ãn)n, the dual basis of (an)n, is contained in BV(Ω,Rm),

A : L2(Ω,Rm) → 	2, (Au)n := (u, an)L2 ,

(Jn)n is a sequence of nonempty, closed intervals,

D =
{
z ∈ 	2 | zn ∈ Jn for all n ∈ N

}
,

UD = {u ∈ L2(Ω,Rm) |Au ∈ D},
there is a finite index set W ⊂ N such that

Uint := {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn for all n ∈ N \W} has nonempty interior,

k ∈ N and α = (α0, . . . , αk−1) ∈ (0,∞)k .

Also note that by IUD
we denote the convex indicator function of UD, i.e.,

IUD
(u) =

{
0 if u ∈ UD,

∞ else.

In other words, solving the minimization problem (3.1) amounts to finding a function in UD

minimizing TGVk
α.

Let us now discuss the interpretation and motivation of (A) in more detail. The set Ω
denotes the domain of our image representing functions, typically a rectangle, and Lipschitz
regularity is required for embedding results. The number m denotes the number of image
components, typically 3 for color images. Lines 2 to 4 of (A) define the operator A to be a
basis transformation operator with respect to a Riesz basis. Thinking again of the application
to JPEG decompression, A will be a blockwise cosine transform operator, and hence the
basis (an)n will even be orthonormal. The more general assumption of a Riesz basis will,
however, be needed for the application to JPEG 2000 decompression and zooming, where
(an)n denotes a biorthogonal wavelet basis. The assumption of the dual basis being contained
in BV is satisfied in all applications and is of a technical nature, as it will be needed to obtain
optimality conditions. It seems, however, quite natural since the underlying assumption of all
considered applications is that images can be well approximated by a finite linear combination
of the dual basis.

Lines 5 to 7 of (A) define the data set via the basis transformation and interval con-
straints. In the application to JPEG decompression, the (Jn)n model data uncertainties due
to quantization and will be bounded. We stress, however, that our model also allows un-
bounded intervals, which will be needed for the applications to JPEG 2000 decompression
and zooming.D
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2824 KRISTIAN BREDIES AND MARTIN HOLLER

The assumption stated in lines 8 to 9 can be seen as a weaker version of the assumption
that the data set UD has nonempty interior. It is of a technical nature and is again only
needed for the optimality conditions, in particular to ensure additivity of the subdifferential.
Essentially it requires a positive minimal length of the data intervals, allowing finitely many
exceptions. This is reasonable for applications where one aims to reconstruct images from
compressed or low-resolution data, as in these situations the assumption corresponds to a
finite precision of the given data. In particular, it is satisfied in all our target applications,
while the assumption of UD having nonempty interior would not hold true for the zooming
case. The last line of (A) finally defines the order and the weight for the TGV functional as
in Definition 2.3; in particular it is possible to use any order of TGV.

At last, let us again emphasize that the assumption that (an)n is a Riesz basis results
in applicability of our framework beyond JPEG decompression, as will be discussed in more
detail in subsection 4.1. Note also that assumption (A) allows us in particular to choose m
different scalar-valued Riesz bases for L2(Ω) and apply all results within assumption (A) to a
corresponding Riesz basis of L2(Ω,Rm) as in Remark 2.2.

3.2. Existence of a solution. We show existence of a solution to the minimization problem
(3.1) under assumption (A). First note that properness of the objective function follows easily
from Uint having nonempty interior and (ãn)n in BV(Ω,Rm) but could have also been obtained
by the more general assumption UD ∩ BV(Ω,Rm) �= ∅.

To obtain existence, we make one additional assumption which controls the number of
half-bounded intervals, i.e., intervals of the form [l,∞) or (−∞, o] with l, o ∈ R. For this
purpose, we define Pk−1(Ω,R

m) to be the set of Rm-valued polynomials of order less than k.

(EXk)

⎧⎪⎨
⎪⎩

With the definitions of (A), denote

I = {n ∈ N |Jn is half-bounded and there exists r ∈ Pk−1(Ω,R
m) s.t. (r, an) �= 0},

and assume that I is a finite set.

Remark 3.1. Note that in case only finitely many Jn are half-bounded, (EXk) is trivially
satisfied. In particular, (EXk) allows arbitrarily many intervals to contain all of R; thus it
holds for any combination of bounded intervals and intervals containing all of R and is also
satisfied in nontrivial settings where the objective functional is not coercive.

As a consequence of [6, Theorem 2.1], it suffices to show the following two assertions for
F := TGVk

α + IUD
to obtain existence of a solution to the minimization problem (3.1).

(H1) For each sequence (xn)n in L2(Ω,Rm) satisfying

‖xn‖L2 → ∞, (F (xn))n bounded above, and
xn

‖xn‖L2

→ x

we have

F (xn − x) ≤ F (xn) for n sufficiently large.

(H2) For any real sequence (tn)n with tn → ∞ and any bounded sequence (xn)n with
xn ⇀ x weakly in L2(Ω,Rm) such that F (tnxn) is bounded above, (xn)n converges
strongly to x.D
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In fact, given (H2) and that F is bounded below, it has been shown in [6] that even a slightly
weaker version of (H1) is necessary and sufficient for existence of a solution. However, since
(H1) is sufficient for our purposes, we stick with the modified version in order to avoid the
introduction of additional notation.

Proposition 3.1. Let (A) and (EXk) be satisfied. Then there exists a solution to (3.1).
Proof. We first verify (H2). Take the sequences (tn)n and (xn)n as in (H2). Since

TGVk
α(tnxn) is bounded above, choosing Pk−1 : L2(Ω,Rm) → Pk−1(Ω,R

m) to be a linear,
continuous projection, we get by Proposition 2.9 that tnxn − Pk−1(tnxn) is bounded. Hence,
xn − Pk−1(xn) converges strongly to zero. Now, weak convergence of (xn)n to x ∈ L2(Ω,Rm)
implies strong convergence of (Pk−1(xn))n to Pk−1(x). Hence we get from xn = xn−Pk−1(xn)+
Pk−1(xn) and uniqueness of the weak limit that xn converges strongly to x = Pk−1(x), and
the claim follows.

Now assume there exists (xn)n as in (H1). Again from boundedness of TGVk
α(xn) it follows

that xn−Pk−1(xn) is bounded. Hence x = limn→∞ xn
‖xn‖L2

= limn→∞
Pk−1(xn)
‖xn‖L2

∈ Pk−1(Ω,R
m).

Now fix i ∈ N, and note first that, since (xn/‖xn‖L2 , ai)L2 → (x, ai)L2 , we can find εn,i
such that εn,i → 0 as n→ ∞ and

(3.2) ‖xn‖L2((x, ai)L2 + εn,i) = (xn, ai)L2 ∈ Ji.

Indeed, (xn, ai)L2 ∈ Ji for all i and n since F (xn) is bounded. We consider possible cases for i:
• If Ji is bounded, we can deduce from (3.2) and from ‖xn‖L2 → ∞ as n → ∞ that

(x, ai)L2 = 0.
• If i ∈ I and Ji = [li,∞) with li ∈ R, then necessarily (x, ai)L2 ≥ 0, and, if the

inequality is strict, we can find ni such that for all n ≥ ni,

(xn, ai)L2 = ‖xn‖L2((x, ai)L2 + εn,i) ≥ (x, ai)L2 + li.

• If i ∈ I and Ji = (−∞, oi] with oi ∈ R, then necessarily (x, ai)L2 ≤ 0, and, if the
inequality is strict, we can find ni such that for all n ≥ ni,

(xn, ai)L2 = ‖xn‖L2((x, ai)L2 + εn,i) ≤ (x, ai)L2 + oi.

• In the remaining cases i /∈ I and either (x, ai)L2 = 0 (recall that x ∈ Pk−1(Ω,R
m) and

the definition of I) or Ji = R.
Since I is finite, we can define n0 = max{ni | i ∈ I} and get that

(xn, ai)L2 − (x, ai)L2 ∈ Ji for all i ∈ N, n ≥ n0,

and, consequently,

TGVk
α(xn − x) + IUD

(xn − x) = TGVk
α(xn) + IUD

(xn)

for all n ≥ n0, from which (H1) follows.
Remark 3.2. By inspection of its proof, we note that the above existence result still holds

for a weaker version of assumption (A). Indeed, instead of being a Riesz basis, (an)n can be
any sequence in L2(Ω,Rm) (without dual basis), and the assumption that Uint has nonemptyD
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2826 KRISTIAN BREDIES AND MARTIN HOLLER

interior was also not needed. However, in order to get existence of a nontrivial minimizer, one
needs at least UD ∩BV(Ω,Rm) �= ∅. The other assumptions of (A) will be necessary to obtain
optimality conditions for (3.1).

Remark 3.3. It can also be seen from the proof of Proposition 3.1 that (EXk) was necessary
only to ensure (H1). Hence, the weaker version of (H1) presented in [6] is necessary and
sufficient for existence of a solution to (3.1). However, the question whether (H1) is true or
false without assuming (EXk) remains open.

Remark 3.4. There is another possibility of obtaining existence of a solution to (3.1) for

an arbitrary number of half-bounded intervals, which only requires mk(k+1)
2 (the dimension

of the R
m-valued polynomials of degree less than k) suitable intervals to be bounded. Both

this assumption and (EXk) hold for all applications considered in this work. However, since
(EXk) is easier to check, we do not discuss the alternative existence result here but rather
refer the reader to [36].

Remark 3.5. Solutions to (3.1) are not unique in general. A simple case where infinitely
many solutions exist can be obtained by choosing (an)n in (A) to be a cosine orthonormal basis
and the data interval corresponding to the constant basis function to be nonsingleton. Then,
one can always add a sufficiently small constant to an optimal solution without changing the
objective functional. Thus, obtaining uniqueness would require additional assumptions and
will not be considered further in the present work.

3.3. Optimality conditions. Having obtained existence of a solution to (3.1) for reason-
able assumptions, we now draw our attention to the derivation of optimality conditions. For
this purpose, we will make use of the following obvious identity: Given F a function,

u∗ = arg
u

minF (u) ⇔ 0 ∈ ∂F (u∗).

The derivation of an optimality condition will thus be preceded by three main steps:
• Describe ∂TGVk

α, the subdifferential of TGVk
α.

• Describe ∂IUD
, the subdifferential of IUD

.
• Show additivity of the subdifferential operator under assumption (A).

3.3.1. Subdifferential of the TGV functional. As the data fidelity term in our main min-
imization problem requires a Hilbert setting and BV(Ω,Rm) continuously embeds in Lp(Ω,Rm)
only for p ≤ d/(d − 1), we are bound to the case d = 2 in the analysis within assumption
(A). However, since the subdifferential of the TGV functional can be analyzed independently
and such an analysis is of interest not only for our specific problem setting, we will for a
moment leave the context of assumption (A) and, in this subsection, always use the following
assumptions:

d ≥ 2, p ∈ R with 1 < p ≤ d
d−1 and m ∈ N.

Further, we will denote the conjugate exponent of p by p′ := p
p−1 . Note that the restriction

on p is to maintain a continuous embedding of BV(Ω,Rm) to Lp(Ω,Rm) (see Proposition 2.4).
Also, for this subsection, we always assume TGVk

α to be a functional defined on Lp(Ω,Rm).
A characterization of ∂TGVk

α requires a notion of tensor fields whose divergence up to a
given order k can, in the weak sense, be identified with tensor fields in Lq. The space of such
tensor fields, which we denote by W q(divk; Ω,Symk(Rd)m), is a generalization of the spaceD
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H(div; Ω), as described, for example, in [32, Chapter 1], and also many properties can easily
be generalized.

Definition 3.1. Let 1 ≤ q < ∞, g ∈ Lq(Ω,Syml(Rd)m). We say that w = div g in Lq(Ω,
Syml−1(Rd)m) if there exists w ∈ Lq(Ω,Syml−1(Rd)m) such that for all φ ∈ C∞

c (Ω,Syml−1

(Rd)m) ∫
Ω
(∇⊗ φ) · g = −

∫
Ω
φ · w,

where ∇⊗φ denotes the tensor field that is identified with the Fréchet derivative of φ; see the
appendix. Furthermore, we define

W q(divk; Ω,Symk(Rd)m) =
{
g ∈ Lq(Ω,Symk(Rd)m) |

divl g ∈ Lq(Ω,Syml(Rd)m) for all 1 ≤ l ≤ k
}

with the norm ‖g‖q
W (divk)

:=
∑k

l=0 ‖divl g‖qLq .

Remark 3.6. Density of C∞
c (Ω,Syml−1(Rd)m) in Lq(Ω,Syml−1(Rd)m) implies that, if there

exists w ∈ Lq(Ω,Syml−1(Rd)m) as above, it is unique. By completeness of Lq(Ω,Syml(Rd)m),
for 0 ≤ l ≤ k it follows that W q(divk; Ω,Symk(Rd)m) is a Banach space when equipped with
‖ · ‖W q(divk).

Definition 3.2. We define, again for 1 ≤ q <∞,

W q
0 (div

k; Ω,Symk(Rd)m) = C∞
c (Ω,Symk(Rd)m)

‖·‖
Wq(divk)

,

i.e., the closure of C∞
c (Ω,Symk(Rd)m) with respect to the norm ‖ · ‖W q(divk).

We now proceed toward a characterization of ∂TGVk
α by first describing the convex con-

jugate (or polar) of the TGVk
α functional.

Proposition 3.2. The convex conjugate of TGVk
α, denoted by

TGVk
α
∗
: Lp′(Ω,Rm) → R,

has the form

TGVk
α
∗
(v) = I

Ck
α
(v) =

{
0 if v ∈ Ck

α,

∞ if v /∈ Ck
α,

where

(3.3) Ck
α :=

{
divk ξ

∣∣∣ ξ ∈ Ck
c (Ω,Sym

k(Rd)m), ‖divl ξ‖∞ ≤ αl, l = 0, . . . , k − 1
}
,

and the closure is taken with respect to the Lp′ norm.
Proof. This follows easily from convexity and lower semicontinuity of TGVk

α and I
C

k
α
since

TGVk
α(u) = I∗

Ck
α
(u),

and thus (see [30, Propositions 3.2 and 4.1]),

TGVk
α
∗
(v) = I∗∗

Ck
α
(v) = I

Ck
α
(v).D
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2828 KRISTIAN BREDIES AND MARTIN HOLLER

A more detailed description of TGVk
α
∗
follows from a study of Ck

α.

Proposition 3.3. With Ck
α as in Proposition 3.2, we have

(3.4)

Ck
α =

{
divk g

∣∣∣ g ∈W p′
0 (divk; Ω,Symk(Rd)m), ‖divl g‖∞ ≤ αl, l = 0, . . . , k − 1

}
:= Kk

α.

Proof. In order to show that Ck
α ⊂ Kk

α, it is sufficient to show that Kk
α is closed with

respect to ‖ · ‖Lp′ . Define

W p′,α
0 (divk) := {g ∈W p′

0 (divk; Ω,Symk(Rd)m)
∣∣ ‖divl g‖∞ ≤ αl, l = 0, . . . , k − 1}.

Now let h ∈ Kk
α. There exists a sequence (gn)n≥0 inW

p′,α
0 (divk) such that limn→∞ divk gn = h.

If we can show that there exists g ∈W p′,α
0 (divk) such that divk g = h, closedness of Kk

α follows.
By boundedness of ‖divl gn‖∞, 0 ≤ l < k, there exist hl ∈ Lp′(Ω,Symk−l(Rd)m) and a set of
increasing indices (ni)i in N such that

divl gni ⇀
Lp′

hl as i→ ∞ for all 0 ≤ l < k.

Denoting hk = h it follows that, for 0 ≤ l ≤ k − 1 and φ ∈ C∞
c (Ω,Symk−1−l(Ω)m),∫

Ω
hl · Eφ = lim

i→∞

∫
Ω
divl gni · Eφ = lim

i→∞
(−1)

∫
Ω
divl+1 gni · φ = (−1)

∫
Ω
hl+1 · φ,

which implies g := h0 ∈W p′(divk; Ω,Symk(Rd)m) and divl g = hl, 0 ≤ l ≤ k.

In order to prove that g ∈W p′,α
0 (divk), we note that the set

{
(z,div z, . . . ,divk z)|z ∈W p′,α

0 (divk)
}
⊂ Lp′

(
Ω,

k×
l=0

Symk−l(Rd)m
)

is convex and closed—and therefore weakly closed. Since the sequence ((gni ,div gni , . . . ,
divk gni))i is contained in this set and converges weakly to (g,div g, . . . ,divk g), it follows

that g ∈W p′,α
0 (divk).

Next, we prove Kk
α ⊂ Ck

α. To this aim, it suffices to show that, for g ∈ W p′,α
0 (divk)

arbitrary, we have ∫
Ω
udivk g ≤ TGVk

α(u) for all u ∈ BV(Ω,Rm),

since this implies that TGVk
α
∗
(divk g) = 0 and hence divk g ∈ Ck

α. In view of the equivalent
characterization of TGVk

α as given in Proposition 2.8, we prove the more general assertion
that, for any l = 1, . . . , k, it holds that, for any v ∈ BD(Ω,Symk−l(Rd)m),

∣∣∣∣
∫
Ω
v · divl g

∣∣∣∣ ≤ inf
vi∈BD(Ω,Symk−l+i(Rd)m),

i=1,...,l,
v0=v, vl=0

l∑
i=1

αl−i‖Evi−1 − vi‖M.
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Setting l = k then implies the result. We show this assertion by induction. For l = 1 we get,
by a divergence theorem for tensor fields [17, Proposition 2.1], for φ ∈ C∞(Ω,Symk−1(Rd)m)
and ψ ∈ C∞

c (Ω,Symk(Rd)m), ∫
Ω
φ · divψ = −

∫
Ω
Eφ · ψ.

Exploiting density, we can replace ψ by g ∈W p′,α
0 (divk) and estimate∣∣∣∣

∫
Ω
φ · div g

∣∣∣∣ =
∣∣∣∣
∫
Ω
Eφ · g

∣∣∣∣ ≤ α0‖Eφ‖1.

Now approximating an arbitrary v ∈ BD(Ω,Symk−1(Rd)m) by a sequence (φn)n contained
in C∞(Ω,Symk−1(Rd)m) as in Proposition 2.10, the induction basis follows. For any l ∈
{2, . . . , k} we take φ ∈ C∞(Ω,Symk−l(Rd)m), apply the divergence theorem, and add and
subtract v1 ∈ BD(Ω,Symk−l+1(Rd)m) to get∣∣∣∣

∫
Ω
φ · divl g

∣∣∣∣ ≤ αl−1‖Eφ− v1‖1 +
∣∣∣∣
∫
Ω
v1 · divl−1 g

∣∣∣∣ .
Again using a smooth approximation as in Proposition 2.10, the assertion follows from the
induction hypothesis for l − 1.

Having a sufficient description of TGVk
α
∗
, we can now characterize its subdifferential. The

relation
u∗ ∈ ∂TGVk

α(u) ⇔ TGVk
α(u) + TGVk

α
∗
(u∗) = 〈u, u∗〉

(see [30], Proposition I.5.1) together with the description of TGVk
α
∗
immediately implies the

following result.
Theorem 3.1. Let u ∈ Lp(Ω,Rm), u∗ ∈ Lp′(Ω,Rm). Then u∗ ∈ ∂TGVk

α(u) if and only if
(3.5)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u ∈ BV(Ω,Rm) and there exists g ∈W p′

0 (divk; Ω,Symk(Rd)m) such that ‖divl g‖∞ ≤ αl,
l = 0, . . . , k − 1, u∗ = divk g, and

TGVk
α(u) =

∫
Ω
udivk g.

3.3.2. Subdifferential of the data term. In order to describe ∂IUD
, first note that we

can decompose IUD
= ID ◦A. Since ∂ID can be described quite easily, we use a chain rule to

deduce ∂IUD
= ∂(ID ◦ A) = A∗∂ID ◦ A and, consequently, to characterize ∂IUD

.
To this aim, we first summarize the relation between Riesz bases and transformation

operators in the following proposition that can be shown by standard arguments.
Proposition 3.4. Let (an)n and (ãn)n be two Riesz bases in duality in the Hilbert space H.

Then, the operators
A :H → 	2,

u �→ ((u, an)H)n

Ã :H → 	2

u �→ ((u, ãn)H)n

are both continuous and possess continuous inverses with

A−1 = Ã∗, Ã−1 = A∗.D
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2830 KRISTIAN BREDIES AND MARTIN HOLLER

Their adjoints are given by

A∗λ =
∑
n∈N

λnan, Ã∗λ =
∑
n∈N

λnãn.

Using in particular bijectivity of A, the subdifferential of IUD
can now be characterized

as follows.
Proposition 3.5. Let (A) be satisfied. Then

u∗ ∈ ∂IUD
(u) ⇔ u ∈ UD and u∗ = A∗λ

with λ = (λn)n ∈ 	2 such that, for every n ∈ N,

(3.6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λn ≥ 0 if (Au)n = sup(Jn) �= inf(Jn),

λn ≤ 0 if (Au)n = inf(Jn) �= sup(Jn),

λn = 0 if (Au)n ∈ int(Jn),

λn ∈ R if (Au)n = inf(Jn) = sup(Jn).

Proof. At first, since A : L2(Ω,Rm) → 	2 is bijective and dom(ID) �= ∅, we can apply [7,
Corollary 16.42] to obtain

u∗ ∈ ∂IUD
(u) ⇔ u∗ = A∗λ

for some λ ∈ ∂ID(Au). By a standard result in convex analysis we have

λ ∈ ∂ID(Au) ⇔ Au = PD(Au+ λ),

where PD denotes the projection onto the set D. A straightforward argument further allows
us to reduce PD to a componentwise projection;

Au = PD(Au+ λ) ⇔ (Au)n = PJn((Au)n + λn) for all n ∈ N.

From that, the assertion follows by an easy case study.

3.3.3. Additivity of the subdifferential. Finally, we need to show that ∂(TGVk
α+IUD

)(u)
= ∂TGVk

α(u) + ∂IUD
(u). For that, we first decompose IUD

= IUint
+ IUpoint

, where, based on
assumption (A),

Uint = {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn for all n ∈ N \W}

and

Upoint = {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn for all n ∈W}
for a finite index set W ⊂ N such that int(Uint) �= ∅.

Theorem 3.2. Let (A) be satisfied. Then, for all u ∈ L2(Ω,Rm),

(3.7) ∂(TGVk
α + IUD

)(u) = ∂TGVk
α(u) + ∂IUD

(u).
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Proof. Let u ∈ L2(Ω,Rm). It is sufficient to show ∂(TGVk
α + IUD

)(u) ⊂ ∂TGVk
α(u) +

∂IUD
(u), since the other inclusion is always satisfied. Continuity of IUint

in at least one point
u ∈ BV(Ω,Rm) ∩ UD allows us to apply [30, Proposition I.5.6], and to ensure that

∂(TGVk
α + IUpoint

+ IUint
)(u) ⊂ ∂(TGVk

α + IUpoint
)(u) + ∂IUint

(u).

We now want to use [4, Corollary 2.1] to establish

∂(TGVk
α + IUpoint

)(u) ⊂ ∂TGVk
α(u) + ∂IUpoint

(u),

for which it is sufficient to show that dom(TGVk
α) − dom(IUpoint

) = L2(Ω,Rm). But this is
true since, for any w ∈ L2(Ω,Rm), by taking jn ∈ Jn for n ∈W , we can write

w = w1 − w2,

where
w1 =

∑
n∈W

((an, w)L2 + jn) ãn ∈ dom(TGVk
α)

as (A) assumes that each ãn ∈ BV(Ω,Rm), and

w2 = −
∑

n∈N\W
(an, w)L2 ãn +

∑
n∈W

jnãn ∈ dom(IUpoint
).

Again, since
∂IUpoint

(u) + ∂IUint
(u) ⊂ ∂(IUpoint

+ IUint
)(u) = ∂IUD

(u)

is always satisfied, the assertion is proved.

3.3.4. Optimality system. The previous results now allow us to derive an optimality
system.

Theorem 3.3. Let (A) and (EXk) be satisfied. Then there exists a solution of

min
u∈L2(Ω,Rm)

(
TGVk

α(u) + IUD
(u)
)
,

and the following are equivalent:
1. û ∈ argminu∈L2(Ω,Rm)

(
TGVk

α(u) + IUD
(u)
)
= argminu∈UD

TGVk
α(u).

2. û ∈ BV(Ω,Rm) ∩ UD, and there exist g ∈ W 2
0 (div

k; Ω,Symk(R2)m) and λ = (λn)n in
	2 satisfying
(a) ‖divl g‖∞ ≤ αl, l = 0, . . . , k − 1,
(b) TGVk

α(û) = − ∫Ω ûdivk g,
(c) divk g =

∑
n∈N λnan, where, for all n ∈ N,⎧⎨

⎩
λn ≥ 0 if (Aû)n = sup(Jn) �= inf(Jn),
λn ≤ 0 if (Aû)n = inf(Jn) �= sup(Jn),
λn = 0 if (Aû)n ∈ int(Jn)

(note that, if Jn = {jn}, there is no additional condition on λn).
3. û ∈ BV(Ω,Rm) ∩ UD, and there exists g ∈W 2

0 (div
k; Ω,Symk(R2)m) satisfyingD
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2832 KRISTIAN BREDIES AND MARTIN HOLLER

(a) ‖divl g‖∞ ≤ αl, l = 0, . . . , k − 1,
(b) TGVk

α(û) = − ∫Ω ûdivk g,
(c) for all n ∈ N,⎧⎨
⎩

(divk g, ãn)L2 ≥ 0 if (Aû)n = sup(Jn) �= inf(Jn),

(divk g, ãn)L2 ≤ 0 if (Aû)n = inf(Jn) �= sup(Jn),

(divk g, ãn)L2 = 0 if (Aû)n ∈ int(Jn).
Proof. Existence of a solution follows from Proposition 3.1. Equivalence of 2 and 3 follows

from biorthogonality of (an)n and (ãn)n (see Proposition 2.11), so it is left to show equivalence
of 1 and 2. For this purpose, let

û ∈ argmin
u∈L2(Ω,Rm)

(
TGVk

α(u) + IUD
(u)
)
.

Thus 0 ∈ ∂(TGVk
α + IUD

)(û), and by additivity of the subdifferential for this setting (see
Theorem 3.2) we have 0 ∈ ∂TGVk

α(û) + ∂IUD
(û). Hence, there exist z1 ∈ ∂TGVk

α(û) and
z2 ∈ ∂IUD

(û) such that 0 = z1 + z2. Now, by Theorem 3.1, û ∈ BV(Ω,Rm), and there
exists g ∈ W 2

0 (div
k; Ω,Symk(R2)m) satisfying 2(a) such that z1 = − divk g and TGVk

α(û) =
− ∫Ω ûdivk g. Clearly, we have divk g = z2. By Proposition 3.5 there exists λ = (λn)n ∈ 	2

satisfying the elementwise conditions in 2(c) such that divk g = A∗λ =
∑

n∈N λnan, the
latter by Proposition 3.4. For the converse implication, observe that conditions 2(a) and 2(b)
together with û ∈ BV(Ω,Rm) imply that − divk g ∈ ∂TGVk

α(û) (Theorem 3.1), while 2(c)
together with û ∈ UD imply that divk g ∈ ∂IUD

(û) (Proposition 3.5). Hence 0 ∈ ∂TGVk
α(û)+

∂IUD
(û) = ∂(TGVk

α(û) + IUD
)(û), and û is a minimizer.

4. Application to data reconstruction. The purpose of this section is to show how various
models related to mathematical imaging problems are covered by the framework as derived
in section 3. In the first subsection, we give some remarks about the general class of problem
settings to which the theory of section 3 can be applied. Then, in the succeeding subsections,
we will study the specific application to decompression and zooming problems in detail.

4.1. A general class of problem settings. The aim of this subsection is to describe a class
of inverse problems whose TGVk

α regularization fits into the general framework of section 3.
The basis for such a description is the following proposition, which replaces the Riesz basis
transform in (A) with any bounded linear operator B : L2(Ω,Rm) → 	2 having closed range
and allows for more general interval constraints.

Proposition 4.1. Let B : L2(Ω,Rm) → 	2 be a bounded linear operator with closed range
and, with (ei)i∈N , N ⊂ N, a Riesz basis of its range and (Jn)n nonempty, closed intervals,
define

(4.1) UD := {u ∈ L2(Ω,Rm) | (Bu, en)�2 ∈ Jn for all n ∈ N}.

Then there exist nonempty, closed intervals (J̃n)n and a Riesz basis (an)n of L2(Ω,Rm)
such that, with A : L2(Ω,Rm) → 	2 the basis transformation operator corresponding to (an)n,
we have

UD = {u ∈ L2(Ω,Rm) | (Au)n ∈ J̃n for all n ∈ N}.
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Proof. Denote by (ẽi)i∈N the dual Riesz basis to (ei)i∈N and by (zi)i∈N\N an orthonor-
mal basis of ker(B). With these definitions, we choose sequences (an)n, (ãn)n in L2(Ω,Rm)
according to

ai =

{
B∗ei if i ∈ N,

zi if i ∈ N \N
and

ãi =

{
B−1ẽi if i ∈ N,

zi if i ∈ N \N,
where B−1 : Rg(B) → ker(B)⊥ denotes the inverse of B : ker(B)⊥ → Rg(B) which is linear
and continuous. We would like to show that (ai)i and (ãi)i are biorthogonal Riesz bases. For
this purpose, according to [53, Theorem 1.9], it suffices to show that (ai)i and (ãi)i both have
dense linear span and are biorthogonal and that for any f ∈ L2(Ω,Rm) we have∑

n∈N
|(f, an)L2 |2 <∞,

∑
n∈N

|(f, ãn)L2 |2 <∞.

Concerning density, suppose that, for arbitrary w1, w2 ∈ L2(Ω,Rm), (an, w1)L2 = 0 as well
as (ãn, w2)L2 = 0 for all n ∈ N. Given that (zi)i∈N\N is a basis for ker(B), this implies

w1, w2 ∈ ker(B)⊥. But 0 = (an, w1)L2 = (en, Bw1)�2 for all n ∈ N implies that Bw1 = 0; thus
w1 ∈ ker(B) and w1 = 0. Similarly, 0 = (ãn, w1)L2 = (B−1en, w1)L2 for all n ∈ N implies, by
surjectivity of B−1 : Rg(B) → ker(B)⊥, that also w2 = 0. Thus both sequences have dense
linear span. Now, for i, j ∈ N, it follows that

(ai, ãj)L2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(B∗ei, B−1ẽj)L2 if i ∈ N, j ∈ N,

(B∗ei, zj)L2 if i ∈ N, j ∈ N \N,
(zi, B

−1ej)L2 if i ∈ N \N, j ∈ N,

(zi, zj)L2 if i ∈ N \N, j ∈ N \N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= δi,j,

where we used that BB−1ẽj = ẽj and B−1ej ∈ ker(B)⊥ for j ∈ N , Bzj = 0 for j ∈ N \ N ,
and the fact that (ei)i∈N and (ẽi)i∈N are dual and (zi)i∈N\N is an orthonormal basis. To show

the remaining assertion, take any f = f1 + f2 ∈ ker(B)⊥ ⊕ ker(B) = L2(Ω,Rm). Then, for
constants C1, C2 > 0,∑

n∈N
|(f, an)L2 |2 =

∑
n∈N

|(Bf1, en)�2 |2 +
∑

n∈N\N
|(f2, zn)L2 |2 ≤ C1‖Bf1‖2�2 + ‖f2‖2L2

and∑
n∈N

|(f, ãn)L2 |2 =
∑
n∈N

|(B−∗f1, ẽn)�2 |2 +
∑

n∈N\N
|(f2, zn)L2 |2 ≤ C2‖B−∗f1‖�2 + ‖f2‖L2 .

Consequently, (an)n, (ãn)n are biorthogonal Riesz bases.D
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2834 KRISTIAN BREDIES AND MARTIN HOLLER

Finally, we define the intervals (J̃i)i∈N by J̃i = Ji for i ∈ N and J̃i = R for i ∈ N \ N .
Then, setting ŨD = {u ∈ L2(Ω,Rm) | (Au)n ∈ J̃n for alln ∈ N}, we have

u ∈ ŨD ⇔ (u,B∗ei)L2 ∈ J̃i for all i ∈ N ⇔ (Bu, ei)�2 ∈ Ji for all i ∈ N ⇔ u ∈ UD.

We now consider the ill-posed operator equation

F (u) = d,

with F : L2(Ω,Rm) → 	2 a linear, bounded operator and d ∈ 	2 a given, degraded datum which
is close to the true, unknown datum d†. We assume that information on the data acquisition
process allows us to define an index set N , closed intervals (Jn)n∈N , and a sequence (en)n∈N
in 	2 such that

d† ∈ D := {v ∈ 	2 | (v, en)�2 ∈ Jn for all n ∈ N}
and D is sufficiently “small.” Motivated by the true signal being an image, our aim is to apply
TGVk

α regularization and reconstruct a signal u∗ ∈ L2(Ω,Rm) which solves

(4.2) min
F (u)∈D

TGVk
α(u).

This setting is related to residual methods for inverse problems, and we refer the reader to
[34] for a discussion of such methods in a more general context.

The theory of section 3 can now be applied to this situation as follows.
• If the forward mapping F is well behaved, i.e., has closed range, and the ill-posedness

is hence only given in terms of nonuniqueness, and if further (en)n∈N constitutes a
Riesz basis of Rg(F ), then Proposition 4.1 can be applied, and the data constraints can
equivalently be defined on the coefficients of the signal after a Riesz basis transform.
If the data intervals are such that (EXk) as well as the nonempty interior condition
of (A) are satisfied and the dual Riesz basis is further contained in BV(Ω,Rm), all
results of section 3 apply; in particular, existence of a solution is guaranteed, and
the optimality conditions are valid. One example of this situation is given when F is
a Riesz basis transform, but the (en)n∈N constitute a Riesz basis different from the
standard basis in 	2. Another example is the situation when F is a bounded surjective
operator with nontrivial kernel for which interval restrictions on its coefficients can,
for example, be realized by taking (en)n∈N as the standard basis of 	2.

• If the data intervals (Jn)n only satisfy the assumption (EXk), in particular if only
finitely many of them are half-bounded, we can still guarantee existence of a solution to
(4.2). Indeed, inspection of the proof of Proposition 4.1 shows that, without further as-
sumptions on the sequence (en)n and the bounded linear operator F : L2(Ω,Rm) → 	2,
we can set (an)n∈N = (F ∗en)n∈N and equivalently define UD by using inner products
with this sequence. In view of Remark 3.2, we can thus still guarantee existence of a
solution.

Having discussed the general applicability of our model to inverse problems, we now turn to
concrete applications in mathematical imaging.D
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Figure 1. JPEG image with typical blocking and ringing artifacts.

4.2. Color JPEG decompression. As first application, we consider the problem of artifact-
free decompression of JPEG compressed color images. This problem has already been ad-
dressed in various publications, of which the TV-based models of [12, 1, 55] are most related.
Also, a discrete version of the problem using second order TGV regularization has already
been published in [13] and in [45]. We further refer the reader to [12, 42, 47, 46] for a short
overview of current standard techniques.

We start with a brief explanation of the basic steps of the JPEG compression standard.
For further information about our modeling we refer the reader to [12, 13], and for a more
detailed explanation of the JPEG compression procedure we refer the reader to [50].

The process of JPEG compression is lossy, which means that typically most of the com-
pression is obtained by loss of data. As a consequence, the original image cannot be restored
completely from the compressed object, which causes ringing and blocking artifacts in the re-
constructed images, as can be seen, for example, in Figure 1. Figure 2 gives an overview of the
basic steps of JPEG compression for color images that are important for our reconstruction
framework. In particular, a further lossless coding of integer data is omitted here, since this
procedure can be inverted without loss of data.

A color JPEG image is typically processed in the YCbCr color space, where the first
(luminance) component essentially contains the brightness information and the second two
(chroma) components the color information of the image. This color space is equivalent to
the standard RGB color space, and images can be transformed from one to another without
significant loss of data. The advantage of using the YCbCr color space is the following:
Knowing that the human visual system is less sensitive to color than to brightness oscillations,
as a first step of JPEG compression, data reduction can be achieved by subsampling the two
chroma components.

Next, each component undergoes a discrete cosine transformation on each block of 8 × 8
pixels, resulting in a local representation of the components as a linear combination of different
frequencies. Again, there is empirical evidence that the human visual system is less sensitiveD
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JPEG File

4 5 3 8 12 7 4 3 1
7 34 5 3 6 3 9 6 1S

S

G

G

G

Q

Q

Q

Figure 2. Scheme of JPEG compression procedure. Here, S denotes a subsampling operation, G a blockwise
discrete cosine transformation, and Q a quantization to integer, i.e., a blockwise division through a predefined
quantization matrix followed by rounding to integer.

to high frequency variations than to low frequency variations. Consequently, each 8 × 8
pixel block of the coefficients representing the cosine frequencies is divided pointwise by a
predefined quantization matrix Q reflecting this empirical observation. The resulting data is
then rounded to integer and, after further lossless compression, is stored in the compressed
JPEG object.

In order to reconstruct an image from the compressed file, standard decompression al-
gorithms now simply revert the compression process by pointwise multiplication with the
quantization matrix, application of the inverse blockwise cosine transform, and color upsam-
pling. It is thereby not taken into account that the data is incomplete, i.e., that it is a result of
a rounding procedure and thus does not uniquely determine a single source image, but rather
a set of possible source images. Indeed, since, in addition to the quantized integer coefficient
data d = (dci,j), the quantization matrix Q = (Qc

i,j) can also be obtained from the compressed
file, it is possible to define interval bounds

(4.3) Jc
i,j =

[
Qc

i,j

(
dci,j −

1

2

)
, Qc

i,j

(
dci,j +

1

2

)]
for each quantized coefficient, and, consequently, a convex set of possible source data

(4.4) D = {(zci,j) | zci,j ∈ Jc
i,j for all i, j, c}.

Then D is the set of all coefficients that would, after quantization and rounding, result in the
same data as given by the JPEG compressed file. Note that here, i and j denote the ith and
jth coefficient of the blockwise cosine transform, respectively, while c ∈ {1, 2, 3} denotes the
color component.

Coupling the subsampling S and the cosine transformation operator C, as in Figure 2, we
will see that with this the set of all possible source images of the compressed JPEG object
can be described by D and an (even orthogonal) basis transformation operator. Thus it fits
in our image reconstruction framework, where we aim at choosing one of all possible source
images that minimizes the TGVk

α functional.D
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4.2.1. Continuous modeling. We consider color images in YCbCr color space as functions
in L2(Ω,R3), where Ω = (0, 8k) × (0, 8l), k, l ∈ N, is a rectangular domain, in particular a
Lipschitz domain.

Subsampled image components are considered as functions in L2(Ωc), where Ωc = (0, 8kc)×
(0, 8lc) are domains smaller than Ω, i.e., kc ≤ k, lc ≤ l. With these prerequisites, the subsam-
pling process can be described color componentwise via the operators Sc : L

2(Ω) → L2(Ωc),
c ∈ {1, 2, 3}, given by

Scu(x, y) = u(scx, tcy),

where sc =
k
kc
, tc =

l
lc

are the subsampling factors.
Remark 4.1. Typically we have no subsampling for the luminance component, i.e., s1 =

t1 = 1, while the chroma components are subsampled with factor 2, i.e., s2 = t2 = s3 = t3 = 2.
In order to define the blockwise cosine transform, we first need the following definition,

which is taken from [12].
Definition 4.1 (blockwise cosine system). For t, r ∈ N, set H = (0, 8t) × (0, 8r) ⊂ R

2. For
i, j ∈ N0, 0 ≤ i < t, 0 ≤ j < r, we define the squares

Ei,j =
(
[8i, 8i + 8)× [8j, 8j + 8)

) ∩H
and

χi,j = χEi,j ,

their characteristic functions. Furthermore, let the standard cosine orthonormal system
(bn,m)n,m ⊂ L2((0, 1)2) be defined as

(4.5) bn,m(x, y) = λnλm cos(nxπ) cos(myπ)

for (x, y) ∈ R
2 and n,m ∈ N0, where

λl =

{
1 if l = 0,√
2 if l �= 0.

We define the blockwise cosine system gi,jn,m ∈ L2(H) as the collection of all gi,jn,m ∈ L2(H)
according to

(4.6) gi,jn,m(x, y) =
1

8
bn,m

(
x− 8i

8
,
y − 8j

8

)
χi,j(x, y)

for (x, y) ∈ H. Here, 0 ≤ i < t, 0 ≤ j < r, and n,m ∈ N0.
Remark 4.2. It follows by reduction to the cosine orthonormal system (bn,m)n,m that

{gi,jn,m |n,m ∈ N0, 0 ≤ i < k, 0 ≤ j < l} is a complete orthonormal system in L2 (H). Further,
one can see that {gi,jn,m |n,m ∈ N0, 0 ≤ i < k, 0 ≤ j < l} ⊂ BV(H).

Denoting, for c ∈ {1, 2, 3}, by (gcn)n a blockwise cosine orthonormal system of L2(Ωc)
as described in Definition 4.1 (note that we use a different index notation), the operators
Gc : L

2(Ωc) → 	2 are defined to be their corresponding basis transformation operators, i.e.,

(4.7) (Gcv)n = (gcn, v)L2D
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2838 KRISTIAN BREDIES AND MARTIN HOLLER

for v ∈ L2(Ωc).
With these preliminaries, we define the operator modeling the JPEG compression proce-

dure for each color component as Ac : L
2(Ω) → 	2 with Ac = GcSc. We further assume that

we are given closed intervals (Jc
n)n such that

(4.8) UD = {u ∈ L2(Ω,R3) | (Au)cn ∈ Jc
n for n ∈ N, c ∈ {1, 2, 3}}

defines the set of possible source image of a given, JPEG compressed file. Clearly, each
Ac is bijective, and, following the proof of Proposition 4.1, Ac can be regarded as basis
transformation operator, related to basis elements (acn)n, that can be given as

(4.9) acn(x, y) = S∗
c g

c
n(x, y) =

1

sctc
gcn

(
x

sc
,
y

tc

)
,

which are orthogonal and contained in BV(Ω). Further, rewriting the componentwise opera-
tors Ac as basis transformation operator A : L2(Ω,R3) → 	2, UD can be rewritten into a form
as in assumption (A), and the continuous minimization problem corresponding to color JPEG
decompression is given by

(4.10) min
u∈L2(Ω,R3)

TGVk
α(u) + IUD

(u),

with UD being equivalently defined in (4.8). In order to ensure that (A) and (EXk) hold, we
need to specify our continuous modeling of the given data intervals (Jc

n)n. Remember that for
each given integer coefficient dcn and the corresponding quantization value Qc

n we can define
an error interval Jc

n as

(4.11) Jc
n =

[
Qc

n

(
dcn − 1

2

)
, Qc

n

(
dcn +

1

2

)]
.

Now one can model the JPEG compression process by assuming that all coefficients ((acn, u
†))n

of the original image u† ∈ L2(Ω,Rm) are quantized, rounded, and stored. This means that
all (Jc

n)n are given from data coefficients (dcn)n, and quantization values (Qc
n)n, as in (4.11),

in particular are bounded. Since the quantization values Qc
n are typically nondecreasing for

larger n, meaning that coefficients representing higher frequency are stored with less or the
same precision, it is reasonable to assume that they are bounded below by some ε > 0.
Hence, as each coefficient dcn results from a rounding procedure of quantized data contained
in 	2, all but finitely many must be zero, and the resulting data intervals thus contain [− ε

2 ,
ε
2 ].

Consequently, UD has nonempty interior, and assumptions (A) and (EXk) are clearly satisfied.
This ensures existence of a solution and validity of the optimality condition as in Theorem
3.3.

Remark 4.3. As an alternative approach, one could regard the coefficient data dcn as a
given, finite number of samples of the unknown image u† ∈ L2(Ω,Rm). This means that only
finitely many intervals Jc

n can be constrained, as in (4.11), and all remaining intervals are set
to be all of R. Such a setting again satisfies our assumptions (A) and (EXk), and thus all
results of section 3 apply.D
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4.3. Color JPEG 2000 decompression. As a second application, we employ the recon-
struction model of section 3 for the improved reconstruction of JPEG 2000 color images,
where the coding is essentially based on a biorthogonal wavelet transform. For the sake of
self-containedness we will briefly explain basic features of JPEG 2000 compression that are
necessary to understand the modeling. It will turn out that, again, the set of possible source
images can be described by interval restrictions on the coefficients of the transformed image
and thus fits our reconstruction model of section 3. However, due to the coding process, it
will not be possible to restrict every coefficient by a bounded interval. After presenting an
overview of JPEG 2000 compression, we will define and discuss the minimization problem for
artifact-free JPEG 2000 decompression.

But at first, we discuss previous approaches to improving the reconstruction quality of
the JPEG 2000 standard. To the best knowledge of the authors, in contrast to the JPEG
decompression model, there does not exist any model or method designed particularly for
improved JPEG 2000 decompression that is related to the present one. However, even if not
designated to improve the JPEG 2000 compression/decompression procedure, some works on
wavelet inpainting aim to solve a very similar task: Assuming that, due to transmission or
storage error, some coefficients of the wavelet representation of an image are lost, the aim
is to reconstruct an image that fits the known coefficients and minimizes the TV functional.
In our terminology, given a suitable basis (an)n of L2(Ω) and a source image u0, this means
solving

min
u∈L2(Ω)

TV(u) + IV (u)

with
V = {u ∈ L2(Ω) | (u, an)L2 = (u0, an)L2 for all n ∈M},

M being the index set of known coefficients. In [23], existence of a solution for this problem
was established in the function space setting under the assumptions that Ω = R

2 and only
finitely many coefficients are unknown. Numerical solution strategies for this, and a similar
model with L2 data fit, were presented in [23, 22, 52, 44]. In [54], the same model using
nonlocal TV regularization was considered. In [29], the authors present the statement and
numerical solution of a TV-wavelet denoising scheme whose formulation is also quite similar
to those methods: Motivated by denoising with wavelet thresholding, the authors propose
minimizing the TV functional subject to equality constraints on all wavelet coefficients with
absolute value above a certain threshold.

However, even when considered solely as a method for wavelet-constrained optimization,
our work differs significantly from those cited above. First, we use the TGV functional of
arbitrary order as a regularization. Also, we are able to establish existence of a solution and
optimality conditions in the case in which Ω is a bounded Lipschitz domain using natural
boundary extension also in the function space setting. Additionally, we allow infinitely many
wavelet coefficients to be unbounded and possible interval constraints. We also formulate
the model for general biorthogonal wavelet bases from the very beginning, and our numerical
solution scheme presented in [16] is different from those of previous works. Let us point out,
however, that the assumptions of our work include the problem of wavelet inpainting; thus
our method can also be seen as a generalization of the methods of [23, 29] using arbitrary
order TGV regularization.D
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Uncompressed image Transformed image Bit-level coding

00001010=10
00000100=40
00000111=70
00000001=10
00000100=40
00000010=20
00010000=16
01011100=92
00000011=30

JPEG2000 file

10000000011

=30

W

Figure 3. Selected steps of JPEG 2000 compression including bit-level coding for one image component.
See also [40, Figures 10.16, 10.17].

Other methods that mainly focus on the concealment of wavelet data error due to trans-
mission are featured in the works [38, 5, 25]. In [51], the aim is the reduction of artifacts due
to tile separation of the image. We also refer the reader to [43] for a postprocessing method
that attempts to improve reconstruction quality by reapplication of JPEG 2000 on shifted
versions of the image.

The JPEG 2000 standard. We will now briefly discuss the JPEG 2000 compression pro-
cedure. For more information, we refer the reader to [40, 48, 49, 35] and the references therein.

Figure 3 gives a schematic overview of some main steps for JPEG 2000 compression that
will be discussed in the following. As a first step, the image is split into color components
and further into tiles, where each tile undergoes the same compression process. Next, a
discrete wavelet transformation of arbitrary order is applied to each tile. Two types of wavelet
transformation are possible within the standard—the Cohen–Daubechies–Feauveau (CDF) 9/7
and the Le Gall 5/3 wavelet transform (see [48, 35]). The numbers 9/7 and 5/3 indicate the
support length of related filters. The resulting coefficients are then quantized depending on
their importance for visual image quality. The values used for quantization are uniform on
each subband, i.e., on each direction dependent part of each resolution level of each tile, and
can in particular be obtained from the compressed code stream.

The quantized coefficients are then further split into different kinds of subunits, resulting
finally in a set of code blocks. Each of these code blocks then undergoes a bit-level encoding
consisting of three different passes. Starting from the highest nonzero bit-level, these three
passes are repeated until the lowest bit-level has been encoded. This generates, for each code
block, an independent bit-stream together with a set of valid truncation points (typically
the last bit that has been encoded by each pass). Finally, the data from all code blocks is
reorganized using mean-squared error estimations with respect to the original image. The
result is a single bit-stream together with a set of possible truncation points which are, given
a maximal number of bits to be saved, expected to be optimal in terms of peak signal-to-noise
ratio (PSNR) (see [40, section 10.5.2], [35, section J.10]). When the compression rate is fixed
by the user, this bit-stream is truncated to one of these points.

In the compressed JPEG 2000 file, the amount of information available in the bit-streamD
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Figure 4. Left: Wavelet coefficients of the brightness component of the bird image of Figure 3 (logarithmic
scale). Right: Size of data intervals for the wavelet coefficients. (Note that 0, i.e., dark blue, indicates that the
data is unbounded.)

of one code block hence depends on the importance of the information in the code block for
the PSNR rate. Thus, if, due to truncation, for one code block no bit-level information is left
at all, the only information we can infer is that skipping information about its coefficients
resulted in a better estimated PSNR rate than for other code blocks. However, since the
original image is not known, we cannot use this information to obtain any estimate on its
coefficients. Each individual coefficient could have been arbitrarily high as long as the overall
information of the code block was less important for the PSNR value.

However, if at least one bit of coefficient information is left for a given code block, we can
determine a bounded error interval for each of its coefficients as follows: As already explained,
during compression, each code block is transformed into a bit-stream by repeating three passes,
the significance propagation pass, the magnitude refinement pass, and the cleanup pass (see
[35, Annex D]). Starting at the highest bit level, each pass follows predefined rules whether
it encodes a particular bit or not. Thus, extracting the truncated, nonempty bit-stream and
information about which pass has been performed last before truncation from the compressed
file, we can determine, for each coefficient of the code block, up to which bit-level it has been
encoded, i.e., its precision.

Using this knowledge, similar as for a JPEG compressed image, we can define a source value
together with a (bounded) error interval for each coefficient of the code block. Thus, given any
code block with nonzero information, we can define the set of its possible source coefficients
again by bounded interval restrictions. As one can see in the numerical experiments in [16],
this is possible for sufficiently many code blocks to keep the set of possible source images
small and hence to achieve a good reconstruction quality. We refer the reader to Figure 4 for
a visualization of the error bounds obtained from a JPEG 2000 compressed file.

Note that, in contrast to JPEG compression, the JPEG 2000 standard does not include
explicit color subsampling. However, since due to the wavelet transformation the image is
composed into a low-resolution part and a detail part, subsampling is still possible by skippingD
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the detail coefficients of the finest scale.

4.3.1. Continuous modeling. The definition of the wavelet transform for JPEG 2000
compression is based on either the Le Gall 5/3 or the CDF 9/7 wavelets. Let us detail the
construction of a Riesz basis for L2(Ω,Rm) from these wavelets. We start with two finite length
filter sequences (hn)n and (h̃n)n which yield either Le Gall 5/3 or CDF 9/7 wavelets and are
defined in [26, Tables 6.1 and 6.2] for N = Ñ = 2 and N = Ñ = 4, respectively. As shown
in [26], from both of these filter choices one can define scaling functions φ, φ̃ ∈ L2(R) and
mother wavelets ψ, ψ̃ ∈ L2(R) that allow, by translations and dilatations, the construction of
biorthogonal Riesz bases. Indeed, defining for j, k ∈ Z

φj,k(x) = 2−j/2φ(2−jx− k), ψj,k(x) = 2−j/2ψ(2−jx− k),

one obtains that, for any R ∈ Z,

(4.12) (φR,k)k ∪ (ψj,k)j,k for indices k ∈ Z and j ≤ R

is a Riesz basis of L2(R). Its dual basis is further denoted by

(4.13) (φ̃R,k)k ∪ (ψ̃j,k)j,k for indices k ∈ Z and j ≤ R,

where φ̃j,k, ψ̃j,k are obtained from the dual scaling and wavelet functions φ̃, ψ̃ again by
translations and dilatations. We point out that, since we use only finite length filters for their
construction, each of these basis elements has finite support length. Any signal f ∈ L2(R)
can now be decomposed to the scale R ∈ Z, using the bases (4.12) and (4.13), as

(4.14)

f =
∑
k∈Z

(φ̃k,R, f)φk,R +
∑

k∈Z,j≤R

(ψ̃j,k, f)ψj,k

=
∑
k∈Z

(φk,R, f)φ̃k,R +
∑

k∈Z,j≤R

(ψj,k, f)ψ̃j,k.

The first sum in each of the terms can be interpreted as a low-resolution approximation of f ,
while the second contains detail information.

Next we want to obtain a Riesz basis of L2((0, 1)) from such a given Riesz basis of L2(R)
which corresponds to symmetric boundary extension. For that purpose we apply a folding
technique as in [27, section 2]. Given any compactly supported function η ∈ L2(R), we define
its folded version ηf ∈ L2((0, 1)) pointwise almost everywhere as

ηf(x) =
∑
n∈Z

[η(x− 2n) + η(2n− x)].

Then, denoting by u ∈ L2((0, 1)) a function and by u its symmetric extension to all of R, we
get ∫ 1

0
ηfu =

∫
R

ηu.
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Thus, testing u ∈ L2((0, 1)) with ηf corresponds to testing its symmetric extension with η.
Using this technique and skipping redundant indices, it has been shown in [27, section 2] that
for R ∈ Z the folded sequences

(φfR,k)k ∪ (ψf
j,k)j,k and (φ̃fR,k)k ∪ (ψ̃f

j,k)j,k

constitute Riesz bases of L2((0, 1)) in duality. Due to the support restriction, the folded bases
contain only finitely many translations of the scaling functions.

From these two bases we then construct dual Riesz bases of L2((0, 1) × (0, 1)) by using
tensor products of the basis elements, as done, for example, in [28, section 10.1] for orthogonal
wavelet bases. Tensor products of two scaling functions give again a scaling function on R

2,
while tensor products of a wavelet with either a scaling function or another wavelet give
a wavelet that resolves horizontal, vertical, or diagonal details, respectively. Grouping the
scaling functions and the wavelets together and reindexing, we obtain, again for R ∈ Z, two
dual Riesz bases of L2((0, 1) × (0, 1)) written as

(4.15) (ΦR,k)k ∪ (Ψj,k)j,k and (Φ̃R,k)k ∪ (Ψ̃j,k)j,k.

Depending on our initial choice of filters (hn)n, (h̃n)n, these bases correspond to either Le
Gall 5/3 or CDF 9/7 wavelets.

In order to apply the problem setting of section 3, we will need to ensure certain regularity
assumptions on the Riesz basis; i.e., the dual basis must be contained in BV((0, 1) × (0, 1)).
By construction (see [26]), all basis elements of the one dimensional dual basis in L2(R) can
be expressed as finite linear combinations of translated, scaled versions of the scaling function
φ̃. Also, folded versions and tensor products of compactly supported BV functions are again
in BV; hence it suffices to ensure regularity of φ̃. In the case of Le Gall 5/3 filters the scaling
function φ̃ is just a piecewise linear spline (see [26, section 6.A], and note that there, φ and φ̃
are interchanged) and thus is contained in W 1,1(R). In the case of CDF 9/7 filters it has been
shown, for example, in [49] that the scaling function corresponding to synthesis possesses a
Sobolev regularity higher than 2 and in particular is also contained in W 1,1(R).

We consider color images as functions in L2(Ω,R3), where Ω = (0, k)×(0, l) is a rectangular
Lipschitz domain and k, l denote the number of tiles in which the images are split as part of
compression. In contrast to JPEG compression, now also the definition of the basis used for
reconstruction depends on the information obtained from a given compressed file. For each
color component and tile encoded by a JPEG 2000 compressed file, we can now choose an
appropriate resolution level and wavelet type and obtain a Riesz basis of L2((0, 1) × (0, 1))
as in (4.15). Using these bases, we can construct, for each color component, a block-wavelet
basis of L2(Ω). As in Remark 2.2, we obtain a Riesz basis of L2(Ω,R3) together with a dual
basis from these componentwise bases. We denote these bases by (an)n and (ãn)n and the
corresponding basis transformation operators by A and Ã, respectively. Since each dual basis
for each color component and tile is contained in BV(Ω), so is (ãn)n. As explained at the
beginning of this section, we can further obtain data intervals (Jn)n such that all possible
source images of the given JPEG 2000 compressed file must be contained in

UD = {u ∈ L2(Ω,Rm) | (Au)i ∈ Ji for all i ∈ N}.D
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In contrast to JPEG decompression, each of these intervals might also be unbounded. How-
ever, as the standard encodes the sign of a coefficient only when the first nonzero bit is encoded,
no intervals are half-bounded and (EXk) applies. During compression, the wavelet coefficients
of the signal are quantized and rounded toward zero and a bit truncation is performed. The
values used for quantization are uniform on each subband and are typically nondecreasing for
higher subbands, meaning that coefficients corresponding to finer scales are saved with the
same or less precision. Thus we again assume that the quantization values are bounded below
by some ε > 0, and, consequently, as the original sequence of coefficients is contained in 	2,
all but finitely many intervals must contain [−ε, ε]. This ensures that assumption (A) is valid,
and thus again the existence result and the optimality conditions of Theorem 3.3 apply.

4.4. Variational image zooming. Apart from the data decompression models of subsec-
tions 4.2 and 4.3, we now consider the task of obtaining a high-resolution image from low-
resolution data. A generic approach in this context is to perform a regularized inversion of a
subsampling operation, i.e., given Ω = (0, 1) × (0, 1), L2(Ω,R3) the space of high-resolution
color images and K a subsampling operator, one aims at solving

min
Ku=u0

F (u),

where u0 is the given low-resolution data and F is a regularization functional. Following this
approach, we model subsampling as a linear operator mapping a function to a finite subset of
its coefficients with respect to a Riesz basis. That is, given (an)n a Riesz basis of L2(Ω,R3)
and N ⊂ N a finite subset, we assume the subsampling operator K to be given as

Ku = ((an, u)L2)n for n ∈ N.

As we will see, this can indeed be considered as a subsampling operation for images and covers
also standard subsampling techniques such as averaging.

For regularization, we again use the TGVk
α functional. With A : L2(Ω,R3) → 	2 the basis

transformation operator corresponding to (an)n, the task of reconstructing a high-resolution
image u† ∈ L2(Ω,R3) from given low-resolution data ((an, u

†)n)n, for n ∈ N , then amounts
to solving

min
u∈L2(Ω,R3)

TGVk
α(u) + IUD

(u)

with
UD = {u ∈ L2(Ω,R3) | (Au)n = (an, u

†)L2 for all n ∈ N}.
In the notation of section 3 this means setting Jn = {(an, u†)L2} for n ∈ N and Jn = R else
and corresponds to the case where the low resolution data is exactly given.

A particular case of this setting is given when (an)n results from a wavelet basis of L2(Ω,R)
and can be split into scaling functions (Φj,k)j,k and wavelet functions (Ψj,k)j,k. Having fixed
a resolution level R ∈ Z, UD can then be defined as

UD = {u ∈ L2(Ω,R3) | (ΦR,k, u)L2 = (ΦR,k, u
†)L2 for all k ∈ N}

and indeed defines a low-resolution version of the original image u†; see Figure 5 for a visu-
alization. This setting has already been discussed in [14] for the case of second order TGVD

ow
nl

oa
de

d 
05

/0
3/

19
 to

 1
43

.5
0.

47
.1

47
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TGV-BASED IMAGE RECONSTRUCTION. PART I: ANALYTICS 2845

Figure 5. Visualization of the low resolution image and the detail coefficients obtained from a high resolution
image with one level of wavelet decomposition. Note that the wavelet coefficients have been rescaled for better
visibility.

regularization. As it allows any type of wavelet for the subsampling operation, it is still flexi-
ble in the choice of a subsampling operator. In particular, using the Haar wavelet corresponds
to subsampling by averaging, and using the Le Gall 5/3 wavelet corresponds to the adjoint
of bilinear interpolation as a subsampling operator (see [14]). We also refer the reader to [14]
for a discussion of existing methods that are related to the present one.

Alternatively, one can also incorporate data from a given JPEG or JPEG 2000 compressed
file in the zooming approach. Choosing the basis (an)n to be either a blockwise cosine basis or
a tilewise wavelet basis with CDF 9/7 or Le Gall 5/3 wavelets, one can regard a compressed
file as a finite number of truncated samples of the unknown image u† ∈ L2(Ω,R3), define N
to be the set of all coefficients for which data is available, and define the intervals (Jn)n to be
the error bounds for these coefficients. Setting all remaining Jn to be all of R, this yields a
method for combined decompression and zooming of JPEG or JPEG 2000 compressed image
files. We refer the reader to [13] for a discussion of this method in the case of JPEG files and
second order TGV regularization.

In both of the above-discussed settings, all but finitely many intervals contain all of R.
Thus, for any choice of basis such that the dual basis is contained in BV(Ω,R3), the assump-
tions (EXk) and (A) are clearly satisfied, and all results of section 3 apply. Hence our general
problem formulation is also directly applicable to a variational zooming as well as a combined
decompression and zooming approach.

5. Conclusion. Motivated by applications to image decompression, we have introduced
a TGV regularized image reconstruction framework in a general function space setting. We
have posed generic assumptions for which existence of a solution and optimality conditions for
the resulting minimization problem were be obtained. These assumptions are quite general
in the sense that an arbitrary Riesz basis together with a broad class of interval restrictionsD
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can be used for data fidelity. This provides a common framework for a large class of problem
settings in mathematical image processing, particular examples being the TGV regularized
decompression of JPEG and JPEG 2000 images and a variational zooming model. After hav-
ing established the theoretical foundations, the numerical realization and evaluation of these
applications are the topic of a second paper [16], the content of which is strongly connected
to that of the present paper.

Appendix A. Products of tensor spaces and related mappings. This appendix gives a
short overview on functions mapping to products of tensor spaces, henceforth referred to as
tensor fields. These spaces are needed to define the TGV functional for vector-valued data.
The definitions and results stated in this subsection are straightforward generalizations of
those presented in [17, 15] and are provided for the reader’s convenience.

The space of symmetric tensors of order k is defined as

(A.1) Symk(Rd) :=

{
ξ :
(
R
d
)k → R

∣∣ ξ : k − linear and symmetric

}
,

respectively, with the scalar product

(A.2) ξ · η =
∑

p∈{1,...d}k
ξ(ep1 , . . . , epk)η(ep1 , . . . , epk),

for ξ, η ∈ Symk(Rd), and the induced norm |ξ| = √
ξ · ξ. For a given, sufficiently smooth,

tensor field ξ, its lth derivative can be identified with a (nonsymmetric) (k + l) tensor field
∇l ⊗ ξ, defined by

(∇l ⊗ ξ)(x)(a1, . . . , ak+l) =
(
Dlξ(x)(a1, . . . , al)

)
(al+1, . . . , ak+l),

where Dlξ : Ω → Ll
(
R
d,Symk(Rd)

)
denotes the lth Fréchet derivative of ξ and Ll(X,Y ) the

space of l-linear and continuous mappings from X l to Y . Further, we define a symmetrized
derivative of a smooth tensor field ξ : Ω → Symk(Rd) that can be identified with a symmetric
tensor field:

(A.3) E lξ = |||(∇l ⊗ ξ).

Here |||η denotes the symmetrization of a given tensor η defined by

(|||η)(a1, . . . , ak) = 1

k!

∑
π∈Sk

η(aπ(1), . . . aπ(k)),

where Sk is the set of all permutations of {1, . . . , k}.
We also use the notion of l-divergence of a sufficiently smooth (k + l) tensor field:

divl η = trl(∇l ⊗ η)

for η ∈ Symk+l(Rd), where, for ξ ∈ Symk(Rd),

tr(ξ) ∈ Symk−2(Rd), tr(ξ)(a1, . . . , ak−2) =
d∑

i=1

ξ(ei, a1, . . . , ak−2, ei).

D
ow

nl
oa

de
d 

05
/0

3/
19

 to
 1

43
.5

0.
47

.1
47

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TGV-BASED IMAGE RECONSTRUCTION. PART I: ANALYTICS 2847

Note that by definition of the trace operator, the divergence of η is symmetric.
Likewise, we equip the space Symk(Rd)m containing m-tuples of symmetric tensors, i.e.,

(A.4) Symk(Rd)m =
{
ξ = (ξ1, . . . , ξm)

∣∣ ξi ∈ Symk(Rd), i ∈ {1, . . . ,m}
}
,

with the inner product and norm

(A.5) ξ · η =

m∑
i=1

ξi · ηi and |ξ|2 = ξ · ξ.

For sufficiently smooth m-tuples of symmetric tensor fields, the differentiation operators
∇, E ,div are defined componentwise. The spaces

Lp(Ω,Symk(Rd)m), Cl
c(Ω,Sym

k(Rd)m), C∞
c (Ω,Symk(Rd)m)

are defined in the usual way, where we use tensor norm | · | as in (A.5) as vector norm. Spaces
of measures and distributions Ω are defined by duality as

M(Ω,Symk+1(Rd)m) =

(
Cc
(
Ω,Symk(Rd)m

)‖·‖∞)∗
,

D(Ω,Symk(Rd)m) = C∞
c (Ω,Symk(Rd)m)∗.

For ξ ∈ D(Ω,Symk(Rd)m), η ∈ D(Ω,Symk+1(Rd)m) is called the weak symmetrized de-
rivative of ξ if

〈η, ζ〉 = −〈ξ,div ζ〉
for all ζ ∈ C1

c (Ω,Sym
k+1(Rd)m). In this case we denote Eξ = η.

We will need that a distribution is represented by an L1 function if its symmetrized
gradient can be represented by a Radon measure. This has been shown in [15] for tensor
spaces and can be generalized to products of tensor spaces as follows.

Proposition A.1. If for u ∈ D(Ω,Symk(Rd)m) we have Eu ∈ M(Ω,Symk+1(Rd)m), then
u ∈ L1(Ω,Symk(Rd)m).

Proof. Given any distribution u ∈ D(Ω,Symk(Rd)m), we apply the result of [15] to the
distributions ui ∈ D(Ω,Symk(Rd)) defined by

〈ui, φ〉 = 〈u, ( 0, . . . , 0︸ ︷︷ ︸
(i−1) times

, φ, 0 . . . , 0︸ ︷︷ ︸
(m−i) times

)〉

for φ ∈ C∞
c (Ω,Symk(Rd)).
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