A THEOREM CONCERNING SYSTEMS OF RESIDUE CLASSES

Z. W. SUN

We first introduce some notation. As usual $\left(n_{1}, \ldots, n_{k}\right)$ (resp. $\left[n_{1}, \ldots, n_{k}\right]$) stands for the greatest common divisor (resp. least common multiple) of n_{1}, \ldots, n_{k}. By system we mean a multi-set whose elements are unordered but may occur repeatedly. Following Š. Znám [8] we use $a(n)$ to denote the residue class

$$
\{x \in \mathbb{Z}: x \equiv a \quad(\bmod n)\}
$$

For a system

$$
\begin{equation*}
A=\left\{a_{i}\left(n_{i}\right)\right\}_{i=1}^{k} \tag{1}
\end{equation*}
$$

of residue classes, the n_{i} are called its moduli.
Definition. An integer T is said to be a covering period of (1) if it is a period of the characteristic function of the set $\bigcup_{i=1}^{k} a_{i}\left(n_{i}\right)$.

It is clear that $\left[n_{1}, \ldots, n_{k}\right]$ is a covering period of (1), and that any covering period is a multiple of the smallest positive one.

For any set S of integers we use $d(S)$ to denote the asymptotic density

$$
\lim _{N \rightarrow \infty} \frac{1}{N}|\{0 \leq x<N: x \in S\}|
$$

($|A|$ is the cardinality of A.) The limit obviously exists if S is a union of finitely many residue classes. In fact

$$
\left.\left.d\left(\bigcup_{i=1}^{k} a_{i}\left(n_{i}\right)\right)=\frac{1}{N} \right\rvert\,\left\{0 \leq x<N: x \in a_{i}\left(n_{i}\right) \text { for some } i\right\} \right\rvert\,
$$

where N is any positive common multiple of n_{1}, \ldots, n_{k}.
Our main result is

[^0]Theorem. Let T be the smallest positive covering period of (1). Then we have

$$
\begin{equation*}
\frac{\left(n_{1}, \ldots, n_{k}\right)}{\left(T, n_{1}, \ldots, n_{k}\right)} \leq \max _{n \in \mathbb{Z}^{+}}\left|\left\{1 \leq i \leq k: n_{i}=n\right\}\right| \sum_{\substack{\left[\frac{\left[n_{1}, \ldots, n_{k}\right]}{\left(n_{1}, \ldots, n_{k}\right)}\right.}} \frac{1}{d} \tag{2}
\end{equation*}
$$

To prove it we need two lemmas.
Lemma 1. $d\left(\bigcup_{i=1}^{k} a_{i}\left(n_{i}\right)\right) \geq d\left(\bigcup_{i=1}^{k} 0\left(n_{i}\right)\right)$.
This is Lemma 2.3 of R.J.Simpson [6]. We can also prove it by using Theorem 1 of [2].

Lemma 2. Let $n_{1}, \ldots, n_{k} \in \mathbb{Z}^{+}$, and let P be a finite set of primes such that all the n_{i} are contained in

$$
\bar{P}=\left\{n \in \mathbb{Z}^{+}: \text {all prime divisors of } n \text { belong to } P\right\}
$$

Then

$$
d\left(\bigcup_{i=1}^{k} 0\left(n_{i}\right)\right)=\left(\prod_{p \in P} \frac{p-1}{p}\right) \sum_{n \in \bar{P} \cap \cap_{i=1}^{k} 0\left(n_{i}\right)} \frac{1}{n}
$$

Proof. We note first that

$$
\sum_{\substack{ \\
n \in \bar{P} \cap{\underset{i=1}{k}}_{\begin{subarray}{c}{k}\left(n_{i}\right) }}^{n}}\end{subarray}} \frac{1}{n} \sum_{n \in \bar{P}} \frac{1}{n}=\prod_{p \in P}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right)=\prod_{p \in P} \frac{p}{p-1}
$$

Let $N=\left[n_{1}, \ldots, n_{k}\right]$ and $N_{m}=\left(\prod_{p \in P} p\right)^{m}$. For sufficiently large m we have $N \mid N_{m}$. From the inclusion-exclusion principle it follows that

$$
\begin{aligned}
& d\left(\bigcup_{i=1}^{k} 0\left(n_{i}\right)\right)=\frac{1}{N}\left|\left\{0 \leq x<N: x \in \bigcup_{i=1}^{k} 0\left(n_{i}\right)\right\}\right| \\
& =\frac{1}{N}\left(\sum_{i=1}^{k}\left|\left\{0 \leq x<N: n_{i} \mid x\right\}\right|-\sum_{1 \leq i<j \leq k}\left|\left\{0 \leq x<N:\left[n_{i}, n_{j}\right] \mid x\right\}\right|+\cdots\right. \\
& \left.\quad+(-1)^{k-1}\left|\left\{0 \leq x<N:\left[n_{1}, \ldots, n_{k}\right] \mid x\right\}\right|\right) \\
& \quad=\frac{1}{N}\left(\sum_{i=1}^{k} \frac{N}{n_{i}}-\sum_{1 \leq i<j \leq k} \frac{N}{\left[n_{i}, n_{j}\right]}+\cdots+(-1)^{k-1} \frac{N}{\left[n_{1}, \ldots, n_{k}\right]}\right)
\end{aligned}
$$

$$
\begin{aligned}
&= \frac{1}{\prod_{p \in P}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right)}\left(\sum_{i=1}^{k} \frac{1}{n_{i}} \sum_{d \in \bar{P}} \frac{1}{d}-\sum_{1 \leq i<j \leq k} \frac{1}{\left[n_{i}, n_{j}\right]} \sum_{d \in \bar{P}} \frac{1}{d}+\cdots\right. \\
&\left.+(-1)^{k-1} \frac{1}{\left[n_{1}, \ldots, n_{k}\right]} \sum_{d \in \bar{P}} \frac{1}{d}\right) \\
&= \prod_{p \in P}\left(1-\frac{1}{p}\right) \lim _{m \rightarrow \infty}\left(\sum_{i=1}^{k} \frac{1}{n_{i}} \sum_{d \left\lvert\, \frac{N_{m}}{n_{i}}\right.} \frac{1}{d}-\sum_{1 \leq i<j \leq k} \frac{1}{\left[n_{i}, n_{j}\right]} \sum_{d \left\lvert\, \frac{N_{m}}{\left[n_{i}, n_{j}\right]}\right.} \frac{1}{d}+\cdots\right. \\
&+(-1)^{k-1} \frac{1}{\left[n_{1}, \ldots, n_{k}\right]} \sum_{\left.\left.d\right|_{\frac{N_{m}}{\left[n_{1}, \ldots, n_{k}\right]}} \frac{1}{d}\right)}^{=} \\
&\left(\prod_{p \in P} \frac{p-1}{p}\right) \lim _{m \rightarrow \infty}\left(\sum_{i=1}^{k} \sum_{n_{i}|n| N_{m}} \frac{1}{n}-\sum_{1 \leq i<j \leq k} \sum_{\left[n_{i}, n_{j}\right]|n| N_{m}} \frac{1}{n}+\cdots\right. \\
&\left.+(-1)^{k-1} \sum_{\left[n_{1}, \ldots, n_{k}\right]|n| N_{m}} \frac{1}{n}\right)
\end{aligned}
$$

($d|n| m$ stands for " $d \mid n$ and $n \mid m$ ")

$$
=\left(\prod_{p \in P} \frac{p-1}{p}\right) \lim _{m \rightarrow \infty} \sum_{\substack{n_{i}|n| N_{m} \\
\text { for some } i}} \frac{1}{n}=\left(\prod_{p \in P} \frac{p-1}{p}\right) \sum_{\substack { n \in \begin{subarray}{c}{k \\
i=1{ n \in \begin{subarray} { c } { k \\
i = 1 } } \\
{0\left(n_{i}\right) \cap \bar{P}}\end{subarray}} \frac{1}{n}
$$

This concludes the proof.
Proof of Theorem. Since T is a covering period (1), we have

$$
\begin{aligned}
\bigcup_{i=1}^{k} a_{i}\left(n_{i}\right) & =\left\{z+T y: z \in \bigcup_{i=1}^{k} a_{i}\left(n_{i}\right) \text { and } y \in \mathbb{Z}\right\} \\
& =\bigcup_{i=1}^{k}\left\{a_{i}+n_{i} x+T y: x, y \in \mathbb{Z}\right\}=\bigcup_{i=1}^{k} a_{i}\left(\left(n_{i}, T\right)\right)
\end{aligned}
$$

Let S denote the set $\left\{n_{1}, \ldots, n_{k}\right\}$ and P be the set of all prime divisors of $\left[n_{1}, \ldots, n_{k}\right]$. Since

$$
\frac{\left(n_{1}, \ldots, n_{k}\right)}{\left(T, n_{1}, \ldots, n_{k}\right)}=\frac{\left[\left(n_{1}, \ldots, n_{k}\right), T\right]}{T} \quad \text { and } \quad \frac{n_{i}}{\left(T, n_{i}\right)}=\frac{\left[n_{i}, T\right]}{T}
$$

we have

$$
\left.\frac{\left(n_{1}, \ldots, n_{k}\right)}{\left(T, n_{1}, \ldots, n_{k}\right)} \right\rvert\, \frac{n_{i}}{\left(T, n_{i}\right)}
$$

and hence

$$
\frac{n_{i}}{\left(n_{1}, \ldots, n_{k}\right) /\left(T, n_{1}, \ldots, n_{k}\right)} \in 0\left(\left(T, n_{i}\right)\right) \cap \bar{P} .
$$

Obviously, $\frac{\left[n_{1}, \ldots, n_{k}\right]}{\left(n_{1}, \ldots, n_{k}\right)}$ can be written in the form $\prod_{p \in P} p^{\delta_{p}}$ where $\delta_{p} \geq 0$. And it is clear that

$$
\left|\operatorname{ord}_{p} n_{i}-\operatorname{ord}_{p} n_{j}\right| \leq \operatorname{ord}_{p}\left[n_{1}, \ldots, n_{k}\right]-\operatorname{ord}_{p}\left(n_{1}, \ldots, n_{k}\right)=\delta_{p}
$$

(We use $\operatorname{ord}_{p} n$ to denote the greatest integer α such that p^{α} divides n.) So, if $n, n^{\prime} \in S$ and

$$
n \prod_{p \in P} p^{k_{p}\left(1+\delta_{p}\right)}=n^{\prime} \prod_{p \in P} p^{l_{p}\left(1+\delta_{p}\right)}
$$

then $k_{p}=l_{p}$ for all $p \in P$ and hence $n=n^{\prime}$.
Let $M=\max _{n \in \mathbb{Z}^{+}}\left|\left\{1 \leq i \leq k: n_{i}=n\right\}\right|$. From Lemmas 1,2 and the above, we have

$$
\begin{aligned}
\sum_{i=1}^{k} \frac{1}{n_{i}} & =\sum_{i=1}^{k} d\left(a_{i}\left(n_{i}\right)\right) \geq d\left(\bigcup_{i=1}^{k} a_{i}\left(n_{i}\right)\right)=d\left(\bigcup_{i=1}^{k} a_{i}\left(\left(n_{i}, T\right)\right)\right) \\
\geq & d\left(\bigcup_{i=1}^{k} 0\left(\left(n_{i}, T\right)\right)\right)=\left(\prod_{p \in P} \frac{p-1}{p}\right)_{m \in{ }_{i=1}^{k} 0\left(\left(n_{i}, T\right)\right) \cap \bar{P}}^{m} \\
\geq & \left(\prod_{p \in P} \frac{p-1}{p}\right) \sum_{n \in S}\left(\frac{1}{\left(n_{1}, \ldots, n_{k}\right) /\left(T, n_{1}, \ldots, n_{k}\right)}\right)^{-1} \\
& \cdot \prod_{p \in P}\left(1+\frac{1}{p^{1+\delta_{p}}}+\frac{1}{\left.p^{2\left(1+\delta_{p}\right)}+\cdots\right)}\right. \\
= & \frac{\left(n_{1}, \ldots, n_{k}\right)}{\left(T, n_{1}, \ldots, n_{k}\right)}\left(\prod_{p \in P} \frac{p-1}{p} \cdot \frac{1}{1-\frac{1}{p^{1+\delta_{p}}}}\right) \sum_{n \in S} \frac{1}{n} \\
= & \frac{\left(n_{1}, \ldots, n_{k}\right)}{\left(T, n_{1}, \ldots, n_{k}\right)}\left(\frac{1}{M} \prod_{p \in P} \frac{p^{\delta_{p}}}{1+p+\cdots+p^{\delta_{p}}}\right) \sum_{n \in S} \frac{M}{n} \\
\geq & \frac{1}{M} \cdot \frac{\left(n_{1}, \ldots, n_{k}\right)}{\left(T, n_{1}, \ldots, n_{k}\right)} \prod_{p \in P} \frac{1}{1+\frac{1}{p}+\cdots+\frac{1}{p^{\delta_{p}}}} \sum_{i=1}^{k} \frac{1}{n_{i}} .
\end{aligned}
$$

Therefore

$$
\frac{\left(n_{1}, \ldots, n_{k}\right)}{\left(T, n_{1}, \ldots, n_{k}\right)} \leq M \prod_{p \in P}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{\delta_{p}}}\right)=M \sum_{\substack{\left[\frac{\left[n 1_{1}, \ldots, n_{k}\right]}{\left(n_{1}, \ldots, n_{k}\right)}\right.}} \frac{1}{d},
$$

which is the desired result.
Remark 1. By checking the proof we see that (2) is implied by

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{n_{i}} \geq d\left(\bigcup_{i=1}^{k} 0\left(\left(n_{i}, T\right)\right)\right) \tag{3}
\end{equation*}
$$

which holds if T is a covering period of (1).
We now say a few words about the theorem. If $\left(n_{1}, \ldots, n_{k}\right) \mid T$ then (2) holds trivially. Note that (2) can be written in the form

$$
\frac{1}{\left(T, n_{1}, \ldots, n_{k}\right)} \leq \max _{n \in \mathbb{Z}^{+}}\left|\left\{1 \leq i \leq k: n_{i}=n\right\}\right| \sum_{\left(n_{1}, \ldots, n_{k}\right)|d|\left[n_{1}, \ldots, n_{k}\right]} \frac{1}{d}
$$

which is implied by

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{n_{i}} \geq \frac{1}{\left(T, n_{1}, \ldots, n_{k}\right)} \tag{4}
\end{equation*}
$$

If $T \mid\left(n_{1}, \ldots, n_{k}\right)$ then (4) holds, for

$$
\sum_{i=1}^{k} \frac{1}{n_{i}} \geq d\left(\bigcup_{i=1}^{k} a_{i}\left(n_{i}\right)\right) \geq d\left(a_{1}(T)\right)=\frac{1}{\left(T, n_{1}, \ldots, n_{k}\right)}
$$

However (4) fails to hold in general, for example, the smallest positive covering period of $\{0(2), 0(3)\}$ is $T=6$, but $\frac{1}{2}+\frac{1}{3} \nsupseteq \frac{1}{(6,2,3)}$.

Corollary. Let n_{0} be the smallest positive covering period of (1), and $\left[n_{1}, \ldots\right.$, n_{k}] have the prime factorization

$$
\left[n_{1}, \ldots, n_{k}\right]=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}, \quad p_{1}<p_{2}<\cdots<p_{r}
$$

Suppose that $p_{t}^{\alpha} \nmid n_{0}$ and $p_{t}^{\alpha} \mid n_{s}$ for some $s=1, \ldots, k$, and that $a_{i}\left(n_{i}\right) \cap a_{j}\left(n_{j}\right)=\emptyset$ whenever $p_{t}^{\alpha} \mid n_{i}$ and $p_{t}^{\alpha} \quad \nmid n_{j}(1 \leq i, j \leq k)$. Then we have

$$
\begin{equation*}
p_{t}^{\delta_{t}(\alpha)} \leq \varepsilon_{t}(\alpha) \max _{\substack{1 \leq s \leq k \\ p_{t}^{\alpha} \mid n_{s}}}\left|\left\{1 \leq i \leq k: n_{i}=n_{s}\right\}\right| \prod_{i=1}^{r} \frac{p_{i}}{p_{i}-1} \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
\delta_{t}(\alpha)=\min \left\{\delta \geq 1: p_{t}^{\alpha-\delta} \| n_{i} \quad \text { for some } \quad 0 \leq i \leq k\right\} \\
\left(p^{\alpha} \| n \text { stands for " } p^{\alpha} \mid n \text { and } p^{\alpha+1} \nmid n " .\right)
\end{gathered}
$$

and

$$
\varepsilon_{t}(\alpha)=\left(1-\frac{1}{p_{t}^{\alpha_{t}-\alpha+1}}\right) \prod_{\substack{i=1 \\ i \neq t}}^{r}\left(1-\frac{1}{p_{i}^{\alpha_{i}+1}}\right)
$$

Proof. Let $I=\left\{1 \leq i \leq k: p_{t}^{\alpha} \mid n_{i}\right\}$ and $J=\{0,1, \ldots, k\}-I$. Obviously $I \neq \emptyset$, $0 \in J$ and $p_{t}^{\alpha} \nmid n_{j}$ for every $j \in J$. If $i \in I$ and $j \in J-\{0\}$ then $a_{i}\left(n_{i}\right) \cap a_{j}\left(n_{j}\right)=\emptyset$. From this it follows that

$$
x \in \bigcup_{i \in I} a_{i}\left(n_{i}\right) \text { implies } x \pm\left[n_{j}\right]_{j \in J} \in \bigcup_{i=1}^{k} a_{i}\left(n_{i}\right)-\bigcup_{j \in J-\{0\}} a_{j}\left(n_{j}\right)=\bigcup_{i \in I} a_{i}\left(n_{i}\right) .
$$

Hence the smallest positive covering period of $\left\{a_{i}\left(n_{i}\right)\right\}_{i \in I}$ must be a divisor of $\left[n_{j}\right]_{j \in J}$.

Applying the theorem we get

$$
\begin{equation*}
\frac{\left(n_{i}\right)_{i \in I}}{\left(\left(n_{i}\right)_{i \in I},\left[n_{j}\right]_{j \in J}\right)} \leq \max _{s \in I}\left|\left\{1 \leq i \leq k: n_{i}=n_{s}\right\}\right| \sum_{\substack{d \left\lvert\, \frac{\left[n_{i}\right]_{i \in I}}{\left(n_{i}\right)_{i \in I}}\right.}} \frac{1}{d} \tag{6}
\end{equation*}
$$

(Notice that $i \in I$ if $1 \leq i \leq k$ and $n_{i}=n_{s}$ for some $s \in I$.) Since $p_{t}^{\alpha} \mid\left(n_{i}\right)_{i \in I}$ we have

$$
\frac{\left[\left[n_{j}\right]_{j \in J}, p_{t}^{\alpha}\right]}{\left[n_{j}\right]_{j \in J}} \left\lvert\, \frac{\left[\left[n_{j}\right]_{j \in J},\left(n_{i}\right)_{i \in I}\right]}{\left[n_{j}\right]_{j \in J}}\right.
$$

and thus the left side of (6) is a multiple of $p_{t}^{\alpha} /\left(p_{t}^{\alpha},\left[n_{j}\right]_{j \in J}\right)=p_{t}^{\delta_{t}(\alpha)}$. As for the right side of (6), we note that

$$
\begin{aligned}
\sum_{\substack{d \left\lvert\, \frac{\left[n_{i}\right]_{i \in I}}{\left(n_{i}\right)_{i \in I}}\right.}} \frac{1}{d} & \leq \sum_{\substack{\left[\mid n_{i}\right]_{i \in I} \\
p_{t}^{*}}} \frac{1}{d} \leq \sum_{d_{d \mid p_{t}^{\alpha}-\alpha}^{\prod_{i=1}^{r}} \begin{array}{c}
p_{i}^{\alpha_{i}} \\
i \neq t
\end{array}} \frac{1}{d} \\
& =\left(\left(1+\frac{1}{p_{t}}+\frac{1}{p_{t}^{2}}+\cdots\right)-\frac{1}{p_{t}^{\alpha_{t}-\alpha+1}}\left(1+\frac{1}{p_{t}}+\frac{1}{p_{t}^{2}}+\cdots\right)\right) \\
& \cdot \prod_{\substack{i=1 \\
i \neq t}}^{r}\left(\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{2}}+\cdots\right)-\frac{1}{p_{i}^{\alpha_{i}+1}}\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{2}}+\cdots\right)\right) \\
& =\varepsilon_{t}(\alpha) \prod_{i=1}^{r} \frac{p_{i}}{p_{i}-1}
\end{aligned}
$$

Combining the above we obtain (5) from (6).
Remark 2. $1 \leq \delta_{t}(\alpha) \leq \alpha, 0<\varepsilon_{t}(\alpha)<1$.

Suppose that (1) is a disjoint system (i.e. $a_{1}\left(n_{1}\right), \ldots, a_{k}\left(n_{k}\right)$ are pairwise disjoint). If $p_{r}^{\alpha_{r}}$ does not divide (the smallest positive covering period) n_{0}, then by the corollary we have

$$
\begin{equation*}
p_{r}^{\delta_{r}\left(\alpha_{r}\right)} \leq \max _{\substack{1 \leq s \leq k \\ p_{r}^{\alpha_{r}} \| n_{s}}}\left|\left\{1 \leq i \leq k: n_{i}=n_{s}\right\}\right| \prod_{i=1}^{r-1} \frac{p_{i}}{p_{i}-1} \tag{7}
\end{equation*}
$$

(Note that $\varepsilon_{r}\left(\alpha_{r}\right) \leq \frac{p_{r}-1}{p_{r}}$.) This is the first result announced in Sun [7].
Assume that each modulus of the disjoint system (1) occurs at most M times (i.e.
$\left|\left\{1 \leq i \leq k: n_{i}=n_{s}\right\}\right| \leq M$ for every $\left.s=1, \ldots, k\right)$. By Merten's theorem (cf.[5]), we have

$$
\frac{1}{x} \prod_{\substack{p<x \\ p \text { prime }}} \frac{p}{p-1} \sim e^{\gamma} \frac{\ln x}{x} \quad \text { where } \gamma \text { is the Euler constant }
$$

and thus

$$
\frac{1}{x} \prod_{\substack{p<x \\ p \text { prime }}} \frac{p}{p-1}<\frac{1}{M} \quad \text { for sufficiently large } x
$$

Let p^{*} be the smallest prime such that

$$
p^{*}>M \prod_{\substack{p<p^{*} \\ p \text { prime }}} \frac{p}{p-1}
$$

If $p_{r}^{\alpha_{r}} \nmid n_{0}$, in view of (7), we have

$$
p_{r} \leq M \prod_{i=1}^{r-1} \frac{p_{i}}{p_{i}-1} \leq M \prod_{\substack{p<p_{r} \\ p \text { prime }}} \frac{p}{p-1}
$$

and hence p^{*} is an upper bound of prime divisors of n_{1}, \ldots, n_{k}. If $p_{r} \geq p^{*}$ we must have $p_{r}^{\alpha_{r}} \| n_{0}$.

Now let's suppose the disjoint system (1) is also a covering, that is to say, (1) is a disjoint covering system (i.e. $a_{i}\left(n_{i}\right), 1 \leq i \leq k$, form a partition of \mathbb{Z}). By the corollary,

$$
p_{t} \leq p_{t}^{\delta_{t}(\alpha)}<M \prod_{i=1}^{r} \frac{p_{i}}{p_{i}-1} \quad \text { for all } \quad t=1, \ldots, r \text { and } \alpha=1, \ldots, \alpha_{t}
$$

(Notice that $n_{0}=1$ and $\varepsilon_{t}(\alpha)<1$.) This establishes Burshtein's conjecture ([4]). (The original conjecture is that $p_{r} \leq M \prod_{i=1}^{r} \frac{p_{i}}{p_{i}-1}$.)
Let $1 \leq t \leq r$,

$$
\delta_{t}=\delta_{t}\left(\alpha_{t}\right)=\min \left\{\delta \geq 1: p_{t}^{\alpha_{t}-\delta} \| n_{i} \quad \text { for some } \quad 0 \leq i \leq k\right\}
$$

and

$$
M_{t}= \begin{cases}1+\left[p_{t}^{\delta_{t}} \prod_{\substack{i=1 \\ i \neq t}}^{r} \frac{p_{i}-1}{p_{i}}\right] & \text { if } r>1 \\ p_{t}^{\delta_{t}} & \text { if } r=1\end{cases}
$$

($[\cdot]$ is the greatest integer function.) In [3] Berger, Felzenbaum and Fraenkel showed that

$$
M \geq 1+\left[\left(p_{t}-1\right) \prod_{\substack{i=1 \\ i \neq t}}^{r} \frac{p_{i}-1}{p_{i}}\right], \quad \text { i.e. } \quad p_{t} \prod_{i=1}^{r} \frac{p_{i}-1}{p_{i}}<M
$$

In [6] R.J.Simpson proved that

$$
M \geq p_{r} \prod_{i=1}^{r-1} \frac{p_{i}-1}{p_{i}},
$$

and then he derived that there exists a number $B(M)$ such that, in any disjoint covering system whose moduli are repeated at most M times, the least modulus is less that $B(M)$. It is obvious that

$$
M_{r} \geq p_{r} \prod_{i=1}^{r-1} \frac{p_{i}-1}{p_{i}} .
$$

Given $1 \leq t \leq r$, (since $\varepsilon_{t}\left(\alpha_{t}\right)<\frac{p_{t}-1}{p_{t}}$ if $r>1$, and $\varepsilon_{t}\left(\alpha_{t}\right)=\frac{p_{t}-1}{p_{t}}$ if $r=1$) we have from the corollary $M \geq M_{t}$, moreover there exists a modulus divided by $p_{t}^{\alpha_{t}}$ and not by $p_{t}^{\alpha_{t}+1}$ which is repeated at least M_{t} times. If $r \geq 2$ then

$$
M_{r}>p_{r} \prod_{i=1}^{r-1} \frac{p_{i}-1}{p_{i}} \geq p_{r-1} \prod_{i=1}^{r-2} \frac{p_{i}-1}{p_{i}} \geq \cdots \geq p_{2} \frac{p_{1}-1}{p_{1}}
$$

and thus

$$
M \geq\left[p_{2}\left(1-p_{1}^{-1}\right)\right]+1
$$

The last inequality was first proved by Berger, Felzenbaum and Fraenkel [1]. There something was said about which modulus must occur at least $\left[p_{2}\left(1-p_{1}^{-1}\right)\right]+1$ times.

Acknowledgement. I am grateful to Prof. Štefan Znám for his encouraging me to publish this paper.

References

1. Berger M. A., Felzenbaun A. and Fraenkel A. S., Improvements to two results concerning systems of residue sets, Ars. Combin. 20 (1985), 69-82.
2. \qquad , The Herzog-Schonheim conjecture for finite nilpotent groups, Canad. Math. Bull. 29 (1986), 329-333.
3. 23-46.
4. Burshtein N., On natural exactly covering systems of congruences having moduli occurring at most M times, Discrete Math. 14 (1976), 205-214.
5. Hardy G. H. and Wright E. M., An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1981.
6. Simpson R. J., Exact coverings of the integers by arithmetic progressions, Discrete Math. 59 (1986), 181-190.
7. Sun Z. W., Several results on systems of residue classes, Adv. in Math. (Beijing), No. 218 (1989), 251-252.
8. Znám S., On covering sets of residue classes, in: P. Turán, ed., Topics in Number Theory, Colloq. Math., Societatis, János Bolyai Vol. 13, Debrecen, 1974, (North-Holland, 1976), 443-449.
Z. W. Sun, Department of Mathematics, Nanjing University, Nanjing 210008, People's Republic of China

[^0]: Received November 10, 1989; revised June 21, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11825; Secondary 11A07, 11B05.

