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A THEOREM CONCERNING

SYSTEMS OF RESIDUE CLASSES

Z. W. SUN

We first introduce some notation. As usual (n1, . . . , nk) (resp. [n1, . . . , nk])
stands for the greatest common divisor (resp. least common multiple) of n1, . . . , nk.
By system we mean a multi-set whose elements are unordered but may occur re-
peatedly. Following Š. Znám [8] we use a(n) to denote the residue class

{ x ∈ Z : x ≡ a (mod n) } .

For a system

(1) A = {ai(ni)}
k
i=1

of residue classes, the ni are called its moduli.

Definition. An integer T is said to be a covering period of (1) if it is a period

of the characteristic function of the set
⋃k
i=1 ai(ni) .

It is clear that [n1, . . . , nk] is a covering period of (1), and that any covering
period is a multiple of the smallest positive one.

For any set S of integers we use d(S) to denote the asymptotic density

lim
N→∞

1

N
|{ 0 ≤ x < N : x ∈ S }| .

(|A| is the cardinality of A.) The limit obviously exists if S is a union of finitely
many residue classes. In fact

d

(
k⋃
i=1

ai(ni)

)
=

1

N
|{ 0 ≤ x < N : x ∈ ai(ni) for some i }|

where N is any positive common multiple of n1, . . . , nk.

Our main result is
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Theorem. Let T be the smallest positive covering period of (1). Then we have

(2)
(n1, . . . , nk)

(T, n1, . . . , nk)
≤ max
n∈Z+

|{ 1 ≤ i ≤ k : ni = n }|
∑

d|
[n1,... ,nk]

(n1,... ,nk)

1

d
.

To prove it we need two lemmas.

Lemma 1. d

(
k⋃
i=1

ai(ni)

)
≥ d

(
k⋃
i=1

0(ni)

)
.

This is Lemma 2.3 of R.J.Simpson [6]. We can also prove it by using Theorem
1 of [2].

Lemma 2. Let n1, . . . , nk ∈ Z+, and let P be a finite set of primes such that
all the ni are contained in

P = {n ∈ Z+ : all prime divisors of n belong to P } .

Then

d

(
k⋃
i=1

0(ni)

)
=

∏
p∈P

p− 1

p

 ∑
n∈P∩

k
∪
i=1

0(ni)

1

n
.

Proof. We note first that

∑
n∈P∩

k
∪
i=1

0(ni)

1

n
≤
∑
n∈P

1

n
=
∏
p∈P

(
1 +

1

p
+

1

p2
+ · · ·

)
=
∏
p∈P

p

p− 1
.

Let N = [n1, . . . , nk] and Nm =
( ∏
p∈P

p
)m

. For sufficiently large m we have

N |Nm. From the inclusion-exclusion principle it follows that

d

(
k⋃
i=1

0(ni)

)
=

1

N

∣∣∣∣∣
{

0 ≤ x < N : x ∈
k⋃
i=1

0(ni)

}∣∣∣∣∣
=

1

N

(
k∑
i=1

∣∣∣{ 0 ≤ x < N : ni|x
}∣∣∣− ∑

1≤i<j≤k

∣∣∣{ 0 ≤ x < N : [ni, nj]|x
}∣∣∣+ · · ·

+ (−1)k−1
∣∣∣{ 0 ≤ x < N : [n1, . . . , nk]|x

}∣∣∣)

=
1

N

 k∑
i=1

N

ni
−

∑
1≤i<j≤k

N

[ni, nj ]
+ · · ·+ (−1)k−1 N

[n1, . . . , nk]
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=
1∏

p∈P

(
1 + 1

p + 1
p2 + · · ·

)( k∑
i=1

1

ni

∑
d∈P

1

d
−

∑
1≤i<j≤k

1

[ni, nj]

∑
d∈P

1

d
+ · · ·

+ (−1)k−1 1

[n1, . . . , nk]

∑
d∈P

1

d

)

=
∏
p∈P

(
1−

1

p

)
lim
m→∞

(
k∑
i=1

1

ni

∑
d|Nmni

1

d
−

∑
1≤i<j≤k

1

[ni, nj]

∑
d| Nm

[ni,nj ]

1

d
+ · · ·

+ (−1)k−1 1

[n1, . . . , nk]

∑
d| Nm

[n1,... ,nk]

1

d

)

=

∏
p∈P

p− 1

p

 lim
m→∞

(
k∑
i=1

∑
ni|n|Nm

1

n
−

∑
1≤i<j≤k

∑
[ni,nj ]|n|Nm

1

n
+ · · ·

+ (−1)k−1
∑

[n1,... ,nk]|n|Nm

1

n

)

( d|n|m stands for “d|n and n|m ”)

=

∏
p∈P

p− 1

p

 lim
m→∞

∑
ni|n|Nm
for some i

1

n
=

∏
p∈P

p− 1

p

 ∑
n∈

k
∪
i=1

0(ni)∩P

1

n
.

This concludes the proof. �
Proof of Theorem. Since T is a covering period (1), we have

k⋃
i=1

ai(ni) =

{
z + Ty : z ∈

k⋃
i=1

ai(ni) and y ∈ Z

}

=
k⋃
i=1

{ ai + nix+ Ty : x, y ∈ Z } =
k⋃
i=1

ai((ni, T )) .

Let S denote the set {n1, . . . , nk} and P be the set of all prime divisors of
[n1, . . . , nk]. Since

(n1, . . . , nk)

(T, n1, . . . , nk)
=

[(n1, . . . , nk), T ]

T
and

ni

(T, ni)
=

[ni, T ]

T
,

we have
(n1, . . . , nk)

(T, n1, . . . , nk)

∣∣∣∣∣ ni

(T, ni)
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and hence
ni

(n1, . . . , nk)/(T, n1, . . . , nk)
∈ 0((T, ni)) ∩ P .

Obviously, [n1,... ,nk]
(n1,... ,nk) can be written in the form

∏
p∈P

pδp where δp ≥ 0. And it

is clear that

|ordpni − ordpnj | ≤ ordp[n1, . . . , nk]− ordp(n1, . . . , nk) = δp .

(We use ordpn to denote the greatest integer α such that pα divides n.) So, if
n, n′ ∈ S and

n
∏
p∈P

pkp(1+δp) = n′
∏
p∈P

plp(1+δp) ,

then kp = lp for all p ∈ P and hence n = n′.
Let M = max

n∈Z+
|{ 1 ≤ i ≤ k : ni = n }|. From Lemmas 1,2 and the above, we

have

k∑
i=1

1

ni
=

k∑
i=1

d(ai(ni)) ≥ d

(
k⋃
i=1

ai(ni)

)
= d

(
k⋃
i=1

ai((ni, T ))

)

≥ d

(
k⋃
i=1

0((ni, T ))

)
=

∏
p∈P

p− 1

p

 ∑
m∈

k
∪
i=1

0((ni,T ))∩P

1

m

≥

∏
p∈P

p− 1

p

∑
n∈S

(
n

(n1, . . . , nk)/(T, n1, . . . , nk)

)−1

·
∏
p∈P

(
1 +

1

p1+δp
+

1

p2(1+δp)
+ · · ·

)

=
(n1, . . . , nk)

(T, n1, . . . , nk)

∏
p∈P

p− 1

p
·

1

1− 1
p1+δp

∑
n∈S

1

n

=
(n1, . . . , nk)

(T, n1, . . . , nk)

 1

M

∏
p∈P

pδp

1 + p+ · · ·+ pδp

∑
n∈S

M

n

≥
1

M
·

(n1, . . . , nk)

(T, n1, . . . , nk)

∏
p∈P

1

1 + 1
p + · · ·+ 1

pδp

k∑
i=1

1

ni
.

Therefore

(n1, . . . , nk)

(T, n1, . . . , nk)
≤M

∏
p∈P

(
1 +

1

p
+ · · ·+

1

pδp

)
= M

∑
d|

[n1,... ,nk]

(n1,... ,nk)

1

d
,
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which is the desired result. �
Remark 1. By checking the proof we see that (2) is implied by

(3)
k∑
i=1

1

ni
≥ d

(
k⋃
i=1

0((ni, T ))

)

which holds if T is a covering period of (1).
We now say a few words about the theorem. If (n1, . . . , nk)|T then (2) holds

trivially. Note that (2) can be written in the form

(2′)
1

(T, n1, . . . , nk)
≤ max
n∈Z+

|{ 1 ≤ i ≤ k : ni = n }|
∑

(n1,... ,nk)|d|[n1,... ,nk]

1

d

which is implied by

(4)
k∑
i=1

1

ni
≥

1

(T, n1, . . . , nk)
.

If T |(n1, . . . , nk) then (4) holds, for

k∑
i=1

1

ni
≥ d

(
k⋃
i=1

ai(ni)

)
≥ d(a1(T )) =

1

(T, n1, . . . , nk)
.

However (4) fails to hold in general, for example, the smallest positive covering
period of {0(2), 0(3)} is T = 6, but 1

2 + 1
3 6≥

1
(6,2,3) .

Corollary. Let n0 be the smallest positive covering period of (1), and [n1, . . . ,
nk] have the prime factorization

[n1, . . . , nk] =
r∏
i=1

pαii , p1 < p2 < · · · < pr .

Suppose that pαt 6 |n0 and pαt |ns for some s = 1, . . . , k, and that ai(ni)∩aj(nj) = ∅
whenever pαt |ni and pαt 6 |nj (1 ≤ i, j ≤ k). Then we have

(5) p
δt(α)
t ≤ εt(α) max

1≤s≤k

pαt |ns

|{ 1 ≤ i ≤ k : ni = ns }|
r∏
i=1

pi

pi − 1
,

where

δt(α) = min{ δ ≥ 1: pα−δt ‖ni for some 0 ≤ i ≤ k }

(pα‖n stands for “pα|n and pα+1 6 |n” .)



128 Z. W. SUN

and

εt(α) =

(
1−

1

pαt−α+1
t

) r∏
i=1
i6=t

(
1−

1

pαi+1
i

)
.

Proof. Let I = { 1 ≤ i ≤ k : pαt |ni } and J = {0, 1, . . . , k}− I. Obviously I 6= ∅,
0 ∈ J and pαt 6 |nj for every j ∈ J . If i ∈ I and j ∈ J−{0} then ai(ni)∩aj(nj) = ∅.
From this it follows that

x ∈
⋃
i∈I

ai(ni) implies x± [nj ]j∈J ∈
k⋃
i=1

ai(ni)−
⋃

j∈J−{0}

aj(nj) =
⋃
i∈I

ai(ni) .

Hence the smallest positive covering period of {ai(ni)}i∈I must be a divisor of
[nj ]j∈J .

Applying the theorem we get

(6)
(ni)i∈I

((ni)i∈I , [nj]j∈J )
≤ max

s∈I
|{ 1 ≤ i ≤ k : ni = ns }|

∑
d|

[ni]i∈I
(ni)i∈I

1

d
.

(Notice that i ∈ I if 1 ≤ i ≤ k and ni = ns for some s ∈ I.) Since pαt |(ni)i∈I we
have [

[nj ]j∈J , p
α
t

]
[nj ]j∈J

∣∣∣∣∣
[
[nj ]j∈J , (ni)i∈I

]
[nj ]j∈J

and thus the left side of (6) is a multiple of pαt /(p
α
t , [nj ]j∈J ) = p

δt(α)
t . As for the

right side of (6), we note that

∑
d|

[ni]i∈I
(ni)i∈I

1

d
≤

∑
d|

[ni]i∈I
pα
t

1

d
≤

∑
d|p

αt−α
t

∏r
i=1
i6=t

p
αi
i

1

d

=

((
1 +

1

pt
+

1

p2
t

+ · · ·

)
−

1

pαt−α+1
t

(
1 +

1

pt
+

1

p2
t

+ · · ·

))
·
r∏
i=1
i6=t

((
1 +

1

pi
+

1

p2
i

+ · · ·

)
−

1

pαi+1
i

(
1 +

1

pi
+

1

p2
i

+ · · ·

))

= εt(α)
r∏
i=1

pi

pi − 1
.

Combining the above we obtain (5) from (6). �

Remark 2. 1 ≤ δt(α) ≤ α, 0 < εt(α) < 1.
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Suppose that (1) is a disjoint system (i.e. a1(n1), . . . , ak(nk) are pairwise dis-
joint). If pαrr does not divide (the smallest positive covering period) n0, then by
the corollary we have

(7) pδr(αr)
r ≤ max

1≤s≤k

pαrr ‖ns

|{ 1 ≤ i ≤ k : ni = ns }|
r−1∏
i=1

pi

pi − 1
.

(Note that εr(αr) ≤
pr−1
pr

.) This is the first result announced in Sun [7].

Assume that each modulus of the disjoint system (1) occurs at most M times
(i.e.
|{ 1 ≤ i ≤ k : ni = ns }| ≤ M for every s = 1, . . . , k). By Merten’s theorem
(cf.[5]), we have

1

x

∏
p<x

p prime

p

p− 1
∼ eγ

lnx

x
where γ is the Euler constant ,

and thus
1

x

∏
p<x

p prime

p

p− 1
<

1

M
for sufficiently large x .

Let p∗ be the smallest prime such that

p∗ > M
∏
p<p∗

p prime

p

p− 1
.

If pαrr 6 |n0, in view of (7), we have

pr ≤M
r−1∏
i=1

pi

pi − 1
≤M

∏
p<pr
p prime

p

p− 1
,

and hence p∗ is an upper bound of prime divisors of n1, . . . , nk. If pr ≥ p∗ we
must have pαrr ‖n0.

Now let’s suppose the disjoint system (1) is also a covering, that is to say, (1)
is a disjoint covering system (i.e. ai(ni), 1 ≤ i ≤ k, form a partition of Z). By the
corollary,

pt ≤ p
δt(α)
t < M

r∏
i=1

pi

pi − 1
for all t = 1, . . . , r and α = 1, . . . , αt .

(Notice that n0 = 1 and εt(α) < 1.) This establishes Burshtein’s conjecture ([4]).

(The original conjecture is that pr ≤M
r∏
i=1

pi
pi−1 .)

Let 1 ≤ t ≤ r,

δt = δt(αt) = min{ δ ≥ 1: pαt−δt ‖ni for some 0 ≤ i ≤ k }
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and

Mt =


1 +

pδtt r∏
i=1
i6=t

pi−1
pi

 if r > 1,

pδtt if r = 1.

([·] is the greatest integer function.) In [3] Berger, Felzenbaum and Fraenkel
showed that

M ≥ 1 +

(pt − 1)
r∏
i=1
i6=t

pi − 1

pi

 , i.e. pt

r∏
i=1

pi − 1

pi
< M .

In [6] R.J.Simpson proved that

M ≥ pr

r−1∏
i=1

pi − 1

pi
,

and then he derived that there exists a number B(M) such that, in any disjoint
covering system whose moduli are repeated at most M times, the least modulus
is less that B(M). It is obvious that

Mr ≥ pr

r−1∏
i=1

pi − 1

pi
.

Given 1 ≤ t ≤ r, (since εt(αt) <
pt−1
pt

if r > 1, and εt(αt) = pt−1
pt

if r = 1) we

have from the corollary M ≥Mt, moreover there exists a modulus divided by pαtt
and not by pαt+1

t which is repeated at least Mt times. If r ≥ 2 then

Mr > pr

r−1∏
i=1

pi − 1

pi
≥ pr−1

r−2∏
i=1

pi − 1

pi
≥ · · · ≥ p2

p1 − 1

p1

and thus

M ≥
[
p2(1− p−1

1 )
]

+ 1 .

The last inequality was first proved by Berger, Felzenbaum and Fraenkel [1]. There
something was said about which modulus must occur at least [p2(1 − p−1

1 )] + 1
times.
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