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A point in a finite projective plane PG(2, pn), may be denoted by the

symbol (xi, x2, x3), where the coordinates xi, x2, x3 are marks of a Galois field

of order pn, GF(pn). The symbol (0, 0, 0) is excluded, and if k is a non-zero

mark of the GF(pn), the symbols (xi, Xi, x3) and (kxh kx2, kx3) are to be

thought of as the same point. The totality of points whose coordinates satisfy

the equation uiXi+u2x2+u3x3 = 0, where ui, w2, u3 are marks of the GF(pn), not

all zero, is called a line. The plane then consists of p2n+pn+l = q points and q

lines; each line contains pn + \ points, j

A finite projective plane, PG(2, pn), defined in this way is Pascalian and

Desarguesian ; it exists for every prime p and positive integer », and there is

only one such PG(2, pn) for a given p and » (VB, p. 247, VY, p. 151).

Let Ao be a point of a given PG(2, pn), and let C be a collineation of the

points of the plane. (A collineation is a 1-1 transformation carrying points

into points and lines into lines.) Suppose C carries A o into A\, Ax into

A2, ■ ■ • , A *_i into A0; or, denoting the product C ■ C by C2, C■ C2 by C3, etc.,

we have C(^40) = A, C2C<4o) =A2, ■ ■ ■ , C.k(Ao) =Ao. If k is the smallest posi-

tive integer for which Ck(A0) =A0, we call k the period of C with respect to the

point Ao. If the period of a collineation C with respect to a point A o is

$ ( = p2n+pn + l), then the period of C with respect to any point in the plane

is q, and in this case we will call C simply a collineation of period q.

We prove in the first theorem that there is always at least one collineation

of period q, and from it we derive some results of interest in finite geometry

and number theory.

Let

(1) x3 — a3x2 — b3x — c3 = 0

be a primitive irreducible cubic belonging to a field GF(pn) which defines a

PG(2, pn). A root X of equation (1) can then be used as a generator of the

* Presented to the Society, October 27, 1934, under a different title; received by the editors

April 22, 1937.
t These definitions are taken directly from the paper by Veblen and Bussey, Finite projective

geometries, these Transactions, vol. 7 (1906), p. 244, referred to later as VB ; and from the textbook by

Veblen and Young, Projective Geometry, vol. 1, pp. 1-25, 201, referred to later as VY.
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non-zero elements of a GF(p3n) which contains the given field as a subfield.

By means of the equation we can express any power of X in terms of X2,

X, and 1 with coefficients in the GF(p"), that is,

(2) X< = a¿X2 + bi\ + d] i = 0, 1, • • • .

Conversely, any three marks, a, b, c, not all zero, of the GF(p") will uniquely

determine a power of X and therefore a non-zero mark of the GF(pZn). We call

&i, bi, Ci the coordinates of X".

Since X is a generator of the non-zero elements of the GF(p3n), the first

p3n — 1 powers of X are distinct and X°=Xp3n_1 = l. The powers of X in the

GF(pn) are

(3) X'«; j = 0, 1, ■ ••,/>"- 2;a = p2" + p» + 1.

Two non-zero marks, X" and X", of the GF(p3n) will be called similar if their

ratio is a mark of the GF(pn), that is, if u=v (mod q). If the coordinates

of a mark Xu are au, bu, cu, the coordinates of a similar mark will be kau, kbu,

kcu, since the coordinates of a mark in the GF(pn) axe 0, 0, k.

Let the q distinct points of the plane defined by the given field be called

(4) Ao,Ax, A2, ■ ■ ■ ,Aq_Xy

and suppose the notation so chosen that the coordinates of Au axe (au, bu, cu),

u = 0, 1, • • • , q — 1, where the a's, &'s,and c'sare given by (2). If k is any non-

zero element of the GF(pn), then (kau, kbu, kcu) also are the coordinates of Au.

The possible choices for the coordinates of the point Au then correspond to

the coordinates of all the marks

(5) X«+«, ¿«0, 1, ...,p*-2,

similar to the mark X". A point Au may then be identified with the class of

similar marks (5).

Two similar non-zero marks of the GF(p3n) axe linearly dependent with

respect to the GF(pn). Conversely, two non-zero linearly dependent marks of

the GF(p3n) axe similar. A point can then be considered as the totality of

(non-zero) marks of the GF(p3n) linearly dependent with respect to the

GF(pn) on a given non-zero mark of the GF(p"). In the same way, a line can

be considered as the totality of (non-zero) marks of the GF(p3n) linearly de-

pendent with respect to the GF(pn) on a given pair of linearly independent

marks of the GF(p3n). The plane is the totality of (non-zero) marks of the

GF(p3n) linearly dependent with respect to the GF(pn) on a given set of three

linearly independent marks of the GF(p3n). Any four marks of the GF(p3n)
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are linearly dependent with respect to the GF(pn) ; hence the plane exhausts

all the non-zero marks of the GF(p3n).

We now prove the following theorem :

The orem . There is always at least one collineation of period q ( = p2n + p" + i)

in the PG(2, pn).

Consider the transformation given by

yi = a3Xi + x2,

(6) y2 = 03*i + x3,

y 3 = c3xi,

which sends the point (xx, x2, x3) into the point (yi, y2, y3), a3, b3, c3 being the

coefficients in equation (1). A transformation of this type is a collineation,

indeed, a projective collineation (VB, p. 253). But from (2) we have

al+i = a3at + o,-,

(7) of+i = b3a{ + d, i =, 0, 1, • ■ • .

c,+i = c3ai,

Hence the transformation (6) sends the mark X" into the mark X"+1, and

therefore the collineation sends the point Au into the point Au+i, « = 0, 1, • • •,

ff —2. The point Aq_i is sent into the point Ao- The theorem is therefore

proved.

This theorem has several immediate and interesting consequences. The

points and lines of a PG(2, pn) can be exhibited as a rectangular array of q

columns and pn + \ rows; the elements of the array are the points, and the

points in a column are the points of a line (VY). By means of the theorem

we can show that the points and lines of the plane can be exhibited in a

regular array; that is, one in which each row is a cyclic permutation of the

first. For let the line containing the points A0 and Ai also contain the points

Ad2, Ad„ ■ ■ ■ , Adpn. We write d0 and ¿i for 0 and 1, respectively and for the

sake of brevity, we denote a point Au by its subscript u.

Consider the array

do       ¿o+l       ¿0 + 2      ••■      d0+iq-2)       d0+iq-l)

di       ¿i+l       di + 2     •••      ¿i + (q - 2)       ¿i + (q - 1)

(8) ¿2      ¿2+1      ¿2 + 2     •••      ¿2 + (q - 2)      ¿2 + (q - 1)

dpti      dpn + 1    ¿pn +2      ■••       dpn + (q — 2)      dpn + (q — 1).

If all these integers are reduced modulo q, so that each lies in the range
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0, 1, • • • , q — 1, each row will be a cyclic permutation of the first and each

row will represent the totality of points (4). The integers in the (¿+l)st

column are equal to the corresponding ones of the ith column increased by

unity. The collineation (6) will then carry the ith column into the (i+l)st

(and the last column into the first) hence, since the integers in the first column

represent the points of a line, the integers in any column will represent the

points of a line.

The first two columns of the array (8) cannot be identical, for then q, the

number of points in the plane, would equal pn + l. They must then represent

distinct lines and thus will have one and only one integer in common since

two lines intersect in just one point. This implies that the first column can

have only the one pair, do, dx, of consecutive integers, modulo q. For if du, dv is

another pair of consecutive integers, where l^dv=du+l (mod q), the first

two columns would have the integers dx and dv in common. Since the first col-

umn cannot have more than one pair of consecutive integers, modulo q, no

column can have more than one pair of consecutive integers, modulo q. It fol-

lows that no two columns of the array are identical. For if the (i+l)st and the

(/ + l)st were identical, we would have d0+i=du+j, dx+i=dv+j, dv^l, all

modulo q. By subtracting the first congruence from the second, we see that

du and d„ are consecutive. But this is impossible, hence the columns of the

array (8) must represent the q distinct lines of the plane. The array is, there-

fore, a regular array exhibiting the points and lines of the plane.

The regular array leads to an interesting result in the theory of numbers.

Consider those columns of the array (8) which contain the integer 0 = d0;

namely,

do — «o       do — dx      do — d2     ■ • •      do — dpn

dx — do      dx — ¿i       dx — d2     • • •      dx — dp»

(9) d2 — do       d2 — di       d2 — d2     • ■ •      d2 — dpn

dpti — do     dpn — di     apn — d2   * * •      dpn — dpn.

These columns represent the pencil of lines on the point A0. Hence in the

square array (9) of pn+1 rows and columns, the pn(pn+1) integers not on the

principal diagonal are all distinct, and therefore are congruent, modulo q,

to the integers 1, 2, • • • , p2n+pn in some order. The pn + l integers on the

principal diagonal are all zero. We have thus proved the following theorem:

Theorem. A sufficient condition that there exist m+1 integers,

(10) d0, di, • • • , dm,
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having the property that their m2+m differences di — d,-, i^j; i,j — 0,l,--,m,

are congruent, modulo m2+m+\, to the integers

(11) 1, 2, • • • ,m2 + m

in some order is that m be a power of a prime*

We will call a set of integers such as (10) having the property described in

the theorem, a perfect difference set of order m + \. If the integers (10) form a

perfect difference set, so will the integers ¿0+¿, ¿i+¿, • • • , dm+d, for any d.

Hence the integers in any column of the regular array (8) are a perfect differ-

ence set. Also, the integers in the set

(12) tdo, tdi, ■ ■ ■ ,tdm

will form a perfect difference set whenever / is relatively prime to m2 + m + \.

This is true since the integers t, 2t, 3t, ■ ■ ■ , (m2+m)t, when reduced modulo

m2+m+\, will be a rearrangement of the integers (11).

If (10) is a perfect difference set and k is any integer in the set (11), the

congruence dx — dy = k (mod m2+m+\) has a unique solution d- = du, dy = dv,

du, dv in (10). Consider now the set of integers

(13) a0, ai, ■ ■ ■ , am

defined by the congruences

ai m di+i — di (mod m2 + m + 1), i = 0, I, ■ ■ ■ , m.

(the subscript m+\ is to be replaced by the subscript 0). It follows from the

definition of the a's that if k = du — dv, then k = av + av+i+ ■ ■ ■ +a„+(u_„_i),

modulo m2+m + 1. That is, any integer k of (11) is congruent, modulo

m2+m + \, to a circular sum of the integers of (13), where by a circular

sum we mean a sum of consecutive integers of (13), considering am and a0

as consecutive. Since there are m2+m + \ such circular sums, including the

sum a0+ai+ • • • +am, which is congruent to 0, modulo m2+m + \, any in-

teger of the series

(14) 0, 1, 2, • • • , m2 + m

is congruent to one and only one circular sum of the integers of (13). The set

of integers (13) is therefore a perfect partition of m2+m+\ in the sense of

Kirkman.f It is to be noted that the order in which the integers of (13) are

* In connection with this theorem, see the proposed problem and discussion by O. Veblen,

F. H. Safford, and L. E. Dickson in the American Mathematical Monthly, vol. 13 (1906), pp. 46 and

215, and vol. 14 (1907), p. 107.
f Kirkman, On the perfect r-partitions of r2—r+l, Transactions of the Historical Society of

Lancashire and Cheshire, vol. 9 (1857), pp. 127-142. The r of Kirkman's paper is equal to m-\-\ here.

The problem of perfect partitions has been studied by a number of authors since Kirkman's time.
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written is important, the same integers in a different order will usually not

form a perfect partition.

If we start with the perfect partition (13), we can obtain in an obvious

way the perfect difference set (10). A perfect difference set can be developed

into an array such as (8). If the integers are now interpreted as points and

the columns as lines, it is an easy matter to verify that the array represents

the points and lines of a finite projective geometry. Whether m must be a

power of a prime, and whether, if it is, the plane is necessarily Pascaban and

Desarguesian, are still open questions.

Let do , dx , ■ ■ ■ , dm', be a perfect difference set. It will contain just one

pair of consecutive integers, modulo m2+m+l,for the congruence di —dy' =1

(mod m2+m + l) has a unique solution. Suppose that d„' —d„' =1; then the

set

do  — du , d\   — du , ■ • • , dm  — du.

will be a perfect difference set and will contain the integers 0 and 1. Suppose

also that each integer is reduced so that it lies in the range (14). We call such

a set a reduced perfect difference set. Any perfect difference set leads to a

unique reduced perfect difference set. Two reduced perfect difference sets

will be called identical if they contain the same integers. The order in which

these integers are written is, of course, immaterial. Two perfect difference sets

will be called equivalent if their reduced perfect difference sets are identical.

Two perfect partitions will be called equivalent if their corresponding perfect

difference sets are equivalent. If the integers (10) of a reduced perfect differ-

ence set are written in normal order, that is if di<di+x, the corresponding

perfect partition will be called normal. If two perfect difference sets or two

perfect partitions are equivalent, the corresponding normal perfect partitions

will be identical, not only with respect to the integers involved, but also with

respect to the order in which they are written. Thus, any two columns of the

array (8) will lead to identical normal perfect partitions, and conversely.

We now investigate the number of distinct perfect difference sets or,

what is the same thing, the number of distinct perfect partitions of a given

order. All known examples arise from a regular array exhibiting the points

and lines of a PG(2, pn) defined by means of a GF(pn). We limit ourselves to

to such perfect difference sets. The number m2+m + l is now q = p2n+p" + l.

First of all, the sets (10) and (12) are equivalent if / is a power of p. (Clearly,

any power of p is relatively prime to q.) To see this, let

Adt, Ad„ • • • , AdT„,

be  the points of the plane corresponding to  the integers (10), and let
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Xd°, \dl, ■ ■ ■ , \dp" be the marks of the GF(p3n) whose coordinates are the

same as those of the points. The marks X"*0, X'*, ■ - • , X'*" will then corre-

spond to the integers (12). If u, v, and w are any three integers of (10), then,

since Au, Av, and Aw axe collinear, there will exist three marks kx, k2, k3 of the

GF(pn) such that

(15) ¿iX" + k2\" + ks\w = 0.

Raising each side of (15) to the pth power, we get

(16) kxv\T>u + k^\pv + kJ'X'™ = 0.

(The other terms in the multinomial expansion will drop out because each

coefficient will be a multiple of p and p = 0 in the GF(pn).) Since kxp, k2p, k3"

axe in the GF(pn), equation (16) shows that the marks \pu, Xp", and Xp"" are

linearly dependent with respect to the GF(p"). Hence the points Apu, Apv,

and Apw axe collinear, and the perfect difference sets (10) and (12) are equiva-

lent when t = p. The same argument shows that (10) and (12) are equivalent

when t is equal to any power of p.

Secondly, it appears from all known examples, although a general proof

is still lacking, that (10) and (12) will be distinct if t is prime to q and is not

a power of p (mod q). However, if t — — 1, the sets will be distinct since in this

case the integers in the normal perfect partition corresponding to the perfect

difference set (12) will be the same as those in the normal perfect partition

corresponding to the perfect difference set (10), but in reverse order. Since a

perfect partition cannot contain two equal integers, a perfect partition is

necessarily distinct from its inverse; hence the set (10) will be distinct from

its inverse (12) for / = —1.

It also seems to be true that if (10) and

(17) d„',d,',- • • ,dn[

are any two perfect difference sets of the same order, there is a / for which

(12) and (17) are equivalent. If these statements are true, the number of dis-

tinct perfect difference sets (or the number of distinct perfect partitions) for

a given p" is equal to

4>(q)-,
3n

where <p(q) is the Euler function, the number of positive integers not greater

than and prime to q. This number is even, since each perfect difference set

can be paired with its inverse.

I append a partial list of the (reduced) perfect difference sets and their
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corresponding normal perfect partitions. I give a single set for each p"

remaining ones can easily be found by the methods given above.

the

r
*(?)

3«

perfect difference set perfect partition

2
2s

23

24

3
32

5
7

11

13

7
21
73

273

13

91

31
57

133

183

2
2
8

12

4
12

10
12

36

40

0   1   3
0    1   4    14    16
0   1    3    7    15   31    36   54   63
0    1   3    7    15   31   63   90   116

127    136    181    194    204    233
238   255

0    1
0    1

81
0 1 3 8 12 18
0 1 3 13 32 36 43 52
0 1 3 12 20 34 38 81 88

94 104 109
0 1 3 16 23 28 42 76 82

119 137 154 175

1    2 4
1    3 10   2 5
1    2 4   8 16   5    18   9    10
1    2 4   8 16   32    27   26    11

9 45    13 10   29   5    17    18

9

9 27    49    56    61    77

86

12 6 4
12 6 18    22

10

1    2 5 4   6    13
1    2 10    19   4   7   9   5
1    2 9 8   14   4   43   7   6

5 24
1   2 13 7   5   14   34   6   4

18 17 21    8

7    5    16   4

10

33

The preceding concepts are susceptible of immediate generalization. Let

(!') xk+1 — ak+i,ixk — ajt+1,2:*;*-1 — • • • — a*+i,*+i = 0

be a primitive irreducible (& + l)st degree equation belonging to a GF(pn). A

root X of the equation is a generator of the non-zero elements of a GF(pik+1)n).

By means of the equation, we can express any power of X in terms of X*,

X*"1, •••,!, that is,

(2') X{ = a<,iX* + a^X*-1 + + ailk k+l, i = 0, 1,

Conversely, any £ + 1 marks öi, a2, ■ ■ ■ , ak+i, not all zero, of the GF(pn)

will uniquely determine a power of X, and hence a non-zero mark of the

GF(p<-k+l)n). The k + \ marks will be called the coordinates of that power of X.

The GF(p(k+1)n) defines a ¿-dimensional finite projective geometry,

PG(k, pn). An Ä-dimensional space , h = 0, 1, ■ ■ • , k, is defined as the totality

of marks of the GF(p(k+1)") linearly dependent with respect to the included

GF(pn) on h + \ linearly independent marks of the GF(pi-k+1)n). A point is a

zero-space, a line is a 1-space, etc. Any h + \ linearly independent marks of

an Â-space will define the same ¿-space. These definitions are equivalent to

those in the paper by Veblen and Bussey (loc. cit.) if the coordinates of a

point are interpreted as the coordinates of any mark in a class of similar

marks.
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Let the sum phn+p<-h-v»+ ■ ■ ■ +pn+l be denoted by qh, h = 0, 1, • • • .

If the qk distinct points of the PG(k, pn) are denoted by the integers

(4') 0, 1, ••-,?*- 1,

the points, lines, planes, etc., of the geometry can be exhibited as a regular

array in the form of a ¿-dimensional rectangular matrix whose elements are

these integers. The integers in a properly chosen (k — 1)-dimensional face of

the matrix represent the points of a (k — 1) -space. The remaining (k — 1)-

spaces are the (k — 1)-dimensional layers parallel to this face. The integers

in these layers are obtained by successively adding l's to the integers of the

first face. The integers in a properly chosen (k — 2)-dimensional face of a

(k — l)-dimensional face or layer represent the points of a (k — 2)-dimensional

space, etc. The existence of this regular array follows from the existence of the

transformation

yx    = ai+i.ia;i + x2,

y2     = at+i,2Xi + x3,

(6') .

yk       —  öi+i.tXi +  Xjfc+i,

yk+x = ak+x,k+xxx.

This transformation sends an A-space into an Ä-space since it preserves linear

dependence. It sends the mark Xu into the mark X"+1. The regular array can

then be constructed.

The regular array yields the difference set of qk_x integers

(10') do, di, • ■ • , dit_,_i

having the property that their differences, d¿ —d3, íV/;¿,/ = 0, 1, ■ • • ,qk-X—l,

are congruent, modulo qk, to the integers

(11') 1, 2, ■•■ ,ç*- 1,

each integer of (11') being congruent to qk-2 of the differences. The difference

set (10') leads to a partition

(13') a0, ax, ■ ■ ■ , aai_!_i

having the property that each of the integers in (11') is congruent, modulo qk,

to exactly qk-2 circular sums of (13'). The sum of all the integers of (13') is

congruent to 0, modulo qk.

Brooklyn College,

Brooklyn, N. Y.
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