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Given different complex structures on a fixed compact differentiable manifold X 
the Torelli problem for X is whether these structures are distinguishable at the 
cohomology level, for example by the position of the subspace HOOf, f2 k) ~_ Hk(X, ~) 
consisting of classes containing a holomorphic differential k-form. Results of this 
type are classical for Riemann surfaces and complex tori and have been established 
more recently for various classes of higher dimensional manifolds. 

An infinitesimal analog of this problem has been systematically formulated by 
Griffiths in [2]. Namely, given Xs, s~ S a differentiably trivial family of compact 
K~ihler manifolds parametrized by S, then g = dimH°(X~, f2 k) is independent ofs and 
one obtains a map P : S~Grass  (g, N) assigning s~B°(Xs, f2 k) ~_ Hk(Xs, ¢~). Fixing 
s e S and letting X =X s, we recall that the differential Os,s ~ Op(s),6r~s~ is computed 
by composing the Kodaira-Spencer map Q : O~,s--,H~(X, 6)x) with the cup product 
mapping 

2 :Hi(X, O)~Hom(H°(X, 12*), Hi(X, f2*- ')). (1.1) 

(One has a natural identification of this Hom with a subspace of OGra~s. ) 
Assuming S is versal, so that Q is an isomorphism, one has a problem of local 

Torelli type to prove that 2 is injective under suitable hypotheses. In the sequel we 
assume k = n = dimX and employ the phrase "the local Torelli theorem holds" or 
"the n-forms give local moduli" to mean that (1.1) is injective. Clearly we must 
assume that H°(X, ~") is sufficiently rich, e.g. H°(X, l-2n):#0, in order to have any 
hope. In the case n=  1 it is in fact necessary and sufficient to assume that the 
canonical map X--* F(H°(X, O 1)) is an imbedding (by a classical and rather difficult 
theorem of Noether). Conjecturally when the canonical bundle ~ ]  is sufficiently 
ample, the local Torelli problem will have an affirmative answer. This conjecture 
has been verified in many special cases, cf. [2, 4, 5]. The investigations of Peters led 
him to discover a simple proof of 
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Theorem 1. Let X be a compact Kahler n.manifold ~ - ~ X  a line bundle such that 
LP®R=f2~ for k>O and assume 

1) the map f : X ~ IP s, given by H°(X, cp), is everywhere defined and dimf(X) = n ;  
2) H°(X, f2"- l ®~cf)=O ; 
3) given any small deformation Xs, se S, ®iX there exists f~ : X ~  IP N extendin9 f 
Then the position of H°(X, t2") ~ H"(X, (E) yields local re®dull for X, i.e. the map 

(1.1) is injective. 

One may conclude from this theorem the local Torelli results of [4, 5]. 

Corollary 1 (Theorem 5.4 in [4]). The local Torelli theorem holds for complete 
intersections X ~_ IP N once g2] is ample. 

Proof Taking &a = 6(1)/X, one has t2'~ = L,~ '®k by adjunction and k > 0 for ampleness. 
It suffices to verify 2 (see Theorem 1' below), which follows inductively from Bott's 
vanishing theorem, see Erratum to [4]. 

Corollary 2 (Theorems 3. t and 3.4, in [5]). The local Torelli theorem holds for cyclic 
branched covers V~IP N branched along a hypersurface of degree mn where m > 1" 
r e ( n - 1 ) - N - l > 0 ;  and if n = 2  then m4=3. Similarly the result holds for cyclic 
branched covers of  the Hirzebruch surfaces S, branched alon 9 a curve type (~, v) with 
# > r . v ,  v>3.  

Proof Let ~ be the pull back of  (9(1). The condition £2" = ~e k and k > 0 is equivalent 
to r e ( n - I ) - N - 1 > 0  (resp. follows from #>rv,  v>3). Conditions 1) and 3) are 
known to hold under the above assumptions (e.g. [5]). As to Condition 2): In 
the first case take k = m ( n - 1 ) - N - 1  and one can prove that H°(X, I2m-t(1)) 
=H°(X, Tx®(k+ 1)=0 by means of the exact sequences given in 1.8 of [5]. This 
boils down to another application of Bott's vanishing theorem. In the second case 
take k = 1 and H°(X, Tx®K 2) dualizes to H2(X, T x) which is zero due to 1.8 and 3.2 
of [5]. 

We remark that the theorem as it stands cannot be applied to yield the classic 
Noether's theorem--for  Le =K2~,X a curve, the Conditions 1) and 3) are satisfied 
but 2 requires He(X, 01) = 0 which is too strong. In attempting to weaken Condition 
2), Lieberman and Wilsker succeeded in significantly weakening Assumptions 1 and 
2 and eliminating 3: 

Theorem 1'. Let X be a compact Ki~hler n-manifold ~ ~ X  a line bundle such that 
5f®k=f2"X for k>O and assume 

1) No component of the base locus of H°(X, .Sf) has codimension one 
2) 2 o . -1  HKoz(H (X, f2 ®.~W')) = 0, for - k < i <- - 1. 
Then the n forms give local re®dull, i.e. (1.1) is injective. 

We will define the notion of  H2oz in § 2. We note for the moment that if 
H ° ( X , O ' - I ® ~ ) = O ,  then H°(X, KP-I®oL, el)=O for i < t .  Indeed fixing 
04:ssH°(X,,W),  one has an injection l®s(t-~):f2"-l®~i--*f2~-l®L,¢ whence 
H°(X, f2" - 1 ® 2 f  ~) = 0. Thus the assumptions in Theorem 1 are strictly stronger than 
Theorem 1'. 

In the case that L~'=I2~: and that the base locus has no components of 
codimension 2, the new condition 2 is equivalent to the injectivity o f (1.1). The group 
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H~oz(HO(X,O,-l®(fp)-1)) gives a new method to recognize the failure of  local 
Torelli. When X is a curve, one may identify nonzero elements of  
H~o~(H°(X, ~2"- 1 ®(~ , ) -  ~)) with nontrivial systems of quadratic equations vanish- 
ing on the canonical curve f (X)  c= Ipq- 1. One may actually solve such a quadratic 
system to show that f(X) is rational, i,e. tha tX is hyperelliptic. One obtains therefore 
(el. § 3) an elementary proof  of  Noether 's theorem. 

2. Proof of Theorem 1' 

Given a compact  complex manifold X, a line bundle W and a subspace 
O+VZ-H°(X, 140 then we may form a vector bundle E =  W*®cV. One has a 
canonical map D:E--,6o x sending (p®a~q~(a). Extend this to form a Kozsul 
complex 

O~ AqE ~ . . .  ~ AEE ~ E-..£o-~O , 

where D : AVE--*A p+ 1E satisfies 

D(c~ 1 a ... A ep)=2(-1)/D(~I) .(~1A ... A ~i/x ... a tip). 

Given any locally free ~-module F we denote by Kw, v(F)=Hom~(A'E,F) the 
Kozsul complex of  sheaves with differential D*. When W, V are understood from 
context we suppress the subscripts W,, V. In particular if V= H°(X, IV) we write 
simply Kw(F ). 

Explicitly, if we pick a basis x, .. . . .  xg for Vc= H°(X, IV), and denote by e 1 ... . .  eg 
the dual basis for V* then identifying 

KV(F) = Hom~(APE, F) = F ®eAPE * = (F®~ W v) ®~: A v V*. 

We may write sections of  KP(F) as 

S =  E g i l . . . i p ' e h  A . . .  A eip , (2.1) 
i t  < . . . < i p  

where gh ..ip is a section of F ®  W p. The differential D is 

i l<. . .<ip+t  " \ J  ] 
• p + l  where x 'gl i ~ is a section o f F ®  W . For each fixed q we obtain a"Kozsul"  y ~...• j . . .  p 

complex K(H~(X,F))=Hq(X,K(F)) where an element ssKV(Hq(X,F)) has a 
representation as in (2.1) with the 9i~ ...i,~H~( X, W '®F)  and D is given by (2.2) with 
x~ . gh...~, ~ Hq(X, Wv + ~ ® F). We employ the notation 

P q H~o~wv(H (X, F)) 

_ ker {Hq(X, F® WP)®AeV *-~ Hq(X, F® W p+ t)®AP ÷ ~ V*} 
im { Hq(X, F ®  W v-  ~ )® A v- ~ V* -* Hq(X, F® WP)® AP V* } " (2.3) 

The relevance of  this construction to local Torelli is seen by taking W =  [2~, 
V= H°(X, P~x), F = 0 x and noting that II°oz(Hl(X, O)) is precisely the kernel of  the 
mapping 2 in (1.1), and our problem is to show this group vanishes. 

For any F, W, V we have an exact sequence 

O-* H~o~(H°(X, F ) ) o H  ~ ---} H°o~(H*(X, F))-~ H2o~(H°(X, F))--}H 2 (2.4) 



42 D. Lieberman et al. 

of"initial  terms" of  the spectral sequence of  hypercohomology I of the complex of 
sheaves K'(F). We claim [see (2.7)] that i f F  is locally free and if the zero locus Z of 
x 1 ..... xg has codimension =>j then Hk=O for k<j, in particular 

O~H°oz(HI(X, F))~H~oz(H°(X, F)) if  codZ>_2 (2.5) 

whence H°oz(Hl)=0 if HZo~(H°)=0. (If and only if, when codZ~3 . )  
To obtain Theorem 1' we apply these remarks with W=L, V=H°(X, W) 

and successively taking F=O®U, i=0 ,1  .. . . .  k - 1 .  We note that O ® ~  ~ 
= o ® ~ k ® ~ - k = f l " - l ® ~  ~-~ in view of  the assumption ~ k = Q , .  Thus con- 
dition 2 of  the theorem becomes H2ozL(H°(X, O ®~O)) =0,  i = 0  .. . . .  k -  t, and hence 

H°o~L(H I(X, O ® £P')) = 0 (2.6) 

for i = 0  . . . . .  k -  1 in view of  assumption 1 and (2.5) above. Now if local Torelli fails, 
there exists 0 4=~zHI(X, O) such that 0 =  a.~zHI(X, O®SP k) for all a~H°(X, ~k). 
Pick 1 <j<k minimal such that c -~  = 0  for all o~H°(X, ~¢J) and fix zeH°(X, 5f ~- 1) 
such that r .ot=~OzH~(X, O ® S  ° ; -  ~). Then ~.~z would define a nonzero element of  
H°ozr.(HI(X, O®2~ a j -  ~)) contradicting our preceding analysis. 

Remark 2.7. To complete the proof  we need to see that Hk= 0 if k < cod(Z) and F is 
locally free. From the second spectral sequence of  hypercohomology 

Hv(X, ~q)=~ H v + q 

in which the 9ff ¢ denote the cohomology sheaves of  the complex K'(F), we see our 
assertion follows from the local assertion ~ = 0 if q < cod Z, which is well known 
(see for example [3], p. 135). For the case of our particular interest codZ > 2, the 
required assertion 9fr°= J'f~t = 0  is quite elementary: Namely (1) if x~f=O for all i 
a n d f a  section o f F  t h e n f  = 0  and (2) i f x i f  j =xJ~  for)t] ..... f0 sections of F®L then 
define a section of  F, 0~ = f/x~ on x~ 4=0 noting that 9~ =gi  on overlaps yielding a 
section of  F defined off  Z, hence by Hartog's extension, a section O of  F satisfying 
x~f = fl. 

Remark 2.8. Peters' original proof  of  Theorem 1 was similar in spirit but employed 
his additional hypotheses to replace the spectral sequence argument with an 
argument having more geometric content. For example assuming L imbeds X in Ps  
one obtains an exact sequence 

O ~ O x ~ O r ~ f x ~ N ~ O  

and from the associated cohomology sequence 

O~ H°( O x)~ H°( Or, fx)~ H°( N) L H ~ ( @ x)--*O 

in which the surjectivity of 6 is Peters' hypothesis 3. He then worked globally 
employing arguments analogous to (2.7) to show that given aeH°(N) such that 
xi-6(~)=0 for all i, there exists [l~H°(O~nlx) projecting to ~ hence 6(g)=0. 

1 Fixing a good Cech covering 9£ of X one has a double complex 0(9i, KP(F)). The eohomotogy of the 
associated simple complex is denoted by H" and is called the hypercohomology of the complex K'(F). 
One studies H using the spectral sequences of the double complex 



A Theorem of Local-Torelli Type 43 

Our present approach exposes an additional facet of the problem which 
deserves further exploration. Assuming that f2] is ample, (and hence so is L) we 
consider the singular Stein space X obtained by blowing down the zero section of 

L* ~X.  The sheaf n* O x on X - ( 0 )  extends canonically to a reflexive coherent sheaf 

8 onlY. (Namely, let O be the quotient of O x by the vector field VonX generated by 
the natural C* action on X and let O = O**.) The group H°(X, Ox) is identifiable 
with the C*-invariants in H ° ~  - {0}, 8). We view H°(37 - {0}, O) as a graded 
module over the homogeneous coordinate ring R=Sym(H°(X,£e)) on IP o-a, 
g =dimH°(X, L,e). One has the standard Kozsul complex 

O-, AOR(O)-.,...-, A 2 R(O)-, R(O)-, R-~O 

associated to the R-sequence x 1 ... . .  xgeRl= Ho(x, ~c~o!, which is an R-projective 
resolution of C. Given any R module N the complex K (N) = Horn R (A "R (g), N), has 
as cohomology Ext~ (C, N) and when N is graded one obtains a natural grading on 
the Ext ~. We easily identify our local Torelli obstructions H2o~(H°(X, Ox) ) with the 
degree 2 piece of Ext2(C,H°(X - {0}, O)). Ideally one should be able to relate the 
nature of the isolated singularity at 0~X to the failure of local Toretli. We note in 
this direction that if X is normal (i.e. HIo~()(,Ox)=0 for i=0,1), then 
H°(X, O ) ~ H ° 0  ~ -  {0}, O) since 8 is reflexive, cf. [6]. 

3. Noether's Theorem 

Let X be a nonsingular projective curve of genus g = r + 1 and let f : X  ~ F r be the 
canonical map. X is called hyperelliptic if and only if f (X) is a rational curve. (This 
occurs if and only i f f  is not an imbedding.) 

Theorem 2. The following are equivalent. 
1) X is hyperelliptic of genus g> 3. 
2) H°(X, t21x) does not give local moduli. 
3) The canonical map n. H°(X, 12~)®H°(X, f21x)~n°(x, ®2 f2 x ) is not surjective. 

Proof If  1) holds then representingX as a 2-sheeted cover of ~,1 one may explicitly 
calculate that n in 3), is not surjective. The map n is Serre dual to the map 2 of(1.1) 
and hence the surjectivity o fn  is equivalent to the assertion 2). (See for example, [2], 
II.) 

The result 2 ~ 1 or equivalently 3 ~ 1 is the classical Noether theorem, which we 
now demonstrate. 

Let x o . . . .  , x, be a basis for H°(X, ~1). The failure of local Torelli is measured 

precisely by H~oznl(H°(X, O)), i.e. by giving (~)elements bij~H°(X,O®f2®2), 0 < i  

< j  < r satisfying 

xibsk -- xjbik + xkb,j = Oe H°(X, 0 ®[2 ® 3) (2.1) 

modulo collections of the form bij = cjxi-  c~x i for any choice of qeH°(X, 0 @ 0  1) 

=H°(X,O)=C.  Note if g = l  or 2 then (~ )<1  and clearly H2oz(H°(O))=O. 



44 D. Lieberman et al. 

Assume g ~ 3 .  Since d i m X = l  we have O®I2®"=12 ®~"-t) and we may view 
bij~ H°(X,  ~21) i.e. as a G-linear combination of  xi' s. Denote by Qijk(X)= x~bj~- x~blk 
+xkb~i~Sym2(H°(X,  I21)). Thus Qi~k is a quadratic polynomial in the x~ which 
vanishes in H°(X, g2®2), [i.e. Qijk is a quadric vanishing on f(X)] in view of (2.1). 
However, vanishing of all the Q~k as polynomials [i.e. in SymZ(H°(X,  t21)] occurs if 
and only ifbij = ejx i - cixj, since the x i are an R-sequence in Sym'(H°(f2~)). Thus the 
failure o flocal Torelli is equivalent to the existence ofa  nontrivial system of quadrics 
Qiik vanishing on f(X). We show that after a linear change of  basis we can solve such 
a system ofquadrics to express xJx~i= 0 . . . .  , r -  2 in terms ofx~_ ~/x,. (Ifg = 3 this is 
now obvious.) 

We make the linear change of  basis by selecting any non-Weierstrass point pEX,  
and then choosing the basis Xo,..., x, so that v~(xi) = i, where v~(f) denotes the order 
of zero o f f  at p. 

Lemma 2.2. We may normalize the choice of  {bij}i <j  so that vp(bij ) > i+ 1. 

Proof  Every b~ is a linear combination ofxk's, and we shall say b~i "involves" x k i f x  k 
appears with nonzero coefficient. The assertion vp(bij)>l is equivalent to the 
assertion x k not involved in b~j for k < I. We modify the b~j by a suitable boundary. 

We claim that setting c~ = Coefficient o f x 0 in b0~ (and choosing any co) that the 
b'ij = bit - ( c j x  i - c ix j )  satisfy the lemma. Indeed 

xob'ij-  xib'oj + xjb'oi = 0 

and since x o is not involved in b~k for any k we conclude that each of the last two 
summands has vp > i + i, whence vp(b'~i) > i + 1 as asserted. 

We remark t h a t / f  b,_ ~., ~ 0 then we may now easily solve the equation since 

xib ,_ ~,~ = x,_ lb~, - x~b~_ 

and in view of  our normalization the right hand side involves only x k with k > i while 

br_ l , r = C ' X r  
We assume throughout the bij are normalized, vp(b~)> i. 

Lemma 2.3. Fix i. Assume bj,~=O jbr  atI j > i .  Then 
a) bi~ = d. x, for  some d. 
b) bij = - d. xj. 
c) bik=O if  j> i .  

Proof  If  i = r - 1  there is nothing to prove, so assume i < r - 1 .  From 2.1: 
x,bi. ~ + 1 - x~. 0 + x~ + i b~,, = 0. Note that %(x,bi, i + ~) ~ r + i + 1 whence v~(bi~ ) > r and 
a) follows. But also 

x,b~ - x c 0 + x~b~, = 0 

whence setting b~, = d. x, we find b), [note that f ( X )  is irreducible and not contained 
in a linear subspace of  IP']. 

Part c) follows from the identity x~bkr- Xkbj, + x,b~ = O. 

Note that if b~, = 0 for allj  then b~k = 0 for all j, k. Thus given a non-cobounding 
cocycte there exists i with b,, 4:0 and b~ = 0 j  > i. f in  fact i > 0 since if  i = 0 one could 
modify by the coboundary c ~ = 0 j > 0  and c o =coefficient of x, in bo, obtaining a 
new normalized cocycle which is nesessarily 0 in view of  (2.3).] Fix this i. 
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L e m m a  2,4. b i_ 1,r involves on ly  x , _  1, x, .  

Proof. Since bit = dx  r we see 

vv (x i -  I bi,, + x , b i -  ,,i) = r + i -  1 

a n d  hence  vp(xlb i .. l.,) = r + i -  1, whence  vr(b i_ 1.,) = r -  1 as asserted. 

N o w  for j < i one  m a y  e m p l o y  

xibir = x~bj,, - x ,bj ,  

to solve for x j x ,  in  te rms  o f  Xk/X , with  k > j .  M o r e o v e r  for i N k < r - 1  one  has 

xk + 1hi - 1,~ = x,b~_ l,k+ t .  (2.5) 

Hence  v p(x~b i_ l,k + 1) = k + 1 + r - -  1 = k + r so tha t  v p(b i_ 1,k + l) = k. There fo re  x k (and  
no  preceding  xi) appea r s  in b~_ 1,k÷ 1 a n d  one  m a y  use (2.5) to solve for Xk/X r in te rms 
of  xz /x  ~ with  l > k, T h u s  recurs ively  all the x ] x ,  are  expressed as r a t i ona l  func t ions  o f  
x , _  1/x~, a n d  c o n s e q u e n t l y  f ( X )  is ra t ional .  
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