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Abstract:

A theorem of the alternatives for the equation |Az| — |Bl|jz| = b (A,B € R™™", b € R") is
proved and several consequences are drawn. In particular, a class of matrices A, B is identified
for which the equation has exactly 2" solutions for each positive right-hand side b.
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1 Introduction

We consider here the equation
|Az| — |B||x| = b, (1.1)
where A, B € R™*™ and b € R", which we call a triple absolute value equation. This equation
could also be written in the form
|Az| = Clz| = b,
¢ >0,

but we prefer the one-line expression (I.1). As far as known to us, nobody has studied this
equation as yet.

In the main result of this paper we show that for each A, B € R™*" exactly one of the
following two alternatives holds: (i) for each b > 0 the equation (L.1) has exactly 2" solutions
and the set { Az | |Az|—|B||x| = b} intersects interiors of all orthants of R", (ii) the equation
(L.1) has a nontrivial solution for some b < 0. In Corollary 2 we show that, even more, if
the property mentioned in (i) holds for some by > 0, then it is shared by any b > 0, and in
Corollary 3| we prove that if A is nonsingular and the condition

o(|A7Y|B]) <1 (1.2)

is satisfied, then (i) holds, so that for each b > 0 the equation (L.1)) has exactly 2" solutions.
As it will be shown later, these results follow from necessary and/or sufficient conditions for
regularity /singularity of interval matrices when applied to the interval matrix [A — |B|, A +
|B|]. In turn, our results enable us to add three more such necessary and sufficient conditions
to the list of forty of them surveyed in [11] (Proposition 7/ below).

Nearest in form to the equation (1.1) is the absolute value equation

Ax + Blz| = (1.3)

which has been resently studied by Mangasarian [2], [3], [4], Mangasarian and Meyer [5],
Prokopyev [7], and Rohn [10], [12]. There is, however, a big difference between these two
equations: while the equation (I.3) has under the condition (1.2) exactly one solution for
each b, the equation (I.1) under the same condition has exactly 2" solutions for each b > 0.
This sharp difference between both the equations is to be ascribed to the absence/presence
of the absolute value of the term Azx.

The particular circumstances of discovery of the main theorem are briefly mentioned in
the personal note in Section 8.

2 Notations

We use the following notations. Matrix inequalities, as A < B or A < B, are understood
componentwise. The absolute value of a matrix A = (a;;) is defined by |A| = (|ai;|). The
same notations also apply to vectors that are considered one-column matrices. For each
y € {—1,1}" we denote

y1 0 ... 0
Ty:dlag(yl,...,yn) = S . )
0 0 ... wyn



and Ry = {z; Tyx > 0} is the orthant prescribed by the +1-vector y. Notice that Ty_1 =T,
for such a y. o(A) stands for the spectral radius of A. Given A, B € R™*" the set

[A—[B,A+[B|] ={S[|5 - Al <[B]}

is an interval matrix; it is called regular if each S € [A — |B|, A + | B|] is nonsingular, and it
is said to be singular otherwise (i.e., if it contains a singular matrix).

3 Theorem of the alternatives

To simplify formulations, let us say that the equation (1.1) is exponentially solvable for a
particular right-hand side b if it has exactly 2™ solutions and the set

{ Az | [Az| - [Bl[z] = b} (3.1)

intersects interiors of all orthants of R"™. The following theorem is the main result of this
paper.

Theorem 1. For each A, B € R™" ezactly one of the following two alternatives holds:
(i) the equation (1.1) is exponentially solvable for each b > 0,

(ii) the equation (1.1)) has a nontrivial solution for some b < 0.

Proof. Consider the following two options for the interval matrix [A — |B|, A+ |B|]:
(i) [A—|BJ|,A+ |B]|] is regular,
(ii") [A—|B|, A+ |B|] is singular.

We shall prove that the assertions (i), (ii) are equivalent to (i’), (ii’), respectively. Since
exactly one of (i’), (ii’) always holds, the same will be true for (i), (ii).

(i)=("). Let (i) hold. Take any by > 0, then for each +1-vector y € R"™ there exists
a solution z, of the equation [Ax| — |B|[x| = by such that Az, € Rj. Since z, satisfies
|Az, | = |B||x,|+bo > | B||z,|, the condition (v) of Theorem 3.1 in [J] is met and consequently
the interval matrix [A — |B|, A + | B|] is regular.

(i’)=(i). If (i) holds, then for each +1-vector y the interval matrix

[A—[=T,[Bll, A+ | -T,B|l] = [A—|B|, A+ |B]]
is regular, hence by Proposition 4.2 in [10] the equation
Az —T,|B||z| = T,b (3.2)
has a unique solution z,. This z, then satisfies
T,Az, — |Bllz,| =, (3.3)

which implies
T,Ax, = |Bllz,|+b>b>0, (3.4)
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hence Az, belongs to the interior of Ry and T, Az, = |Az,[, which in view of (3.3) means
that z, is a solution of (L.1). Conversely, let z solve (L.1). Put y; = 1 if (Az); > 0 and
yi = —1 otherwise (i = 1,...,n), then T, Az = |Ax|, so that x is a solution of

T,Ax — |Bl[z| = b

and thus also of (3.2). Because of the above-stated uniqueness of solution of (3.2), this
implies that z = z,. In this way we have proved that the solution set of (I.I) consists
precisely of the points z, for all possible 1-vectors y € R™. Thus to prove that (L.1) has
exactly 2" solutions, it will suffice to show that all the z,’s are mutually different. To this
end, take two +1-vectors y and ¢/, y # y'. Then y;y, = —1 for some i. From (3.4) it follows
that yi(Az,); > 0 and y;(Az,/); > 0 and by multiplication y;(Az,);y;(Az,); > 0, hence
(Az,)i(Az,); < 0, which clearly shows that z, # .

(ii)<(ii’). Existence of a nontrivial solution of (I.1) for some b < 0 is equivalent to
existence of a nontrivial solution of the inequality

|Az| < |Bl|z], (3.5)

which, by Proposition 2.2 in [10], is in turn equivalent to singularity of the interval matrix
[A—[B|, A+ |BJ].
This proves the theorem. O

4 Consequences

We can draw some consequences from Theorem (1] and its proof.

Corollary 2. If the equation (1.1) is exponentially solvable for some by > 0, then it is
exponentially solvable for each b > 0.

Proof. Indeed, in the proof of Theorem [I, implication “(i)=(i")”, we showed that expo-
nential solvability of the equation (1.1) for some by > 0 implies regularity of [A—|B|, A+ |B|]
and thus, by “(i’)=-(i)”, also exponential solvability for each b > 0. O

Corollary 3. If A is nonsingular and
o(|A7H[B]) <1 (4.1)
holds, then the equation (1.1) is exponentially solvable for each b > 0.

Proof. By the well-known Beeck’s result in [I], the condition (4.1) implies regularity of
the interval matrix [A — |B|, A+ |B|] and thus, by the equivalence “(i)<(ii)” established in
the proof of Theorem 1 it also implies exponential solvability of (1.1) for each b > 0. a

Corollary 4. If A is nonsingular and
max(|A~||B]);; = 1 (4.2)
J

holds, then the equation (1.1) is not exponentially solvable for any b > 0.



Proof. Tt follows from [8], Corollary 5.1, (iii) that the condition (4.2) implies singularity
of the interval matrix [A — |B|, A+ |B|], which, by the proof of Theorem [Il and by Corollary
2, precludes exponential solvability of (1.1) for any b > 0. O

For A, B € R"*" b € R", denote
i.e., the solution set of (L.1) (attention: not to be mixed with (3.1)). Observe that if x €
X (A, B,b), then —z € X (A, B,b), hence the solutions appear in X (A, B,b) in pairs (z, —z).
Thus, unless b = 0, the cardinality of X (A, B,b), if finite, is even.

Corollary 5. If the equation |Az| — |B||x| = by is exponentially solvable for some by > 0,
then for each b > 0 we have

X(A7Bvb):{xy‘y€{_171}n}7

where for each y € {—1,1}", x, is the unique solution of the absolute value equation

T,Ar — |B||z| = b. (4.3)
Proof. This has been proved in the “(i’)=-(i)” part of the proof of Theorem (. O
Corollary 6. Under the assumptions of Corollary |5, we have x_y = —x, for each y €

(—1,1}".

Proof. Since z,, is a solution of (4.3), it follows that —z, solves the equation

Y Y

T_,Az — |Blla| = b,

and in view of the uniqueness of solution of this equation we have that z_, = —x,. O

The equation (4.3) can be solved in a finite number of steps by a very efficient algorithm
absvaleqn described in [12]. Corollary (6) reduces the number of x,’s to be computed from
2" to 2"~ ! (e.g., it suffices to consider only the y’s with 3, = 1).

5 Example
The following computation was performed in MATLAB. Using the randomly generated data

>> n=3; rand(’state’,1); A=2*rand(n,n)-1, B=2*rand(n,n)-1, b=rand(n,1),
A =

0.9056 0.1963 0.6736

0.4081 0.6815 0.0374

0.9078 -0.1144 -0.9556



-0.2482 -0.6009
0.7972 -0.3938
-0.1420 0.0766

0.0345
0.7153
0.7687

0.8205
0.0506
-0.3863

we obtain the solution set consisting of two solutions

x:
18.4720 -18.4720
27.7448 -27.7448
6.0199 -6.0199

After scaling the matrix B by

>>B=0.1%B

B =
-0.0248 -0.0601
0.0797 -0.0394
-0.0142 0.0077

0.0820
0.0051
-0.0386

we find that the solution set now consists of 23 = 8 solutions

0.3921 -0.3921
0.9521 -0.9521
-0.5830 0.5830

0.5740 -0.5740
-1.5452 1.5452
-0.0991 0.0991

and the set (3.1)

>> AX=AxX

AX =
0.1492  -0.1492
0.7870 -0.7870
0.8041 -0.8041

0.1497  -0.1497
-0.8224 0.8224
0.7925 -0.7925

0.1794 -0.1794 0.3679
1.0756 -1.0756 -1.3774
-0.8066 0.8066 -0.3196

-0.1697 0.1697 -0.1526
0.7761 -0.7761 -0.8005
0.8107 -0.8107 0.7968

-0.3679
1.3774
0.3196

0.1526
0.8005
-0.7968

intersects interiors of all the orthants. Hence, the equation |Az| — |0.1 - B||z| = b is expo-
nentially solvable for this right-hand side b (and thus it is exponentially solvable for each

b >0).



6 Regularity conditions

Checking regularity of interval matrices is a co-NP-complete problem [6]. Forty necessary
and sufficient regularity conditions were surveyed in [L1]; the results of this paper enable us
to add three more items to the list.

Proposition 7. For a square interval matriz [A — A, A+ A], the following assertions are
equivalent:

(a) [A— A, A+ Al is regular,

(b) the equation
|Az| — Alz| =b (6.1)

is exponentially solvable for each b > 0,

(¢) the equation (0.1) is exponentially solvable for some right-hand side by > 0,

(d) the equation
|Az| — Alz| =e

s exponentially solvable.

Proof. In the light of Theorem/I/and Proposition[7/we see that (a)=(b)=-(d)=(c)=-(b)=(a)
holds, which proves the mutual equivalence of all the assertions. O

7 Conclusion

We have investigated the case of b > 0. For a general right-hand side b there seems not to
be an easy clue to the cardinality of the solution set of (I.I). This should be a subject of
further research.

8 Personal note

I am a little ashamed to admit that I discovered Theorem [1! during the Christmas Eve mass
on December 24, 2006 in St Francis Church in Prague.
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