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A THEOREM ON A REPRESENTATION OF
∗–REGULARLY VARYING SEQUENCES

Dragan Djurčić

Abstract. In this paper we shall prove a theorem on a representation of ∗–regularly
varying sequences in the sense of Karamata [1].

1. Introduction and results

Consider the sequences (cn), cn > 0 (n ∈ N) which are nondecreasing
and satisfy the following asymptotic condition

(1) lim
λ→1+

lim
n→+∞

c[nλ]

cn
= 1.

Such sequences are called ∗–regularly varying, and they have an important
role in the analysis of divergent sequential processes (see e.g. [6] ).

Condition (1) is weaker than the Karamata condition of regular variability
and stronger than the condition of O–regular variability (see e.g. [2], [5], [8]
and [9] ).

Relation (1) obviously means that for any such sequence, the function

k0(λ) = lim
n→+∞

c[nλ]

cn

is right continuous at λ = 1.
We shall first define an important class of functions.
CRV is the class of all measurable functions F : [a,+∞) 7→ (0,+∞) (a >

0) such that F (x(t)) ∼ F (y(t)) as t → +∞, for any two functions x, y with
the properties

lim
t→+∞

x(t) = lim
t→+∞

y(t) = +∞,

and x(t) ∼ y(t) as t → +∞.

This class is investigated in detail in the papers [3] and [4].

Proposition 1. If (cn) is an arbitrary nondecreasing sequence of positive
numbers, then the following assertions are equivalent:
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(a) c[x] (x ≥ 1) belongs to the class CRV ;

(b) (cn) is a ∗–regularly varying sequence.

Corollary 1. The function k0(λ) is defined for every λ > 0.

Corollary 2. For any ∗–regularly varying sequence (cn) we have

lim
λ→1

k0(λ) = 1.

Corollary 3. For any ∗–regularly varying sequence (cn) and arbitrary
positive s, t we have k0(st) ≤ k0(s)k0(t).

Corollary 4. For an arbitrary ∗–regularly varying sequence (cn), the
function k0(λ) is continuous in λ > 0 .

Corollary 5. If (cn) is an arbitrary nondecreasing sequence of positive
numbers, then the following assertions are equivalent:

(a) (cn) is a ∗–regularly varying sequence;

(b) For arbitrary mappings K1,K2 :N 7→ N with the properties

lim
n→+∞

K1(n) = lim
n→+∞

K2(n) = +∞

and K1(n) ∼ K2(n) as n → +∞, one has cK1(n) ∼ cK2(n) as n → +∞;

(c) lim λ→1
n→+∞

c[λn]

cn
= 1 .

The asymptotic condition (c) is in fact the Schmidt convergence condition
(see e.g. [7] ).

The next theorem is a representation theorem for ∗–regularly varying
sequences.

Theorem 1. Let (cn) be an arbitrary nondecreasing sequence of positive
numbers. Then the following assertions are equivalent:

(a) (cn) is a ∗–regularly varying sequence;

(b) There is an n0 ∈ N such that

cn = exp
{

µ̃n + r1(log n) +
n∑

k=n0

δk

k

}
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for every n ≥ n0, where the sequence µ̃n → 0 as n → +∞, r1 is a bounded
and uniformly continuous function on the interval [log n0,+∞), and (δn) is
a bounded sequence.

Remark. It can be proved that all previous results remain true for
sequences (cn) which are not necessarily nondecreasing if the condition λ →
1+ in (1) is replaced by λ → 1.

2. Proofs of results

Proof of Proposition 1. By some results from [4,p.454] the implication
(a) =⇒ (b) is trivial.

(b) =⇒ (a). Let (cn) be a ∗–regularly varying sequence. From (1) we find
that

lim
n→+∞

c[λn]

cn
< +∞

for some a > 1 and all λ ∈ [1, a). Hence, the function k0(λ) is finite for all
λ ∈ [1, a). For an arbitrary fixed λ ∈ [1, a) define

k(λ) = lim
x→+∞

c[λx]

c[x]
.

Then
k(λ) ≤ lim

x→+∞
c[λ[x]]

c[x]
· lim

x→+∞
c[λx]

c[λ[x]]
≤

≤ k0(λ) · lim
x→+∞

c[λx]

c[λ[x]]
.

Since (λx)/[λ[x]] → 1+ as x → +∞, we find that for a fixed λ and all
x ≥ x0, (λx)/[λ[x]] ∈ [1, 1 + δ]. Hence,

lim
x→+∞

c[λx]

c[λ[x]]
= lim

x→+∞

c[ λx
[λ[x]] [λ[x]]

]

c[λ[x]]
≤ k0(1 + δ)

for all δ > 0. Thus for a given λ and all δ ∈ (0, a − 1) we have k(λ) ≤
k0(λ) · k0(1 + δ). Since the function k0 is right continuous at λ = 1, we
have that k(λ) ≤ k0(λ) for a fixed λ ∈ [1, a). Therefore limλ→1+ k(λ) ≤
limλ→1+ k0(λ) ≤ 1. Since c[x] is an nondecreasing function, we have that
limλ→1+ k(λ) = 1 and limλ→1− k(λ) ≤ 1. Finally, since the function k(λ) is
defined on an interval [1− a′, 1 + a′′] (a′, a′′ > 0), we get that c[x] belongs to
the class of O–regularly varying functions ([1]), that is we have

k(λ) = lim
x→+∞

c[λx]

c[x]
< +∞
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for all λ > 0.
Hence we get 1 = k(1) ≤ k(λ) · k(1/λ), and consequently k(1/λ) → c ≥ 1

as λ → 1+. This gives that limλ→1− k(λ) = 1, that is limλ→1 k(λ) = 1,
which by some results from [4,p.454] yields that c[x] belongs to the class
CRV . ¤

Remark. Since k0(λ) ≤ k(λ) for λ > 0, and k(λ) ≤ k0(λ) · k0(1 + δ)
for all δ > 0, we find that k0(λ) = k(λ) for all λ > 0. Therefore, using the
properties of the index function of CRV functions, Corollaries 2, 3 and 4
follow immediately.

Proof of Corollary 5. (a) =⇒ (b). If (cn) is a ∗–regularly varying
sequence, then the function F (x) = c[x] (x ≥ 1) belongs to the class CRV .
Next, let K1 and K2 be arbitrary functions with the properties in (b). Then,
it is easily seen that the functions k1, k2 defined by

ki(x) = Ki(n) (x ∈ [n, n + 1); n ∈ N; i = 1, 2)

have the properties limx→+∞ k1(x) = limx→+∞ k2(x) = +∞, and k1(x) ∼
k2(x) as x → +∞. Hence limx→+∞

(
F (k1(x))/F (k2(x))

)
= 1, and conse-

quently cK1(n) ∼ cK2(n) as n → +∞.

(b) =⇒ (c). Assume (b), and let (λk) be an arbitrary sequence such that
lim

k→+∞
λk = 1. Then

Sk =
[λkk] + 1

k
≥ λk ≥ Sk =

[λkk]
k

for every k ∈ N, and Sk, Sk → 1 as k → +∞. Putting n1(k) = [λkk],
n2(k) = [λkk] + 1, n3(k) = k, we have that n1, n2, n3 :N 7→ N, n1(k), n2(k),
n3(k) → +∞ as k → +∞ and

lim
k→+∞

n1(k)
n3(k)

= lim
k→+∞

n2(k)
n3(k)

= 1.

Since

1 = lim
k→+∞

cn1(k)
n3(k) n3(k)

cn3(k)
= lim

k→+∞
c[λkk]

ck
≤

≤ lim
k→+∞

cn2(k)
n3(k) n3(k)

cn3(k)
= 1,

we get condition (c).
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(c) =⇒ (a). Assuming (c), and taking an arbitrary ε > 0, we find some
k0 ∈ N and a δ > 0 such that 1− ε ≤ c[λk]/ck ≤ 1 + ε whenever k ≥ k0 and
|1− λ| < δ. Hence

1− ε ≤ lim
k→+∞

c[λk]

ck
≤ 1 + ε,

thus |k0(λ)− 1| ≤ ε if |1− λ| < δ. This means that

lim
λ→1

lim
k→+∞

c[λk]

ck
= 1,

so that we have (a). ¤

Proof of Theorem 1. (a) =⇒ (b). Let (cn) be a ∗–regularly varying
sequence. Then, by Proposition 1, the function F (x) = c[x] (x ≥ 1) belongs
to the class CRV . By [4] there is a B > 0 such that for any n ≥ B one has

cn = F (n) = exp
{

µ̃(n) + r(log n) +
∫ n

B

ε(t)
t

dt
}

,

where the functions ε(x) and µ̃(x) are bounded measurable functions in
[B, +∞), r(x) is a uniformly continuous bounded function in [log B, +∞),

and we have limx→+∞ µ̃(x) = 0. Putting n0 = [B] + 1 and s =
∫ n0

B

ε(t)
t

dt ∈
R, we get that the function r1(t) = r(t) + s is bounded and uniformly
continuous in t ∈ [log n0, +∞). Hence, for n ≥ n0 we have

cn = exp
{

µ̃n + r1(log n) +
n∑

k=n0

δk

k

}
,

where limn→+∞ µ̃n = 0, r1 is a bounded and uniformly continuous function

on the interval [log n0,+∞), δk = k
∫ k

k−1

ε(t)
t

dt (k ≥ n0 + 1) and δn0 = 0.
Finally, we find that

|δk| = k ·
∣∣∣
∫ k

k−1

ε(t)
t

dt
∣∣∣ ≤ k · sup

t≥k−1
|ε(t)| · log

(
1 +

1
k − 1

)
≤

≤ 2 sup
t≥k−1

|ε(t)| < M,

for any k ≥ n0 + 1, since the function ε(t) is bounded on [B, +∞).

(b) =⇒ (a). Assuming (b), let λ > 1 and n ≥ n0. Then

c[λ n]

cn
= exp

{
µ̃[λ n] − µ̃n + r1(log [λn])− r1(log n) +

[λ n]∑

k=n+1

δk

k

}
.



6 DRAGAN DJURČIĆ

Since
lim

λ→1+
lim

n→+∞

(
µ̃[λ n] − µ̃n

)
= 0,

∣∣∣∣∣
[λ n]∑

k=n+1

δk

k

∣∣∣∣∣ ≤ sup
k≥n+1

|δk| ·
∫ [λ n]+1

n+1

dt

t− 1
= sup

k≥n+1
|δk| · log

[λn]
n

,

that is limλ→1+ limn→+∞
∣∣∣ ∑[λ n]

k=n+1

δk

k

∣∣∣ = 0, and r1 is a uniformly continu-

ous function on the interval [log n0, +∞), we get that

lim
λ→1+

lim
n→+∞

c[λ n]

cn
= 1.

In other words, (cn) is a ∗–regularly varying sequence. ¤
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