A THEOREM ON A REPRESENTATION OF *-REGULARLY VARYING SEQUENCES

Dragan Djurčić

Abstract. In this paper we shall prove a theorem on a representation of $*$-regularly varying sequences in the sense of Karamata [1].

1. Introduction and results

Consider the sequences $\left(c_{n}\right), c_{n}>0(n \in N)$ which are nondecreasing and satisfy the following asymptotic condition

$$
\begin{equation*}
\lim _{\lambda \rightarrow 1+n \rightarrow+\infty} \varlimsup_{n \rightarrow} \frac{c_{[n \lambda]}}{c_{n}}=1 \tag{1}
\end{equation*}
$$

Such sequences are called $*-$ regularly varying, and they have an important role in the analysis of divergent sequential processes (see e.g. [6]).

Condition (1) is weaker than the Karamata condition of regular variability and stronger than the condition of \mathcal{O}-regular variability (see e.g. [2], [5], [8] and [9]).

Relation (1) obviously means that for any such sequence, the function

$$
k_{0}(\lambda)=\varlimsup_{n \rightarrow+\infty} \frac{c_{[n \lambda]}}{c_{n}}
$$

is right continuous at $\lambda=1$.
We shall first define an important class of functions.
$C R V$ is the class of all measurable functions $F:[a,+\infty) \mapsto(0,+\infty)(a>$ 0) such that $F(x(t)) \sim F(y(t))$ as $t \rightarrow+\infty$, for any two functions x, y with the properties

$$
\lim _{t \rightarrow+\infty} x(t)=\lim _{t \rightarrow+\infty} y(t)=+\infty
$$

and $x(t) \sim y(t)$ as $t \rightarrow+\infty$.
This class is investigated in detail in the papers [3] and [4].
Proposition 1. If $\left(c_{n}\right)$ is an arbitrary nondecreasing sequence of positive numbers, then the following assertions are equivalent:
(a) $c_{[x]}(x \geq 1)$ belongs to the class $C R V$;
(b) $\left(c_{n}\right)$ is a $*$-regularly varying sequence.

Corollary 1. The function $k_{0}(\lambda)$ is defined for every $\lambda>0$.
Corollary 2. For any *-regularly varying sequence $\left(c_{n}\right)$ we have

$$
\lim _{\lambda \rightarrow 1} k_{0}(\lambda)=1
$$

Corollary 3. For any *-regularly varying sequence $\left(c_{n}\right)$ and arbitrary positive s, t we have $k_{0}(s t) \leq k_{0}(s) k_{0}(t)$.

Corollary 4. For an arbitrary $*$-regularly varying sequence $\left(c_{n}\right)$, the function $k_{0}(\lambda)$ is continuous in $\lambda>0$.

Corollary 5. If (c_{n}) is an arbitrary nondecreasing sequence of positive numbers, then the following assertions are equivalent:
(a) $\left(c_{n}\right)$ is a $*$-regularly varying sequence;
(b) For arbitrary mappings $K_{1}, K_{2}: \mathbb{N} \mapsto \mathbb{N}$ with the properties

$$
\lim _{n \rightarrow+\infty} K_{1}(n)=\lim _{n \rightarrow+\infty} K_{2}(n)=+\infty
$$

and $K_{1}(n) \sim K_{2}(n)$ as $n \rightarrow+\infty$, one has $c_{K_{1}(n)} \sim c_{K_{2}(n)}$ as $n \rightarrow+\infty$;
(c) $\lim _{n \rightarrow+\infty}^{\lambda \rightarrow 1} \frac{c_{[\lambda n]}}{c_{n}}=1$.

The asymptotic condition (c) is in fact the Schmidt convergence condition (see e.g. [7]).

The next theorem is a representation theorem for $*-$ regularly varying sequences.

Theorem 1. Let $\left(c_{n}\right)$ be an arbitrary nondecreasing sequence of positive numbers. Then the following assertions are equivalent:
(a) $\left(c_{n}\right)$ is a $*$-regularly varying sequence;
(b) There is an $n_{0} \in N$ such that

$$
c_{n}=\exp \left\{\tilde{\mu}_{n}+r_{1}(\log n)+\sum_{k=n_{0}}^{n} \frac{\delta_{k}}{k}\right\}
$$

for every $n \geq n_{0}$, where the sequence $\tilde{\mu}_{n} \rightarrow 0$ as $n \rightarrow+\infty, r_{1}$ is a bounded and uniformly continuous function on the interval $\left[\log n_{0},+\infty\right)$, and $\left(\delta_{n}\right)$ is a bounded sequence.

Remark. It can be proved that all previous results remain true for sequences $\left(c_{n}\right)$ which are not necessarily nondecreasing if the condition $\lambda \rightarrow$ $1+$ in (1) is replaced by $\lambda \rightarrow 1$.

2. Proofs of results

Proof of Proposition 1. By some results from [4,p.454] the implication $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ is trivial.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$. Let $\left(c_{n}\right)$ be a $*$-regularly varying sequence. From (1) we find that

$$
\varlimsup_{n \rightarrow+\infty} \frac{c_{[\lambda n]}}{c_{n}}<+\infty
$$

for some $a>1$ and all $\lambda \in[1, a)$. Hence, the function $k_{0}(\lambda)$ is finite for all $\lambda \in[1, a)$. For an arbitrary fixed $\lambda \in[1, a)$ define

$$
k(\lambda)=\varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[x]}} .
$$

Then

$$
\begin{aligned}
k(\lambda) & \leq \varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda[x]]}}{c_{[x]}} \cdot \varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[\lambda[x]]}} \leq \\
& \leq k_{0}(\lambda) \cdot \varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[\lambda[x]]}}
\end{aligned}
$$

Since $(\lambda x) /[\lambda[x]] \rightarrow 1+$ as $x \rightarrow+\infty$, we find that for a fixed λ and all $x \geq x_{0},(\lambda x) /[\lambda[x]] \in[1,1+\delta]$. Hence,

$$
\varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[\lambda[x]]}}=\varlimsup_{x \rightarrow+\infty} \frac{c^{c}\left[\frac{\lambda x}{\lambda[x]]}[\lambda[x]]\right]}{c_{[\lambda[x]]}} \leq k_{0}(1+\delta)
$$

for all $\delta>0$. Thus for a given λ and all $\delta \in(0, a-1)$ we have $k(\lambda) \leq$ $k_{0}(\lambda) \cdot k_{0}(1+\delta)$. Since the function k_{0} is right continuous at $\lambda=1$, we have that $k(\lambda) \leq k_{0}(\lambda)$ for a fixed $\lambda \in[1, a)$. Therefore $\lim _{\lambda \rightarrow 1+} k(\lambda) \leq$ $\lim _{\lambda \rightarrow 1+} k_{0}(\lambda) \leq 1$. Since $c_{[x]}$ is an nondecreasing function, we have that $\lim _{\lambda \rightarrow 1+} k(\lambda)=1$ and $\lim _{\lambda \rightarrow 1-} k(\lambda) \leq 1$. Finally, since the function $k(\lambda)$ is defined on an interval $\left[1-a^{\prime}, 1+a^{\prime \prime}\right]\left(a^{\prime}, a^{\prime \prime}>0\right)$, we get that $c_{[x]}$ belongs to the class of \mathcal{O}-regularly varying functions ([1]), that is we have

$$
k(\lambda)=\varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[x]}}<+\infty
$$

for all $\lambda>0$.
Hence we get $1=k(1) \leq k(\lambda) \cdot k(1 / \lambda)$, and consequently $k(1 / \lambda) \rightarrow c \geq 1$ as $\lambda \rightarrow 1+$. This gives that $\lim _{\lambda \rightarrow 1-} k(\lambda)=1$, that is $\lim _{\lambda \rightarrow 1} k(\lambda)=1$, which by some results from $[4, \mathrm{p} .454]$ yields that $c_{[x]}$ belongs to the class $C R V$.

Remark. Since $k_{0}(\lambda) \leq k(\lambda)$ for $\lambda>0$, and $k(\lambda) \leq k_{0}(\lambda) \cdot k_{0}(1+\delta)$ for all $\delta>0$, we find that $k_{0}(\lambda)=k(\lambda)$ for all $\lambda>0$. Therefore, using the properties of the index function of $C R V$ functions, Corollaries 2,3 and 4 follow immediately.

Proof of Corollary 5. (a) \Longrightarrow (b). If $\left(c_{n}\right)$ is a $*$-regularly varying sequence, then the function $F(x)=c_{[x]}(x \geq 1)$ belongs to the class $C R V$. Next, let K_{1} and K_{2} be arbitrary functions with the properties in (b). Then, it is easily seen that the functions k_{1}, k_{2} defined by

$$
k_{i}(x)=K_{i}(n) \quad(x \in[n, n+1) ; n \in \mathbb{N} ; i=1,2)
$$

have the properties $\lim _{x \rightarrow+\infty} k_{1}(x)=\lim _{x \rightarrow+\infty} k_{2}(x)=+\infty$, and $k_{1}(x) \sim$ $k_{2}(x)$ as $x \rightarrow+\infty$. Hence $\lim _{x \rightarrow+\infty}\left(F\left(k_{1}(x)\right) / F\left(k_{2}(x)\right)\right)=1$, and consequently $c_{K_{1}(n)} \sim c_{K_{2}(n)}$ as $n \rightarrow+\infty$.
(b) \Longrightarrow (c). Assume (b), and let $\left(\lambda_{k}\right)$ be an arbitrary sequence such that $\lim _{k \rightarrow+\infty} \lambda_{k}=1$. Then

$$
S_{k}=\frac{\left[\lambda_{k} k\right]+1}{k} \geq \lambda_{k} \geq \bar{S}_{k}=\frac{\left[\lambda_{k} k\right]}{k}
$$

for every $k \in \mathbb{N}$, and $S_{k}, \bar{S}_{k} \rightarrow 1$ as $k \rightarrow+\infty$. Putting $n_{1}(k)=\left[\lambda_{k} k\right]$, $n_{2}(k)=\left[\lambda_{k} k\right]+1, n_{3}(k)=k$, we have that $n_{1}, n_{2}, n_{3}: \mathbb{N} \mapsto \mathbb{N}, n_{1}(k), n_{2}(k)$, $n_{3}(k) \rightarrow+\infty$ as $k \rightarrow+\infty$ and

$$
\lim _{k \rightarrow+\infty} \frac{n_{1}(k)}{n_{3}(k)}=\lim _{k \rightarrow+\infty} \frac{n_{2}(k)}{n_{3}(k)}=1
$$

Since

$$
\begin{aligned}
1 & =\lim _{k \rightarrow+\infty} \frac{c_{\frac{n_{1}(k)}{n_{3}(k)} n_{3}(k)}}{c_{n_{3}(k)}}=\lim _{k \rightarrow+\infty} \frac{c_{\left[\lambda_{k} k\right]}}{c_{k}} \leq \\
& \leq \lim _{k \rightarrow+\infty} \frac{c_{\frac{n_{2}(k)}{n_{3}(k)} n_{3}(k)}}{c_{n_{3}(k)}}=1
\end{aligned}
$$

we get condition (c).
(c) \Longrightarrow (a). Assuming (c), and taking an arbitrary $\epsilon>0$, we find some $k_{0} \in \mathbb{N}$ and a $\delta>0$ such that $1-\epsilon \leq c_{[\lambda k]} / c_{k} \leq 1+\epsilon$ whenever $k \geq k_{0}$ and $|1-\lambda|<\delta$. Hence

$$
1-\epsilon \leq \varlimsup_{k \rightarrow+\infty} \frac{c_{[\lambda k]}}{c_{k}} \leq 1+\epsilon
$$

thus $\left|k_{0}(\lambda)-1\right| \leq \epsilon$ if $|1-\lambda|<\delta$. This means that

$$
\lim _{\lambda \rightarrow 1} \varlimsup_{k \rightarrow+\infty} \frac{c_{[\lambda k]}}{c_{k}}=1
$$

so that we have (a).
Proof of Theorem 1. (a) $\Longrightarrow(\mathrm{b})$. Let $\left(c_{n}\right)$ be a $*-$ regularly varying sequence. Then, by Proposition 1, the function $F(x)=c_{[x]}(x \geq 1)$ belongs to the class $C R V$. By [4] there is a $B>0$ such that for any $n \geq B$ one has

$$
c_{n}=F(n)=\exp \left\{\tilde{\mu}(n)+r(\log n)+\int_{B}^{n} \frac{\epsilon(t)}{t} d t\right\}
$$

where the functions $\epsilon(x)$ and $\tilde{\mu}(x)$ are bounded measurable functions in $[B,+\infty), r(x)$ is a uniformly continuous bounded function in $[\log B,+\infty)$, and we have $\lim _{x \rightarrow+\infty} \tilde{\mu}(x)=0$. Putting $n_{0}=[B]+1$ and $s=\int_{B}^{n_{0}} \frac{\epsilon(t)}{t} d t \in$ \mathbb{R}, we get that the function $r_{1}(t)=r(t)+s$ is bounded and uniformly continuous in $t \in\left[\log n_{0},+\infty\right)$. Hence, for $n \geq n_{0}$ we have

$$
c_{n}=\exp \left\{\tilde{\mu}_{n}+r_{1}(\log n)+\sum_{k=n_{0}}^{n} \frac{\delta_{k}}{k}\right\}
$$

where $\lim _{n \rightarrow+\infty} \tilde{\mu}_{n}=0, r_{1}$ is a bounded and uniformly continuous function on the interval $\left[\log n_{0},+\infty\right), \delta_{k}=k \int_{k-1}^{k} \frac{\epsilon(t)}{t} d t\left(k \geq n_{0}+1\right)$ and $\delta_{n_{0}}=0$. Finally, we find that

$$
\begin{aligned}
\left|\delta_{k}\right| & =k \cdot\left|\int_{k-1}^{k} \frac{\epsilon(t)}{t} d t\right| \leq k \cdot \sup _{t \geq k-1}|\epsilon(t)| \cdot \log \left(1+\frac{1}{k-1}\right) \leq \\
& \leq 2 \sup _{t \geq k-1}|\epsilon(t)|<M
\end{aligned}
$$

for any $k \geq n_{0}+1$, since the function $\epsilon(t)$ is bounded on $[B,+\infty)$.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$. Assuming (b), let $\lambda>1$ and $n \geq n_{0}$. Then

$$
\frac{c_{[\lambda n]}}{c_{n}}=\exp \left\{\tilde{\mu}_{[\lambda n]}-\tilde{\mu}_{n}+r_{1}(\log [\lambda n])-r_{1}(\log n)+\sum_{k=n+1}^{[\lambda n]} \frac{\delta_{k}}{k}\right\}
$$

Since

$$
\begin{gathered}
\lim _{\lambda \rightarrow 1+n \rightarrow+\infty} \varlimsup_{n \rightarrow \infty}\left(\tilde{\mu}_{[\lambda n]}-\tilde{\mu}_{n}\right)=0 \\
\left|\sum_{k=n+1}^{[\lambda n]} \frac{\delta_{k}}{k}\right| \leq \sup _{k \geq n+1}\left|\delta_{k}\right| \cdot \int_{n+1}^{[\lambda n]+1} \frac{d t}{t-1}=\sup _{k \geq n+1}\left|\delta_{k}\right| \cdot \log \frac{[\lambda n]}{n}
\end{gathered}
$$

that is $\lim _{\lambda \rightarrow 1+} \varlimsup_{n \rightarrow+\infty}\left|\sum_{k=n+1}^{[\lambda n]} \frac{\delta_{k}}{k}\right|=0$, and r_{1} is a uniformly continuous function on the interval $\left[\log n_{0},+\infty\right)$, we get that

$$
\lim _{\lambda \rightarrow 1+n \rightarrow+\infty} \varlimsup_{\varlimsup_{n}} \frac{c_{[\lambda n]}}{c_{n}}=1
$$

In other words, $\left(c_{n}\right)$ is a $*-$ regularly varying sequence.

References

[1] Bingham, N. H., Goldie, C. M., Teugels, J. L., Regular variation, Cambridge Univ. Press, Cambridge, 1987.
[2] Bojanić, R., Seneta, E., A unified theory of regularly varying sequences, Math. Z. 134 (1973), 91-106.
[3] Cline, D. B. H., Intermediate regular and Π-variation, Proc. London Math. Soc. (3) 68 (1994), 594-616.
[4] Djurčić, D., \mathcal{O}-regularly varying functions and strong asymptotic equivalence, Journal Math. Anal. Appl. 220 (1998), 451-461.
[5] Galambos, J., Seneta, E., Regularly varying sequences, Proc. Amer. Math. Soc. 41 (1973), 110-116.
[6] Grow, D., Stanojević, Č. V., Convergence and the Fourier character of trigonometric transforms with slowly varying convergence moduli, Math. Ann. 302 (1995), 433-472.
[7] Schmidt, R., Uber divergente Folgen und lineare Mittelbildungen, Math. Z. 22 (1925), 89-152.
[8] Stanojević, Č. V., O-regularly varying convergence moduli of Fourier and FourierStieltjes series, Math. Ann. 279 (1987), 103-115.
[9] Stanojević, Č. V., Structure of Fourier and Fourier-Stieltjes coefficients of series with slowly varying convergence moduli, Bull. Amer. Math. Soc. 19 (1988), 283-286.

Technical faculty, Svetog Save 65, 32000 Čačak, Serbia and Montenegro

