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Abstract. We show that inclusion order and single-step inclusion coincide for higher
Bruhat order$8(n, 2), i.e.,B(n, 2) = Bc(n, 2).

1. Preliminaries

Higher Bruhat orders were introduced by Manin and Schechtman [5] as generalizations
of the weak Bruhat order on the symmetric gr@pFurther investigators of the subject
are Voevodskij and Kapranov [6], Ziegler [7], Edelman and Reiner [1], [2], and Felsner
and Weil [3]. We review the definition.

Theseth] = {1, ..., n}is equipped with the natural linear order. The setefement
subsets ofif] is (I). For X e (I) with s > i > 1 we letX!!) denote the sexX minus
theith-largest element oX (e.g.,{3, 5.8, 9}!% = (3,8, 9}). For a setP e (I") the set
of its s-element subsetgPY, P21 PIst1} is called ans-packetwhich we also
denote byP, where this can be done unambiguously.Eéie a system of finite sets. The
single-step inclusioorder onsS is the transitive closure of the relatienon S defined
by S< Siff Sc S and|S\S| = 1.

Definition 1. A subsetA C ([2]) is calledconsistentf its intersection with anys-
packetP is either a beginning or an ending segment with respect to the lexicographic
ordering of P, or equivalently if for any such pack&and 1<i < j <k <s+ 1the
intersection ofA with { P, PLil| Pk} js neither{ PLi, Pk} nor {PLil}.

Thehigher Bruhat order Bn, s— 1) is the set of consistent subsetd) ordered by
single-step inclusion. The partial order on this set by ordinary inclusion will be denoted
by Bc(n, s — 1).
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In what follows it is preferable to work witB(n, s) rather than wittB(n, s — 1). To
avoid confusion on the readers part we change letters $rtam (of courses =r + 1).

B(n,r) is a graded poset with uniqgue minimal and maximal elemgread (r[_’;]l),
respectively. The rank of a consistent geis | A|.

Further structural properties of higher Bruhat orders have been studied, in particular
by Ziegler [7, Section 4]. He characterizes the péirg ) such thaB(n, r) is a lattice.
Ziegler also shows th&(n,r) = B<(n,r) forr = 1 and fom—r < 4 while B(8, 3) #

Bc (8, 3). He left open the question whethB(n, 2) is ordered by inclusion fon > 6.
Our main result is the affirmative answer to this question.

In the remainder of this introductory section we give alternative definitions for higher
Bruhat orders and relate consistent subse(égbfto arrangements of pseudolines and
the notation customary in studies of such arrangements. Readers with an appropriate
background may skip this part and proceed to Section 2.

Manin and Schechtman defined the higher Bruhat dBderr) as equivalence classes
of admissible permutatioref (). A permutationr of the elements o) isadmissible
ifthe elements of evemrpacketP occurinz inlexicographic or in reverse-lexicographic
order. In the second case packetis called aninversionof 7. Two admissible per-
mutationsz and ' are equivalentif there is a sequence of admissible permutations
T = 7o, 71, ..., = ' suchthatfok =1,...,t — 1 permutationsrx_, andmy only
differ by an adjacent transposition of two elemeRtsX’ which are not contained in a
common packet, i.e., two elemeris X" with [ X N X'| <r — 1.

Ziegler [7] shows that admissible permutation:{[blﬁ are equivalent iff they have the

same sets of inversions and that a subs(aﬂlﬁ is consistent iff it is the set of inversions

of an admissible permutation (Jf]) Hence, the two definitions for higher Bruhat orders
are equivalent.

An admissible permutation c(fgl) is just a permutation ofr] and consistency cor-
responds to transitivity of the inversion and the noninversion relation. Hence, the higher
Bruhat orderB(n, 1) is the weak Bruhat order of permutations.

Admissible permutations c(i{'z‘]) have shown up in different facings. In studies on
Coxeter groups they are the reduced decompositions of the reverse permutation. They
are also the sequences of moves of a half-period (beginning with the identity) of a simple
allowable sequence as defined by Goodman and Pollack [4]. Allowable sequences were
introduced as a combinatorial model for arrangements of pseudolines. Of interest to
us is the following statement: Admissible permutations{[gib encode simple marked
arrangements of pseudolines and consistent subscﬁ@)oare in bijection with these
arrangements.

Informally, a simple marked arrangements of pseudolines consistswi/es which
begin at the left side of the page and move across to the right side such that each pair
of curves will cross and no three curves cross at a single point. Given an arrangement
A label the pseudolines curves) such that at the left side they enter the picture in
the natural order from bottom to top. Consider a trifilel;, I} of pseudolines with
i < j < kin A. This triple can induce two combinatorially different arrangements.
Either the crossing df andl, is abovd; or below. In the first case the patis j}, {i, k},
and{j, k} appear in lexicographic order in the corresponding admissible permutation,
in the second case the triplie j, k} is an inversion. If the region enclosed byl;, and
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Fig. 1. Elementary flip at the shaded triangle.
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I is a triangle, we can apply an elementdig to obtain another arrangement which
combinatorially differs from the original one only in the orientation of this one triangle.
This corresponds to a single step in the higher Bruhat order, i.e., to two consistent sets
that differ in just one triple. Figure 1 shows the wiring diagrams corresponding to the
consistent setfl45, 234, 235, 245, 345} on the left and 135, 145, 234, 235, 245, 345}

on the right.

Geometric interpretations of consistent sets have been the driving force for defining
and investigating higher Bruhat orders (see [5]-[7] and [3]). Ziegler shows a bijection
between consistent sefsc B(n, r) and uniform one-element extensions of the alter-
nating oriented matroi€™"~". By oriented matroid duality this also gives a bijection
between consistent sets and one-element lifting3"of

Let A C (") be a consistent set and € (["). Define an orientation> x of the

r+1 r—1
complete graph with vertex set][\ A. For two vertices, j withi < j let

joxi =  XU{i,jleA

ClaimT. The orientation— x is transitive i.e., the graph is a transitive tournament

Proof. We argue by contradiction. Assume that the graph contains a cycle and hence a
cycle on three vertices j, k, we assume < j < k. We distinguish two cases:

(1)|—>Xjﬁxk—>xl
2 k—>xj—oxi—>xk

The first case yieldX U {i, j} ¢ A X U{i,k} € A, andX U {j,k} ¢ A, and the
second caseyields U {i, j} € A, XU{i,k} ¢ A,andX U {j,k} € A.Sincei < j <k
it follows that in lexicographic ordeX U {i, j} <ix X U {i,k} <jex X U {j, k}. In
both cases we obtain a contradiction to the consistendywith respect to the packet
X Ui, j, k}. O

Transitive tournaments have a unique topological sorting, hence, we get a collection
of linear orderings or permutationss of [n]\X for every X e (r[f]l) associated to
A € B(n, r). We call thenlocal sequences

If r = 2, i.e., when we have an arrangement of pseudolines correspondfgato
local sequence is a permutatiap, of [n]\{i}. This permutation reports the order in
which linel; is crossed by the other lines. Basically these areldhal sequences of
(un-)ordered switcheassociated to an allowable sequence by Goodman and Pollack [4].
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2. The Main Result

In this section we show that the single-step order and the inclusion order on consistent
subsets ofll)) coincide.

Theorem 1. B(n, 2) = Bc(n, 2) for all n.

To prove the result we show that for any two consistent gets B < ([g]) there
is a consistent sed’ satisfyingA < A’ and A’ C B. Iterating this argument we find a
single-step chai\ = A, Ay, ..., A, = B connectingA andB in B(n, 2).

Given consistent setd ¢ B C ([g]) we call a tripleT € B\ A adifference triple
From A c B it follows that for all nondifference triple§’ eitherT’ € AN B or
T’ ¢ AU B holds. LetA be an arrangement of pseudolines with inversion/setVe
will show that in A there is a triangular facE such that the three lines boundiifg
correspond to a difference triple. Call such a triplementaryGiven the trianglé= we
can apply an elementary flip to obtain an arrangero€rguch that its inversion st
has the desired properties, i.& < A'andA’ C B.

Fori < j < kthebasisof the triple{i, j, k} is the piece of lind; between the
intersections with line§ andly. Clearly an elementary triple has a basis which is an
edge of the cell complex induced by. Call the basis of a triple which is an edge in the
cell complex ofA anelementary basis

Let «; denote the local sequence of lihein A, i.e., the permutation ofn]\{i}
recording the order in which link is crossed by other lines. For a tridie, i,, i3} and
i1 < i, recall the following equivalence:

{is, iz iz} € A <« {i1,i2}isaninversion oty,. (%)

Lemma 2. There is a difference triple T with an elementary basis

Proof. Among all difference triplegi, j, k} withi < j < k choose one of minimal
width k—i. Let this triple beT = {i, j, k}. FromT ¢ A and(x) we see that on ling
the intersection with ling comes before the intersection with lihe

Claim A. For every x betweeni and k in the local sequeaceither x < i or x > k.

Proof. Suppose&x withi < x < Kk is betweeri andk one; denoted < x < k. Now
consider the order df x, k on the local sequengg of B. From{i, j,k} € B and(x)
we obtaink < i on g;.

If x < i, ong; we obtain from(x) that{i, j, x} is a difference triple. If < x < j the
width of this triangle isj — i, otherwise, ifi < | < x < k the width isx —i. In both
cases this contradicts our choice{fj, k} as a difference triangle of minimal width.

If x £1i,thenk < x ong;. Inthis casdx, j, k} is a difference triangle of width either
k — x ork — j. Again, this contradicts our choice ¢f j, k} as a difference triangle of
minimal width. |
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Claim B. There exists an elementary basis on the segmenbetiveen the crossings
with l; and .

Proof. If i andk are adjacent elements @f we are done. Otherwise, by Claim A we
can partition the elements betweleandk into elements< with x < i and elementy
with y > k. For anx we note that from < x on«; we obtain{x, i, j} € A. Hence,
{x,i, j} € B,i.e.,,i <xong;.Sincek < i ong; the triple{x, j, k} is a difference triple.
For an elemeny we obtain by an analogous argument tfiaf, y} is a difference triple.
If the element to the right of on «; is ay, the difference tripldi, j, y} has an
elementary basis and we are done. If the element to the letaf «; is anx, the
difference triple{x, j, k} has an elementary basis and we are again done. If both these
conditions fail, then we find an adjacent pait; y) with X < i andy > k ong;. Ong;
we havel < x <y < k while by the above consideratiogs< k < i < x on g;. This
shows thatx, j, y} is a difference triple with an elementary basis. O

This completes the proof of the lemma. O

We now consider a wiring diagram fod. Wiring diagrams are closely related to
allowable sequences. Informally, a wiring diagram is a drawing af which the edges
are associated to horizontal wires (see Fig. 1). For anedfid we sayeis on wirew if
the horizontal portion ofis on wirew. Let{i, |, k} be a difference triple with elementary
basis such that the basis{of j, k} is on the highest wire that contains elementary bases
in the diagram.

Lemma 3. The triple{i, j, k} defined in the preceding paragraph is an elementary
triple.

Proof.  Since the basis df, j, k} is elementary any ling crossing the triangle of the
three lined;, I, | enters the triangle through lingand leaves the triangle through line
I¢. It follows thati < x < k.

Ifi <x < j,then{i,x, j} € A hence{i, x, j} € B and ong; we havej < x. With
k < j on B; this shows thatfi, x, k} is a difference triple. Similarly, if < x < k, then
{j, %, k} € Aand{j, x, k} € B. Consideringgx we see that agaifi, x, k} is a difference
triple.

Let F be the face ofd above the edge dncorresponding to the basis f j, k}. The

boundary ofF consists of the bastsand edgesy, ..., & in clockwise order. Figure 2
shows a generic sketch of the situation. Note that in the wiring diagramtbé edges
€, ..., & are all on the wire above the wire bf

Claim C. Ift > 1,then one of the edges.e. ., &_1 is an elementary basis

Claim C gives a contradiction to the choice of the trifdlej, k} whent > 1. Therefore,
t = 1 and faceF is a triangle in4 This shows thati, j, k} is an elementary triple. To
prove the lemma it thus suffices to prove the claim.
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Fig. 2. FaceF above the elementary ba&is

Proof. If t = 2 letly be the supporting line o&. From the above considerations
we know that{i, x, k} is a difference triple. The basis of the triple is edgghence is
elementary.

If t > 2 letly, be the supporting line of edgs for s = 1,...,t — 1. Note that
i < Xsp1 < konay, andk < i on Byx,. Therefore, at least one ¢f, Xs, Xs11} and
{Xs, Xs+1, K} is a difference triple. Fas = 1, ..., t — 2 let ps be the vertex oés N ey 1.
Color ps red if {i, xs, Xs11} is a difference triple and blue otherwise.

If p1isared vertex, theg is an elementary basis. ff_» is a blue vertex, thea_;
is an elementary basis. Now assume tbgis blue andp;_» is red, then there is sonse
such thatps is blue andps;4 is red. Note thaks < Xs11 < Xs2 andXs < Xs2 ONay,, .
From the definitions of red and blue vertices we obfair X5 andXs.2 < i on By,,.
Hence{Xs, Xs11, Xs+2} is a difference triple with elementary basis ;. This proves the
claim and completes the proof of the lemma. O

Lemmas 2 and 3 prove the theorem. O

3. Reorientations

If we fix a consistent sed; in B(n, r) we can reorient this order to obtaBf* (n, r). For
A; € B(n, r) we define the correspondimgoriented inversion set A* in B (n, r) as
the symmetric differencé, A A;. The order relation oB”:(n, r) is the single-step order
on these reoriented inversion sets. Again we deBﬁta(n, r) as the order on the same
elements with inclusion as order relation. Ziegler [7] initiated the study of reoriented
higher Bruhat orders. He showed that reorientations lack some of the structure of higher
Bruhat orders. In particular he shows that wHiiés, 3) is ordered by inclusion there is
a consistent sef € B(6, 3) such thatBA(6, 3) is not ordered by inclusion. He shows
that BA(6, 3) is not even bounded.

The following example shows a similar “bad” behavior for reorientationB @ 2).
Let A; and.A; be the simple arrangements shown in Fig. 3. Both arrangements have
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Fig. 3. Two arrangementsl; and.4, with corresponding triangular faces.

exactly four triangular faces determined by the following sets of ljae8, 5}, {1, 4, 6},

{2, 3, 4}, and{2, 5, 6}, moreover, the orientation of these triangles is the same in both
arrangements. It follows that starting frafy every possible triangular flip leads to an
arrangement with more 3-element sets of lines being oriented differently from their ori-
entationinA,. Hence, if we orienB(6, 2) away from the consistent st corresponding

to A4; there is no single element step toward the consisterAsebrresponding tod,.
Hence, every chain (in the inclusion order) froka to the complemen#; through A,

has length less tha). This example shows:

(1) Single stepinclusion and inclusion are not identical for the reorientBtfo(6, 2)
of B(6, 2) and henceB(n, 2) for all n > 6.

(2) Both, A; and A, admit no single step going down Br*:(6, 2), hence the reori-
entation is unbounded.

(3) Anarrangement of pseudolines is not (necessarily) determined by the orientations
of its triangular faces. Since the arrangemefisand.A, are realizable the same
holds for arrangements of lines.
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