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Abstract. We show that inclusion order and single-step inclusion coincide for higher
Bruhat ordersB(n,2), i.e., B(n,2) = B⊆(n,2).

1. Preliminaries

Higher Bruhat orders were introduced by Manin and Schechtman [5] as generalizations
of the weak Bruhat order on the symmetric groupSn. Further investigators of the subject
are Voevodskij and Kapranov [6], Ziegler [7], Edelman and Reiner [1], [2], and Felsner
and Weil [3]. We review the definition.

The set [n] = {1, . . . ,n} is equipped with the natural linear order. The set ofs-element
subsets of [n] is

([n]
s

)
. For X ∈ ([n]

s

)
with s ≥ i ≥ 1 we letXbi c denote the setX minus

the i th-largest element ofX (e.g.,{3,5,8,9}b2c = {3,8,9}). For a setP ∈ ( [n]
s+1

)
the set

of its s-element subsets{Pb1c, Pb2c, . . . , Pbs+1c} is called ans-packet, which we also
denote byP, where this can be done unambiguously. LetS be a system of finite sets. The
single-step inclusionorder onS is the transitive closure of the relationl onS defined
by Sl S′ iff S⊂ S′ and|S′\S| = 1.

Definition 1. A subsetA ⊆ ([n]
s

)
is calledconsistentif its intersection with anys-

packetP is either a beginning or an ending segment with respect to the lexicographic
ordering ofP, or equivalently if for any such packetP and 1≤ i < j < k ≤ s+ 1 the
intersection ofA with {Pbi c, Pb j c, Pbkc} is neither{Pbi c, Pbkc} nor {Pb j c}.

Thehigher Bruhat order B(n, s−1) is the set of consistent subsets of
([n]

s

)
ordered by

single-step inclusion. The partial order on this set by ordinary inclusion will be denoted
by B⊆(n, s− 1).
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In what follows it is preferable to work withB(n, s) rather than withB(n, s− 1). To
avoid confusion on the readers part we change letters froms to r (of courses= r + 1).

B(n, r ) is a graded poset with unique minimal and maximal elements∅ and
( [n]
r+1

)
,

respectively. The rank of a consistent setA is |A|.
Further structural properties of higher Bruhat orders have been studied, in particular

by Ziegler [7, Section 4]. He characterizes the pairs(n, r ) such thatB(n, r ) is a lattice.
Ziegler also shows thatB(n, r ) = B⊆(n, r ) for r = 1 and forn− r ≤ 4 while B(8,3) 6=
B⊆(8,3). He left open the question whetherB(n,2) is ordered by inclusion forn > 6.
Our main result is the affirmative answer to this question.

In the remainder of this introductory section we give alternative definitions for higher
Bruhat orders and relate consistent subsets of

([n]
3

)
to arrangements of pseudolines and

the notation customary in studies of such arrangements. Readers with an appropriate
background may skip this part and proceed to Section 2.

Manin and Schechtman defined the higher Bruhat orderB(n, r )as equivalence classes
of admissible permutationsof

([n]
r

)
. A permutationπ of the elements of

([n]
r

)
isadmissible,

if the elements of everyr -packetP occur inπ in lexicographic or in reverse-lexicographic
order. In the second case packetP is called aninversionof π . Two admissible per-
mutationsπ andπ ′ areequivalentif there is a sequence of admissible permutations
π = π0, π1, . . . , πt = π ′ such that fork = 1, . . . , t − 1 permutationsπk−1 andπk only
differ by an adjacent transposition of two elementsX, X′ which are not contained in a
common packet, i.e., two elementsX, X′ with |X ∩ X′| < r − 1.

Ziegler [7] shows that admissible permutations of
([n]

r

)
are equivalent iff they have the

same sets of inversions and that a subset of
( [n]
r+1

)
is consistent iff it is the set of inversions

of an admissible permutation of
([n]

r

)
. Hence, the two definitions for higher Bruhat orders

are equivalent.
An admissible permutation of

([n]
1

)
is just a permutation of [n] and consistency cor-

responds to transitivity of the inversion and the noninversion relation. Hence, the higher
Bruhat orderB(n,1) is the weak Bruhat order of permutations.

Admissible permutations of
([n]

2

)
have shown up in different facings. In studies on

Coxeter groups they are the reduced decompositions of the reverse permutation. They
are also the sequences of moves of a half-period (beginning with the identity) of a simple
allowable sequence as defined by Goodman and Pollack [4]. Allowable sequences were
introduced as a combinatorial model for arrangements of pseudolines. Of interest to
us is the following statement: Admissible permutations of

([n]
2

)
encode simple marked

arrangements of pseudolines and consistent subsets of
([n]

3

)
are in bijection with these

arrangements.
Informally, a simple marked arrangements of pseudolines consists ofn curves which

begin at the left side of the page and move across to the right side such that each pair
of curves will cross and no three curves cross at a single point. Given an arrangement
A label the pseudolines (= curves) such that at the left side they enter the picture in
the natural order from bottom to top. Consider a triple{l i , l j , lk} of pseudolines with
i < j < k in A. This triple can induce two combinatorially different arrangements.
Either the crossing ofl i andlk is abovel j or below. In the first case the pairs{i, j }, {i, k},
and{ j, k} appear in lexicographic order in the corresponding admissible permutation,
in the second case the triple{i, j, k} is an inversion. If the region enclosed byl i , l j , and
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Fig. 1. Elementary flip at the shaded triangle.

lk is a triangle, we can apply an elementaryflip to obtain another arrangement which
combinatorially differs from the original one only in the orientation of this one triangle.
This corresponds to a single step in the higher Bruhat order, i.e., to two consistent sets
that differ in just one triple. Figure 1 shows the wiring diagrams corresponding to the
consistent sets{145,234,235,245,345} on the left and{135,145,234,235,245,345}
on the right.

Geometric interpretations of consistent sets have been the driving force for defining
and investigating higher Bruhat orders (see [5]–[7] and [3]). Ziegler shows a bijection
between consistent setsA ∈ B(n, r ) and uniform one-element extensions of the alter-
nating oriented matroidCn,n−r . By oriented matroid duality this also gives a bijection
between consistent sets and one-element liftings ofCn,r .

Let A ⊆ ( [n]
r+1

)
be a consistent set andX ∈ ( [n]

r−1

)
. Define an orientation→X of the

complete graph with vertex set [n]\A. For two verticesi, j with i < j let

j →X i ⇐⇒ X ∪ {i, j } ∈ A.

Claim T. The orientation→X is transitive, i.e., the graph is a transitive tournament.

Proof. We argue by contradiction. Assume that the graph contains a cycle and hence a
cycle on three verticesi, j, k, we assumei < j < k. We distinguish two cases:

(1) i →X j →X k→X i .
(2) k→X j →X i →X k.

The first case yieldsX ∪ {i, j } /∈ A, X ∪ {i, k} ∈ A, andX ∪ { j, k} /∈ A, and the
second case yieldsX ∪ {i, j } ∈ A, X ∪ {i, k} /∈ A, andX ∪ { j, k} ∈ A. Sincei < j < k
it follows that in lexicographic orderX ∪ {i, j } <lex X ∪ {i, k} <lex X ∪ { j, k}. In
both cases we obtain a contradiction to the consistency ofA with respect to the packet
X ∪ {i, j, k}.

Transitive tournaments have a unique topological sorting, hence, we get a collection
of linear orderings or permutationsαX of [n]\X for every X ∈ ( [n]

r−1

)
associated to

A ∈ B(n, r ). We call themlocal sequences.
If r = 2, i.e., when we have an arrangement of pseudolines corresponding toA, a

local sequence is a permutationα{i } of [n]\{i }. This permutation reports the order in
which line l i is crossed by the other lines. Basically these are thelocal sequences of
(un-)ordered switchesassociated to an allowable sequence by Goodman and Pollack [4].
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2. The Main Result

In this section we show that the single-step order and the inclusion order on consistent
subsets of

([n]
3

)
coincide.

Theorem 1. B(n,2) = B⊆(n,2) for all n.

To prove the result we show that for any two consistent setsA ⊂ B ⊆ ([n]
3

)
there

is a consistent setA′ satisfyingA l A′ and A′ ⊆ B. Iterating this argument we find a
single-step chainA = A0, A1, . . . , At = B connectingA andB in B(n,2).

Given consistent setsA ⊂ B ⊆ ([n]
3

)
we call a tripleT ∈ B\A a difference triple.

From A ⊂ B it follows that for all nondifference triplesT ′ either T ′ ∈ A ∩ B or
T ′ /∈ A ∪ B holds. LetA be an arrangement of pseudolines with inversion setA. We
will show that inA there is a triangular faceF such that the three lines boundingF
correspond to a difference triple. Call such a tripleelementary. Given the triangleF we
can apply an elementary flip to obtain an arrangementA′ such that its inversion setA′

has the desired properties, i.e.,A l A′ andA′ ⊆ B.
For i < j < k the basisof the triple {i, j, k} is the piece of linel j between the

intersections with linesl i and lk. Clearly an elementary triple has a basis which is an
edge of the cell complex induced byA. Call the basis of a triple which is an edge in the
cell complex ofA anelementary basis.

Let αi denote the local sequence of linel i in A, i.e., the permutation of [n]\{i }
recording the order in which linel i is crossed by other lines. For a triple{i1, i2, i3} and
i1 < i2 recall the following equivalence:

{i1, i2, i3} ∈ A ⇐⇒ {i1, i2} is an inversion ofαi3. (∗)

Lemma 2. There is a difference triple T with an elementary basis.

Proof. Among all difference triples{i, j, k} with i < j < k choose one of minimal
width k− i . Let this triple beT = {i, j, k}. FromT /∈ A and(∗) we see that on linel j

the intersection with linel i comes before the intersection with linelk.

Claim A. For every x between i and k in the local sequenceαj either x< i or x > k.

Proof. Supposex with i < x < k is betweeni andk onαj denotedi ≺ x ≺ k. Now
consider the order ofi, x, k on the local sequenceβj of B. From{i, j, k} ∈ B and(∗)
we obtaink ≺ i onβj .

If x ≺ i , onβj we obtain from(∗) that{i, j, x} is a difference triple. Ifi < x < j the
width of this triangle isj − i , otherwise, ifi < j < x < k the width isx − i . In both
cases this contradicts our choice of{i, j, k} as a difference triangle of minimal width.

If x 6≺ i , thenk ≺ x onβj . In this case{x, j, k} is a difference triangle of width either
k− x or k− j . Again, this contradicts our choice of{i, j, k} as a difference triangle of
minimal width.
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Claim B. There exists an elementary basis on the segment of lj between the crossings
with li and lk.

Proof. If i andk are adjacent elements ofαj we are done. Otherwise, by Claim A we
can partition the elements betweeni andk into elementsx with x < i and elementsy
with y > k. For anx we note that fromi ≺ x on αj we obtain{x, i, j } ∈ A. Hence,
{x, i, j } ∈ B, i.e.,i ≺ x onβj . Sincek ≺ i onβj the triple{x, j, k} is a difference triple.
For an elementy we obtain by an analogous argument that{i, j, y} is a difference triple.

If the element to the right ofi on αj is a y, the difference triple{i, j, y} has an
elementary basis and we are done. If the element to the left ofk on αj is an x, the
difference triple{x, j, k} has an elementary basis and we are again done. If both these
conditions fail, then we find an adjacent pair(x, y) with x < i andy > k onαj . Onαj

we havei ≺ x ≺ y ≺ k while by the above considerationsy ≺ k ≺ i ≺ x onβj . This
shows that{x, j, y} is a difference triple with an elementary basis.

This completes the proof of the lemma.

We now consider a wiring diagram forA. Wiring diagrams are closely related to
allowable sequences. Informally, a wiring diagram is a drawing ofA in which the edges
are associated to horizontal wires (see Fig. 1). For an edgeeofAwe saye is on wirew if
the horizontal portion ofe is on wirew. Let{i, j, k} be a difference triple with elementary
basis such that the basis of{i, j, k} is on the highest wire that contains elementary bases
in the diagram.

Lemma 3. The triple {i, j, k} defined in the preceding paragraph is an elementary
triple.

Proof. Since the basis of{i, j, k} is elementary any linel x crossing the triangle of the
three linesl i , l j , lk enters the triangle through linel i and leaves the triangle through line
lk. It follows thati < x < k.

If i < x < j , then{i, x, j } ∈ A, hence,{i, x, j } ∈ B and onβi we havej ≺ x. With
k ≺ j onβi this shows that{i, x, k} is a difference triple. Similarly, ifj < x < k, then
{ j, x, k} ∈ A and{ j, x, k} ∈ B. Consideringβk we see that again{i, x, k} is a difference
triple.

Let F be the face ofA above the edge onl j corresponding to the basis of{i, j, k}. The
boundary ofF consists of the basisb and edgese0, . . . ,et in clockwise order. Figure 2
shows a generic sketch of the situation. Note that in the wiring diagram ofA the edges
e0, . . . ,et are all on the wire above the wire ofb.

Claim C. If t > 1, then one of the edges e1, . . . ,et−1 is an elementary basis.

Claim C gives a contradiction to the choice of the triple{i, j, k}whent > 1. Therefore,
t = 1 and faceF is a triangle inA This shows that{i, j, k} is an elementary triple. To
prove the lemma it thus suffices to prove the claim.
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Fig. 2. FaceF above the elementary basisb.

Proof. If t = 2 let l x be the supporting line ofe1. From the above considerations
we know that{i, x, k} is a difference triple. The basis of the triple is edgee1, hence is
elementary.

If t > 2 let l xs be the supporting line of edgees for s = 1, . . . , t − 1. Note that
i ≺ xs+1 ≺ k on αxs and k ≺ i on βxs. Therefore, at least one of{i, xs, xs+1} and
{xs, xs+1, k} is a difference triple. Fors= 1, . . . , t − 2 let ps be the vertex ofes ∩ es+1.
Color ps red if {i, xs, xs+1} is a difference triple and blue otherwise.

If p1 is a red vertex, thene1 is an elementary basis. Ifpt−2 is a blue vertex, thenet−1

is an elementary basis. Now assume thatp1 is blue andpt−2 is red, then there is somes
such thatps is blue andps+1 is red. Note thatxs < xs+1 < xs+2 andxs ≺ xs+2 onαxs+1.
From the definitions of red and blue vertices we obtaini ≺ xs andxs+2 ≺ i on βxs+1.
Hence,{xs, xs+1, xs+2} is a difference triple with elementary basises+1. This proves the
claim and completes the proof of the lemma.

Lemmas 2 and 3 prove the theorem.

3. Reorientations

If we fix a consistent setA1 in B(n, r )we can reorient this order to obtainBA1(n, r ). For
A2 ∈ B(n, r ) we define the correspondingreoriented inversion set A2A1 in BA1(n, r ) as
the symmetric differenceA24 A1. The order relation ofBA1(n, r ) is the single-step order
on these reoriented inversion sets. Again we defineBA1⊆ (n, r ) as the order on the same
elements with inclusion as order relation. Ziegler [7] initiated the study of reoriented
higher Bruhat orders. He showed that reorientations lack some of the structure of higher
Bruhat orders. In particular he shows that whileB(6,3) is ordered by inclusion there is
a consistent setA ∈ B(6,3) such thatBA(6,3) is not ordered by inclusion. He shows
that BA(6,3) is not even bounded.

The following example shows a similar “bad” behavior for reorientations ofB(6,2).
Let A1 andA2 be the simple arrangements shown in Fig. 3. Both arrangements have
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Fig. 3. Two arrangementsA1 andA2 with corresponding triangular faces.

exactly four triangular faces determined by the following sets of lines{1,3,5}, {1,4,6},
{2,3,4}, and{2,5,6}, moreover, the orientation of these triangles is the same in both
arrangements. It follows that starting fromA1 every possible triangular flip leads to an
arrangement with more 3-element sets of lines being oriented differently from their ori-
entation inA2. Hence, if we orientB(6,2)away from the consistent setA1 corresponding
toA1 there is no single element step toward the consistent setA2 corresponding toA2.
Hence, every chain (in the inclusion order) fromA1 to the complementA1 throughA2

has length less than
(6

3

)
. This example shows:

(1) Single step inclusion and inclusion are not identical for the reorientationBA1(6,2)
of B(6,2) and henceB(n,2) for all n ≥ 6.

(2) Both, A1 andA2 admit no single step going down inBA1(6,2), hence the reori-
entation is unbounded.

(3) An arrangement of pseudolines is not (necessarily) determined by the orientations
of its triangular faces. Since the arrangementsA1 andA2 are realizable the same
holds for arrangements of lines.
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