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Introduction. The object of this paper is to prove Theorem 2 of §2, which
shows, for any connexion, how the curvature form generates the holonomy
group. We believe this is an extension of a theorem stated without proof by
E. Cartan [2, p. 4]. This theorem was proved after we had been informed of
an unpublished related theorem of Chevalley and Koszul. We are indebted
to S. S. Chern for many discussions of matters considered here.

In §1 we give an exposition of some needed facts about connexions; this
exposition is derived largely from an exposition of Chern [5 ] and partly from
expositions of H. Cartan [3] and Ehresmann [7]. We believe this exposition
does however contain one new element, namely Lemma 1 of §1 and its use in
passing from H. Cartan's definition of a connexion (the definition given in §1)
to E. Cartan's structural equation.

1. Basic concepts. We begin with some notions and terminology to be
used throughout this paper. The term "differentiable" will always mean what
is usually called "of class C00." We follow Chevalley [6] in general for the
definition of tangent vector, differential, etc. but with the obvious changes
needed for the differentiable (rather than analytic) case. However if <p is a
differentiable mapping we use <j> again instead of d<f> and 8<(> for the induced
mappings of tangent vectors and differentials. If AT is a manifold, by which
we shall always mean a differentiable manifold but which is not assumed
connected, and mGM, we denote the tangent space to M at m by Mm. If W
is a vector field at M we denote its value at m by W(m), and if Xi, • • • , xk
is a coordinate system of M we always write X\ ■ ■ ■ , Xk for the cor-
responding partial derivatives, i.e. Xi = d/dxi. We use the word "diffeo" for a
1:1 differentiable mapping of one manifold onto another whose inverse is
also differentiable and call the manifolds diffemorphic. If W, W are vector
fields we write [W, W] for WW'—W'W (opposite to [ó]). Rk will always
denote ¿-dimensional Euclidean space of all ¿-tuples of real numbers and
8i, ■ • • , 8k will always denote the canonical unit elements there, i.e.  8,
= (8lj,  82j,   •   ■   ■   ,  8nj).

Let G be a Lie group (i.e. a differentiable group) acting differentiably and
effectively on a manifold F. It fGF and gGG we write gf for the image of/
under the action of gGG and if i is a tangent vector at/ we write gt for the
image of i (which will be a tangent vector of gf) under g. If 0 is a manifold
we denote by (0, F, G) the family of all transformations of OXF-^OXF
of the form: (o,f)—>(o, t(o,f)) when i is any differentiable mapping of OXF—*F
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such that, for each oGO, the transformation: /—»i(o, /) coincides with the
action of some gGG.

Definition. A bundle is a collection (¿?, M, F, G, ir, <p) where B, M, F are
manifolds, G is a Lie group acting difieren tiably and effectively on F, ir is a
differentiable mapping of B onto M, and <j> is a collection of mappings. It is
further assumed that

(1) each (¡>G$ is a diffeo of some OXF, where O is an open submanifold
of M, ontOTr-^O),

(2) (t o (p)io, /)= o for all (o,/) GOXF,
(3) ii<t>,\(/G^,<t>:OXF-^B,xP: PxF->B, 0#P(1), then (^T1 o^)| ((OHP)

XF)G(0AP, /?, G),
(4) the domains of the <p in $ cover 5,
(5) the family $ is maximal with respect to (1), (2), (3).
Then B is called the bundle space, M the base space, G the group, t the

projection, 4> the family of s/rip maps of the bundle. In the special case where
F and G are the same manifold and G acts as itself by left translation, the
bundle is called a principal bundle and denoted by (5, M, G, -w, <f>).

If </> is a strip map taking 0XF—>B, then for each mGO we define <pm: F
—>_?, by 0m(/) =4>im, /). If <?>, ̂ are strip maps and mGM is such that both
<pm and \pm are defined, then the definition of (0, F, G) and (3) show (p^1 o^m
coincides with the action of some gGG on F and in the case of a principal
bundle this means that (p^1 o \pm is a left translation by some gGG.

Definition. A tangent vector t at a point in a bundle is vertical ff(2)
7t/ = 0. The linear space of vertical vectors at bGB will be denoted by Vb.

A vector field A in the fiber F which is invariant under the action of G
gives rise, in a way we shall now describe, to a vertical vector field Q on B
(by a vertical vector field we mean one that assigns a vertical vector at each
point). To define Qib) consider any strip map <f>: OXF—>B, such that b
G<l>iOXF). If <pmif)=b we define Qib) =<pmAif). This definition is inde-
pendent of the strip map <j> because if \p is another such strip map then
(pm1 o\pm agrees with the action of some gGG. Hence 4,mif)=(pmigf) for all
fG F and then, using the invariance of A, we have xpmA if) =<pmgAif) =<pmAigf).
If A is differentiable, then so is W and the mapping thus defined, taking
A—*W, preserves brackets (these properties are immediate from the fact
that the strip maps <p are diffeos). In particular, if the bundle is a principal
bundle, the invariant vector fields on the fiber are the left invariant vector
fields of the group G and these constitute the Lie algebra L of G. Hence in
this case the mapping taking A-+W is an iso(3) of the Lie algebra L oí G onto
a Lie algebra of vertical vector fields on B. Throughout this paper we shall,

(!) 0$P means 0 and P have a non-null intersection. Similarly 0||P will mean 0 and P
have a null intersection.

(2) ff means: if and only if.
(3) We shall omit the appendage "morphism" from an obvious maximal set of words.
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in the case of a principal bundle (and principal bundles will be the only ones
we shall seriously consider), reserve the letter q for this iso and the letter Si
for its image q(L). If i is a vertical vector at bGB, then it is trivial that
there exists a unique QGQ such that Q(b) =i; we then say Q is generated by i
and if Q = q(A) we also say A is generated by i.

If (B, M, G, -w, 3>) is a principal bundle, then G can be made to act on B
in a natural way that is called right translation. This differentiable and effec-
tive action of G on B is defined as follows. If bGB, gGG, <f> any strip map,
</>: OXF^B, bG<i>(OXF), then write b=<b(m, h) and define bg=<p(m, hg).
This definition of bg is independent of the choice of the strip map <p because,
for any other strip map \p, (bñ1 o \pm is a left translation on G and left trans-
lations commute with right translations on G. The right translation action
of G on B is the mapping of BXG—>B: (b, g)—*bg. The mapping of B—*B
taking b—>bg (for any fixed gGG) will be denoted by Rg and right translation
by g on G will also be denoted by Rg; left translation by g on G will be de-
noted by Lg. If 0 is any strip map of B, then clearly <pm o R„ = Rg o <f>m.

We denote the inner auto(3) of G, corresponding to gGG, by ce(g), i.e.
a(g)h=ghg~1 tor hGG, and if AGL (L the Lie algebra of G) we write a(g)^4
for the element of L defined by: (a(g)A)(e) =a(g)A(e). a(g)A is sometimes
denoted by adgA. For QGQ we define a(g)QGSl by a(g)Q = q(a(g)A), when
Q = q(A). Then RgQ = a(g~1)Q, for if <f> is any strip map of B and <b(h) =b then
(a(g-i)Q)(b) =<p((a(g-i)A)(h)) =<¡>(Lh o R„ o Lg-*A{e)) =4>(Rg o Lhg^A(e))
= 4>(R<,A(hg^y = (<¡> o R„)A».-*) = {R. o <l>(A(hg-i) =R„Q(hg-i).

Some principal bundles of special interest are the bundle of bases E(M)
over any manifold M and the bundle of frames F(M) over a Riemannian M.
We now define E(M). The points of E(M) are all the ordered (¿ + l)-tuples
(m, ei, • • • , ed) where mGM and (ei, • ■ • , ed) is any base of Mm. The projec-
tion 7T of E(M) onto M is defined by ir(m, eu - • • , ed) =m. The group (and
fiber) G is the full linear group over the reals, i.e. the group of all nonsingular
linear transformations of Rd onto itself. With each point b of E(M) we can
associate an iso lb of Mm onto Rd by writing b = (m, e\, • • ■ , ed) and defining
h to be the linear transformation taking e~->5,- (for all i); and conversely, so
the points of E(M) could have been defined as the pairs (m, I) where / is
such an iso. In this example it is convenient to define the action of G on the
bundle before defining the bundle structure. We do this by: if b
= (m, ei, - - - , ed), then bg = (m, Ib~1glbei, ■ • • , Ib~1glbed); this implies that
hg takes (I^1 o ¡ o Jj)«,->/¡, hence Ibg o I^1 o g o h = h from which it is
clear that hg = g~1 o Ib (a fact that will be useful later). For any coordinate
system Xi, • • ■ , xd of M with domain 0 we define <p: 0 XG—*E(M): (m, g)
—*Rg(m, X'(m), ■ ■ ■ , Xd(m))(*) (now writing Rgb for the bg just defined).
We introduce coordinates yu ■ - ■ , yd, yn, ■ - - , ydd of E(M), with domain
irKO), by

(4) The notation/:^—»Y: x-*y means/ is a function from X to Y taking x into y.
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y i = XjO(b,        6j = X yaim, eu ■ ■ ■ , e^X^m).
i

Such coordinate systems of EiM) obtained from different coordinate sys-
tems of M are easily seen to be differentiably related. Since their domains
cover EiM) they define a unique differentiable structure on EiM), and this
defines EiM) as a manifold. Now let Xi, • • • , x¿ and x{ , ■ ■ ■ , xj be any two
coordinate systems of M with domains 0 and 0', let <p and <p' be the mappings
they define as above, and we shall show (<p_1 o <p') \ HOÍ\0') XG) is in
iOr\0', G, G). If mGOr\0', b=4>im, e) = (m, X'im), ■ ■ ■ , Xdim)), b'
= <p'im, e)=im, Xnim), • • • , X'dim)), then ^<p'm takes gGG into the A£G
such that I0~1gIbX'im)=Ib~1hIb>Xuim), i.e. g goes into the h such that
Jï1g^i — Jb'1hbi (for all i). Hence h = Ib> o Ibl o g, showing that cpñ1 o <p'm is left
translation by k = h> o I^1 on G. And from this expression for k it is easily
seen that k is a differentiable function of m, thus (c/>_1 o <p') | ((OP\0') XG) is
in iOr\0', G, G). We define $, the family of strip maps of this bundle, to be
all <p obtained from coordinate systems of M as above plus all other map-
pings \p of any PXG-^EiM) which satisfy conditions (1) and (2) in the
definition of a bundle and the condition that (^-1 o <p) | ((OOP) XG) is in
iOr^P, G, G) for such <p as above. Clearly the Ra defined by this bundle
structure agrees with the Ra used above.

The bundle FiM) is defined similarly, the points in this case being of the
form im, e_, • • • , e_) where m G M and the e¿ are any orthonormal base of
Mm. FiM) is in a natural way a submanifold of EiM).

Definition. A connexion H on a principal bundle <B = (.£?, M, G, w, _»)
is a mapping which assigns to each bGB a linear subspace Hb of Bb such that

(1) Hb is a linear complement to F¡,; elements of Hb will be called Äon-
zontal vectors.

(2) H is invariant under the action of G on B, i.e. Hbg = RgHb,
(3) i7j depends differentiably on b, i.e. if W is any differentiable vector

field on B, HW its horizontal part (i.e. HW is the vector field which assigns
at each bGB the projection of Wib) into Hb), HW is differentiable.

Notation. If W is any vector field on such a B with a connexion H we
shall always write HW and VW for the horizontal and vertical parts of W;
differentiability of W trivially implies that of VW.

If H is a connexion on B then, for each bGB, ir\Hb is an iso of Hb onto
Mm, where m = wb. This is immediate from: (1) t maps Bb onto Mm, (2)
irVb = 0, (3) dim /Y6 = dim Afm.

Definition. If H is a connexion on B and bGB, the holonomy group oí H
attached to b, denoted by Gib), is the set of all gGG such that bg can be joined
to b by a piecewise-differentiable(6) horizontal curve in B. The null holonomy

(5) By a piecewise differentiable curve we mean a curve which is differentiable and has a
nonzero tangent vector except at a finite number of points. By horizonal we mean that the
tangent vector is in Hi, at all points b on the curve for which the tangent vector exists.
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group of H attached to b, denoted by G0(b), is the set of all gGG such that bg
can be joined to b by a piecewise differentiable horizontal curve in B whose
projection into M is null-homotopic.

It is trivial that G(b) and Go(b) are subgroups of G and that if c = bg
then G(c)=g^G(b)g, G„(c) =g-1G0(%.

If H is a connexion on E(M), then the holonomy group is related to the
notion of parallel translation along curves in M so we briefly indicate here
how parallel translation is derived from the above concept of a connexion.
Let H be a connexion on E(M). If p is any piece-wise differentiable curve in
M, from m to m', we shall define a linear transformation T of Mm onto Mn>
and this linear transformation is called parallel translation along p. To define
T let a be any horizontal curve in E(M) lying over p (i.e. p = 7r o a). Then a
starts at some point (m, eu ■ ■ ■ , ed) and ends at some point (m', e[, • ■ ■, ed).
We define T to be the unique linear transformation taking e—*e[ (for all i).
The horizontal curve a lying over p is not unique, but because of the in-
variance of H under the action of G on E(M) it is easily seen that T is inde-
pendent of the choice of a. The existence of a horizontal curve a lying over
p can be shown as follows (note that this construction is valid for any con-
nexion, not necessarily on an E(M)). Consider any curve r lying over p in
B—and such curves trivially exist by virtue of the local cross section given by
strip maps. Consider the submanifold B' of B consisting of all fibers which
contain a point of t, with the natural differentiable structure in which it is
locally the product space of the fiber by the parameter along r. We define a
vector field W on B' by translating the tangent vector to r up and down
each fiber in B' under the action of G on B. Then HW is a vector field on B'
any of whose integral curves will be such a a. In terms of parallel translation
we thus can consider the holonomy group of a connexion on E(M) to be a
group of linear transformations on the tangent space at a point of M.

A connexion H on B gives rise to a 1-form w, the values of a lying in the
Lie algebra L oí the group G of the bundle, co is defined by: if tGBb then
o)(t)= the element of L generated by Vt, i.e. (a(t) is the unique AGL with
(qA)b= Vt. Clearly a has the following properties.

(1) co is differentiable(6),
(2) if i is vertical, then co(i) is the element of L generated by t,
(3) w o Ra = (adg-1)a, i.e. if tGBb then a(Rgt) = (adg~l)(u(t)).
We have (3) because VRet = RgVt and RgA=(adg-1)A for AGL. Con-

versely, any 1-form co on B with values in L and satisfying (1), (2), (3) gives
rise to a connexion H defined by: Hb= [tGBb\u(t) =0]. We call co the \-form
of the connexion.

In differentiating a real-valued differentiable differential p-lorm 9 we shall
frequently make use of the formula:

(6) For a form « whose values lie in a finite-dimensional linear space over R, differenti-
ability means that for every linear functional/from the vector space to R,f o » is differentiable.
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ddiWi, ■ ■ ■ , Wp+i)

- -—-5_ i-iy^wmwi, • ■ •, Wi, • • •, wp+i)
p + 1 i=l

+ —— X i-i)i+iei[wu w¡], wu ■ •., Wi, ■ • ■, wh ■■■, wP+i)
p +1 i<i

which can be used to define dB. I.e. this formula holds for any p + 1 differenti-
able vector fields Wi, ■ ■ ■ , Wp+i, and if this formula holds at a point for all
choices of Wi, ■ ■ • , Wp+i from a family of vector fields which span the
tangent space at that point, then this determines dd at the point. If 6 is a dif-
ferentiable differential form with values in a finite-dimensional vector space
over R, we define dd in the usual way via linear functionals, i.e. dd is the
unique form such that / o dd = difo6) for all such linear functionals/

Definition. If II is a connexion or a principle bundle with bundle space
B we define the covariant derivative DO of a differentiable p-form 6 on B (when
the values of 6 lie in any finite-dimensional vector space over R) to be the
iP + l)-iorm on B defined by

iDd)ih, • • • , tp+i) = ddiHh, ■ • • , Htv+l)

where h, ■ ■ ■ , tp are any elements of Bb. I.e. D is the exterior derivative fol-
lowed by the dual of the projection H. Clearly Dd is differentiable.

Definition. If H is a connexion whose 1-form is «, we define the curvature
form Q, of the connexion by £_ = />«.

It is easily seen that 12 o Rg = iadg~1)U, i.e. ñ(_t,íi, R0t2) = adg~lQ,iti, t2)
for any ti, t2GBb. This follows from the corresponding fact for w and the facts
(which are verified by simple computations) that if a form 6 with values in
L satisfies this relation, then so do dd and H*6, where II* is the dual of H,
i.e. iH*d)ih, • ■ • , tp)=6iHti, • • • , Htp).

We now explain, in the case of a bundle of bases EiM), the geometric
reason for calling this £2 the curvature. We show that £2 defines, at each mGM
and for each s, s'GMm, a linear transformation Ts,s>, where this transforma-
tion can be considered as the effect of translating vectors parallel to them-
selves around the "infinitesimal parallelogram" spanned by 5 and s'; so this
transformation, as a function of 5 and s', is a measure of how M "curves" at
m—this "curving" depending on the connexion. We also point out in the case
of a Riemannian connexion how to get the Riemannian curvature, which is a
number depending on m, s, s', from PS,S'.

Let s, s'GM, consider any b in EiM) lying over m (i.e. irb = m) and any
horizontal differentiable vector fields K and K' defined on a neighborhood of
b such that irK~ib) =s, irK'ib) =s'. We define for each small positive number ô
a "circuit" 7s, which is a piecewise differentiable horizontal curve consisting
of four differentiable pieces, as follows. Take the integral curve p oí K with
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p(0)=b, then an integral curve p' of K' with p'(0)=p(o), then an integral
curve <r of K with <r(0) = p'(5), then an integral curve a' of K' with o-'(0)
= a( — 8). The circuit y¡ will be the curve obtained by going along p from

p(0) to p(8), then along p' from p(8) =p'(0) to p'(8), then along a from p'(8)
= cr(0) to cr( —5), then along a' from a( — 8) =<r'(0) to <r'( — 8). Next we con-
sider the curve made up of the end points of these circuits, suitably para-
metrized, i.e. we define 7(i) = final point of ytw. (This is our definition of y for
i>0; for i <0 we can define it similarly or we can ignore all t <0.) If we define
7(0) =b, then 7 is a differentiable curve whose tangent vector at b is
[K, K'](b) (this is just the geometrical significance of the bracket operation,
applied to our K and K'). Let r,¡ and r, be the projection of 7s and 7 into M.
Note that r,¡ is a closed curve if and only if the final point of 75 lies on the
same fiber as b and in this case b = (m, e\, ■ ■ ■ , ed), the final point of 7{ is
(m, fi, • ■ • ,fd), and parallel translation around r,s is the linear transforma-
tion taking e,—tf<; this parallel translation gives rise to an element gGG
(G the linear group), namely the g such that Rg(m, ei, - - - , ed)
— («,/ii ■ " " 1 fd). In general 175 is not closed and the final point of y s does not
lie on the same fiber as b, however the vertical component of the tangent
vector to 7 at & is an infinitesimal analogue of the transformation mentioned
above carrying e¿—1/"¿. The element A of L (L the Lie algebra of G) gen-
erated by the vertical component of the tangent vector to 7 at J is an in-
finitesimal analogue of the above g and we point out in the next paragraph
how, through A, the vertical component of this tangent gives rise to a trans-
formation T,tS> on Mm. This Ts¡e>, as a function of s, s', m (s and s' in Mm),
determines the curvature form il and conversely.

By definition of the 1-form co of the connexion we have A =u([K, K'](b))
and a simple calculation (which is given in the proof of Theorem 2 below)
shows w( [K, K'](b)) = -Sl(K(b), K'(b)). Thus we have shown that if i and t'
are the unique horizontal elements of Bb which project to s and s' (we can
discard the vector fields K and K' at this point), then the element A of L
generated by the vertical component of the tangent vector to 7 at & is given
by A = — fi(i, t'). Because G is the linear group, each AGL gives rise to a
linear transformation TA on Rd defined by: f(TAx) =A(e)fx, where / is any
linear function on Rd and /„ is the function defined on G by fx(g) =f(gx), for
xGRd- (In terms of the usual coordinates x,-3- on G this just defines TA as the
linear transformation whose matrix with respect to the base 81, - ■ ■ , 8d is
(A(e)xi¡).) We define Tey=Ib1 o TA o Ib, where Ib is the mapping defined
above of Mn onto Rd, associated with b. It remains only to show this defini-
tion is independent of the point b over m—a consequence of the behavior
of fi under R0. To prove this let bg be another point over m, h and t{ the hori-
zontal vectors at bg that project to 5 and 5', so Rgt = ti, Rgt'=t{, and let
Ai"-Q{h,  ii).   Because  fi(ii,  tl) = Q,(Rgt,  R„t')=adg-1Sl(t,   t')   we  have
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TA=g~lTAg. Then using that Ibg = g~1oIb we have Ibg o TA o Ibg = /¿"1
o g o g-1 o TA o g o g~l o h = Ibl o TAo Ib.

Consider now a Riemannian connexion on EiM) (the Riemannian con-
nexion is usually considered on the bundle of frames FiM) but may equally
well be considered on EiM)—or any principal bundle containing FiM) as a
sub-bundle). I.e. we have a scalar product (, ) on each Mm which is a dif-
ferentiable function of m and H is the unique connexion on EiM) with torsion
zero (torsion is discussed at the end of this section) and such that parallel
translation preserves the scalar product. Then the function considered above
which assigns to each s and 5' in Mm the linear transformation T,,,> can be
characterized by the simpler function K which assigns to each such 5 and s'
the number K — (Ti:S>s, s')/ais, s')2 where a(s, s') is the "area" of the parallelo-
gram spanned by 5 and 5', i.e. ais, s') = i\\s\\2\\s'\\2—(s, s')2)112. It is easily
seen that i-(s, s') does not depend on 5 and s' but only on the plane section
(i.e. linear subspace of Mm) spanned by 5 and s'. This K is the Riemannian
curvature.

For the proof of the structural equation of a connexion we need the fol-
lowing lemma, which might be called the vector field formulation of the
structural equation.

Lemma. Let H be any connexion on a principal bundle with bundle space B,
and £>, as above. If K is any horizontal vector field on B and QGQ. then [K, Q]
is horizontal.

Proof. We need first the fact: if A and B are vector fields on a Lie group
G with A left invariant and B right invariant, then [A, B] =0. This can be
proved as follows.  Define vector fields A' and B' on GXG by: A'ig, h)
= J0Aih), B'ig, h)=IhBig) where

Ih:G-+GXG:g-*ig, h);       Jg:G->GXG;        A-»(g, A).

Then [A1, B'] =0 for if we consider any (g, h)GGXG and choose coordinates
Xi, • • • , xn on a neighborhood of g, coordinates yi, ■ ■ ■ , yn on a neighbor-
hood of h, then __'= Xa¿^\ B'= XX'-^ where the a¿ depend only on the
yy-coordinates and the &¿ depend only on the x3-coordinates. Computation
shows <-vl' = A and _>_?' = B where i> denotes group multiplication in G. Hence
[A,B]=0.

It follows that for any vertical vector field W on ir_1(0) (0 any open sub-
set of M) which is invariant under the action of G on B we have [W, Q] =0
for all QG-t

Now consider any strip map </>: OXG—*B where there exists a coordinate
system xx, • • • , x<¡ of M with domain 0 and let x3- = Xj-o ir. We call a co-
ordinate system of B special if it consists of the functions yi, ■ ■ ■ , y<¡ plus
some functions _x, • • • , zk which are carried over by <j> from a coordinate
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system Vi, ■ ■ ■ , vk of G (i.e. Zj = vj o p o c6~' where p: OXG—>G: (m, g)—*g));
if the domain of Vi, ■ ■ ■ , vk is P, then the domain of this special system is
</)(0XP). If we have two special coordinate systems (special, that is, for the
same <p and Xi, • • • , xd) then at any point b common to their domains the
partial derivative with respect to y¡ at b defined through the two coordinate
systems is easily seen to be the same tangent vector and we denote the
vector field thus defined throughout ir_1(0) by Y', i.e. Y'(b) is the partial
derivative with respect to y¡, where y%, - • • , yd, Zi, • • • , zk is any special
coordinate system whose domain includes b. Then wYi = Xi and RgY'= Y'.
Write Y'^K'+W' with K> horizontal and W> vertical. We next show
[K*, Q] =0 for all QG%., by showing separately that [ Yk, Q] =0 and [W, Q]
= 0.

To prove [Y>, Q]=0 consider any £>£7T_1(0) and a special coordinate
system yi, • • ■ , yd, Zi, ■ ■ ■ , zk at b. The expression for Q in these coordinates
involves only the z¿ and with coefficients that depend only on the z,-. Hence
[Y\ Q] =0. To prove [K', Q] =0 it is sufficient, by a remark made above, to
show RgK' = K'. Because RgKj is horizontal, RgW> is vertical, and the hori-
zontal vectors at any point are a linear complement to the vertical vectors,
this follows from

Ki + W' = Y* = RgY' = RgK> + RgWK

Now consider any horizontal vector field K defined on a neighborhood of
any bG<l>(0XG). Using the above notation, the K> form a base for the hori-
zontal vectors throughout <p(0XG) (because of the iso of Hb with Mm and
the fact that the X1 are a base for Mm) so K= £ayÄT'. Then

[K, Q] =  [£ afK*. 0] = £ aj[K', Q] - £ (Qa,)K' = - £ (Qa/)KK
Theorem 1. (The structural equation of a connexion). If H is any con-

nexion on a principal bundle with bundle space B, co is the l-form of the con-
nexion, and fi is the curvature form of the connexion, then

dtà ■» — [co, co]/2 + 0,

i.e. for any bGB and s, tGBb we have

dw(s, t) = -  [w(s), co(i)]/2 + Q(j, i).

Proof. The formula mentioned above for the differential of a real-valued
differentiable differential ¿»-form 0 becomes, in case p = l,

dd(w, W) = (we(W) - we(w) - e([w, w]))/2,
where W and W are any differentiable vector fields. Further, if r, is a 2-form
and we wish to show dd = r¡, it is sufficient to find for each bGB a family of
vector fields W, ■ ■ ■ , Wr for which the W(b) span Bb and such that
dd(W'(b), W'(b))=ri(Wi(b), W* (b)) for all», j.
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The differential forms of our theorem have values in a Lie algebra so we
must prove, for any linear functional / on that Lie algebra, that

fidwiW, W')) = -/([«(WO. »iW)])/2 +miW, W')).
Letting 0 =/ o o) this becomes

dOiW, W) = - /([«(WO. o>iW')]/2 + ddiHW, HW')
and using the above formula for dd this becomes

weiw') - w'eiw) - ei[w, w'}) = - /([«(wo, <»iw')) + íhw)í6íhw'))
- iHW')idiHW)) - 6i[HW, HW']}.

It is sufficient to prove this at each bGB, for all choices of W and W' from
any family W, ■ ■ ■ , Wr which are defined on a neighborhood of b and such
that W'ib) span Bb. We choose such a family consisting of any Q', • ■ ■ , Qk
which span ££plus any horizontal K', ■ ■ ■ , Kd for which the K%b) span Hb.

The desired formula holds whenever W is a Kl and W' a K', for then
co(W0=0, uiW')=0, hence/([«(WO, w(W")])=0; and W=HW, W'=HW',
so the two sides are identical. If W is a Q* and W' is a K1, then « ( W') = 0 hence
/([(«WO, <diW')])=0, and HW=0 so the entire right side is zero. In this
case the left side is also zero, 0([W, W']) being zero because the previous
lemma shows in this case that [W, W] is horizontal, 8iW) being zero be-
cause W' is horizontal, and W'0{W) being zero because BiW) is a constant
function. If W is a Of- and W' is a Of, then (because g is a Lie algebra iso)
/([«(WO, uiW')]) =fiu[W, W']) =8i[W, W']) and HW7 and HW are 0 so the
left side reduces to -Bi[W, W']). Because both BiW) and OiW) are constant
functions the right side also reduces to — Ö([W/, W'}). Hence the formula is
proved.

In the special case of a connexion on a bundle of bases, and if the ele-
ments of the Lie algebra of the linear group are represented in the usual way
by matrices, then co(i) is represented by («,y(0)j &is, 0 is represented by
iríais, f)), and the above formula becomes

dwn = — X w>- A w« + fitj-

In this case, however, one gets the further formula

dui = — X <•>-»' A "a + Œ;

which we now explain. One defines 1-forms 6>i, • • • , Ud on £(Af) by: if
tGEiM)b and b = im, ei, ■ ■ ■ , eà), then «;(/) is the ith coefficient of irt when
wt is expressed linearly in terms of the base e_, • • ■ , e<¡ of Mm. Then ß,- is
defined to be the covariant derivative of «,- and this formula is proved simi-
larly to the other; the ß; are called the torsion forms of the connexion. Let
E1, • ■ ■ , Ed he the vector fields defined on EiM) by: if b = im, eu • ■ • , e¿),
then E'ib) is the unique element of Hb that projects to e¿ under tt. One verifies
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easily that torsion zero (i.e. all fi¿ = 0) is equivalent to the statement that
[E\ E1'] is vertical for all i, j. In fact the role of the fi,- is precisely to describe
the horizontal components of the [Ek, Er], just as the role of the fi¿y is to
describe their vertical components; the significant facts about such a con-
nexion may be described either through the [E\ E'} or through the fi¿y and
fi*. A more elegant way of interpreting the above formula for ¿co¿, however,
is to pass from the bundle E(M) to a larger bundle whose group is the affine
group. The connexion H on E(M) gives rise naturally to a connexion K on
the larger bundle, and with the following properties. Let © be the curvature
form of K. Then 8 decomposes into ©' + ©" through the decomposition of
the Lie algebra of the affine group into the subalgebras corresponding to
the linear transformations and the translations. ©' is essentially the curva-
ture form of H and 0" is essentially the torsion. The structural equation for
K can be similarly decomposed into two parts, the two parts being essentially
the equations for don, and for ¿co,-.

2. Curvature as generator of the holonomy group. In this section we con-
sider a connexion if on a principal bundle (B, M, G, ir, Í"). We assume further
that M is connected and that its fundamental group has at most a countable
number of elements. We denote the 1-form of the connexion by co and the
curvature form by fi. The Lie algebra of G will be denoted by L. If bGB, then
the holonomy group and null holonomy group associated with b will be de-
noted by G(b) and Go(b), while the arc-component of the identity of G(b)
will be denoted by G(b)°. B(b) will denote the subset of B consisting of all
points which can be joined to b by piece-wise differentiable horizontal
curves. This notation will be kept fixed throughout the section.

Theorem 2. For any bGB let L(b) be the subalgebra of L generated by all
fi(s, i) where s and t run through all pairs of tangent vectors to B at all points of
B(b). Then the subgroup of G generated by L(b) is Go(b).

We prove this via a sequence of lemmas. The first two are needed to prove
B(b) a submanifold of B, which fact is important in the proof of this theorem.

Lemma 1. Let $ be a strip map of the bundle, cp = OXG—*B, where O is an
open submanifold of M. Suppose that O is the domain of a coordinate system
Xi, ■ ■ ■ , xd of M with center m0 (i.e. all x,-(wo) = 0) and that O is an open ball
with respect to these coordinates. Let bo = <f>(mo, e). We now define a mapping a
of 0—>G (a will depend on the coordinates x;) and the assertion of this lemma is
that a is differentiable on some neighborhood P of mo. To define a consider, for
each mGO, the ray pm (i.e. pm is a ray with respect to the coordinates xi) from
mo to m, parametrized so that pm(0)=m0, pm(l)=m. Lying above pm we have
curves am and rm in B defined as follows. om is the unique horizontal curve in B
starling at bo and lying over pm. rm is defined by: rm(u) =q>(pm(u), e). Then am(l)
= Tn(l)gfor a unique gGG and we define a(m) =g.
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Proof. Let v\, • ■ ■ , vk be any coordinate system on some neighborhood U
of e in G. To prove the lemma we shall show the functions By o a are differ-
entiable on some neighborhood P of mo. The x» and v¡ give coordinates in the
usual way on <piOXG) which are carried by <p to coordinates on B; we denote
these coordinates, whose domain is <p(OX U), by yi, ■ ■ -, yk+d-

We first prove the existence of <rm as stated in the lemma. We define am
to be the integral curve with omifS) =b0 of the vector field Hi X«=i x¿(w) F*)—
this vector field is defined on 7r_1(0) and is differentiable by condition (3) in
the definition of a connexion, hence am is a horizontal differentiable curve.
We have ir o o-m = pm because wHi X?-i x,(m) F') = X*»'(OT)A^\ which implies
ir o am is an integral curve of '£lXiim)Xi, as is also pm, hence ir o am = pm.
Uniqueness of crm follows from the uniqueness of integral curves, for any
such <rm is an integral curve of Hi X<-i x,(?w) F*).

If mGO we shall write urn for pOT(w). Since <p(?w, e)g=4>im, g) we have
<p(w, aim) =<f>im, e)aim) =crm(l), and since o-„,(w) =<rum(l) we then have
<f>ium, aium)) =crm(w). Because <rm is a differentiable curve in B we have, for
each mGO, the existence of um>0 such that amiu)GU for u<um, and we
take «„, to be the largest possible such number. Then v¡iaium))
= yí+di<pium, aium)))=yj+di<rmiu)) for u<um.

Because am is an integral curve of ii(Xi=i x,-(w) F*) we have

(Z>(yy+_o .-„))(«) = (dyj+Jni X *Fi))) (r«(«))

where D denotes the usual differentiation operator on R. From the definition
of a connexion it follows that the function dyi+diHi X?-i y»^*)) is a dif-
ferentiable function and hence can be expressed on a neighborhood of b0 as a
differentiable function of the yr. This shows the functions yr o <rm are solutions
of a system of ordinary differential equations with differentiable functions
on the "right side." It follows that the functions /,■ defined by: /,-(«, m)
= iy,- o <rm)(w) for u<um are defined and differentiable on some neighborhood
of(0, mo).

Because crm(w) =<rum(l) it follows that <rmil)GU for m in some neighbor-
hood P of m0 and then, because (»y o a)(w) =y,-(<rw(l)) =/y(l, »»), we have
that Vj o a is differentiable on P.

Lemma 2. Le/ moGM, b0 be any point of B lying over m0, and Xi, • • • , x¿
any coordinate system of M whose domain includes mo and has center at mo-
Then there exists a strip map \p: PXG—+B, where P is an open ball with respect
to the coordinates x,-, such that \pim0, e)=b and for every ray pmfrom m0 to m in
P iwith respect to these coordinates) the curve ^(pOT, e) in B is horizontal. We
call such a strip map canonical with respect to the coordinates x¿.

Proof. Let<p beany strip map taking OXG-^B, with tp(m0, e) =b0, where 0
is an open subset of the domain of the coordinates x¿. We define a, depending
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on cp and the x,-, as in the previous lemma. Let P be any neighborhood of m0
on which a is differentiable and such that P is a ball with respect to the co-
ordinates Xi. We define \p by: \p(m, g) =<f>(m, a(m)g). \p is differentiable because
a and <f> are differentiable. \p is a strip map because, for any strip map x,
(Xml o \pm)(g) = (Xm1 o <pm)(a(m)g), so it xn1 o<bm = Lh(7)then x«1 oypm = Lhaim).
And ¡p(pm, e) is horizontal because \p(pm(u), e)=<j>(pm(u), a(pm(u))
= Ra(pm(u))<j>(pm(u), e).

We now define the differentiable structure in which B(b) is a submanifold
of B. First note that G(b)°, being an arcwise connected subgroup of the Lie
group G, is a differentiable subgroup of G(8) [8]. Hence there exists a co-
ordinate system vi, ■ ■ ■ , vk oí G whose domain includes e and which is
adapted to G(b)°, i.e. the slices [g\vi(g)=ai for all î=/+1, • • ■ , k] are con-
tained in left cosets of G(è)° and the slice S° with all these c, = 0 is contained
in G(b)°. Now consider any cGB(b) and we shall define some coordinate sys-
tems on B(b) at c. Let Xi, ■ ■ ■ , xd be any coordinate system of M whose do-
main contains m' = irc and \p: PXG—>B any canonical strip map with respect
to these taking (m', e)—*c. Then \p(PXSo)QB(b). The coordinates xu ■ ■ ■ , xd
on P and »1, • • • , v¡ (the v¡ and j as above) induce coordinates in the usual
way on PXS0 which are carried over to coordinates on \p(PXS0) by \p. We
should not yet refer to these functions on \p(PxS0) as coordinates but it
can be shown in routine fashion that such systems of functions on B(b) (de-
pending on choices of Xi, • • • , xd, v%, • • • , vk, c, \p) satisfy the usual com-
patibility conditions and cover B(b) so they give rise to a unique differentiable
structure in which they are coordinate systems. Obviously B(b) is a sub-
manifold of B.

Lemma 3. If QG$, cGB(b), dGB(b), Q(c)GB(b)c, then QdGB(b)d.
Proof. We begin with two special cases. The first is where c and d lie on

the same fiber, so d = cg and because c and d are in B(b) we have gGG(b).
Consider any strip map <p: OXG-^B such that <p(m, e) =c. It is trivial that
4> o Lg o co-1 maps B(b)r\ir~l(0) diffeomorphically onto itself and takes c—*d,
Q(c)—*Q(d)- Hence Q(d)GB(b)d in this case. The second special case is where
there exists a coordinate system Xi, • • • , xd of M with center at m = wc and a
canonical (with respect to these x¿) strip map yp: PXG^>B, such that d
= \p(m', e) for some m'GP- Let vit ■ ■ ■ , vk be coordinates of G on a neighbor-
hood of e, adapted to G(b)a, so we get coordinates yi, • ■ • , y<¡, y<¡+i, • • • , yd+¡
(these are the coordinates obtained from x%, ■ ■ ■ , xd and Vi, ■ ■ ■ , vk as in
the definition of the differentiable structure on B(b)) of B(b) whose domain
is a B(b)-neighborhood of c. Because QGQ. and Q(c)GB(b)c we have Q(c)
= ££¿+i at7*{e), hence Q(d) = £S+1 a,F(d), showing Q(d)GB(b)d. The

(7) Lh denotes left multiplication by h on G.
(8) That G(b)° is a Lie group was pointed out to us by Chevalley, who also found Yamabe's

theorem independently.
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lemma now follows in general for any c, dGBib) by a sequence of steps in-
volving these special cases.

Lemma 4. G0(A)=G(A)°.

Proof.(9) Clearly G0(&)£G(6)° and since both are arcwise connected both
are differentiable subgroups of G; hence Goib) is a differentiable subgroup of
Gib)0. Now we show the existence of a mapping of wiiM) onto the left cosets
of Goib) in Gib)0. Since 7Ti(M) contains only countably many elements this
will prove the left cosets of Goib) in Gib)0 are at most countable in number.
This will imply Goib) is open in Gib)0 and hence, by connectedness, that Goib)
= Gib)°.

For each aGtriiM) let £(a) = [gGG(2>)°| there exists a piecewise differ-
entiable horizontal curve from b to bg whose projection into M is in the
homotopy class a]. Each £(a) is contained in a left coset of Goib), for if gi
and g2 are in __(a) let p¿ be a piecewise differentiable horizontal curve from
b to bg,; then (p-1 o RBî-itt ) Pi is a piecewise differentiable horizontal curve
from b to bg21gi and its projection into M is ^(p^'-pi), showing g21giGGoib).
Since each gGG(6)° is in some £(a) this furnishes the desired mapping of
7Ti(Af) onto left cosets.

If H is a connected differentiable subgroup of a Lie group G with only
countably many left cosets, then H is open in G because otherwise H would
be of measure 0 ill is trivially a measurable subset of G with respect to the
Haar measure of G because, choosing coordinates adapted to iîon a neighbor-
hood of e in G, we see some iî-neighborhood of e is measurable, and then H
is a countable union of translates of this neighborhood) so G itself would have
measure 0.

Proof of Theorem 2. We first describe, for each cGBQ})c, a subspace
AcoiBc, then prove Ac = Bib)c, from which the theorem will follow. Note that,
trivially, HcQBib)c for cGBib).

Consider any horizontal vector fields K and K' defined on any open sub-
manifold 0 of B and for each dGOC\Bib) consider the vector field QGSi
generated by Vi[K, K']id))—so Q is defined on all of B and depends on K, K'
and d. We do this for all such K, K', d, getting a subset T\ of §,, and define
jQfb) to be the Lie algebra of vector fields on B generated by f\.. Clearly
-C(A)__3., and we shall prove later that jÇfb) =g(L(Z>)). We define Ac, for
cGBib), to be the subspace of Bc spanned by Hc and all Qc for which QGJÇffi).

Now we prove AcÇBib)c for all cGBib). Clearly if K is any horizontal
vector field on an open subset of B, then R~ic)GBib)c. Hence if i_i and K2
are two such and K{, K{ are their restrictions to Bib), then [K{, K2]ic)
= [R~i, K2]ic), so B{b)c contains [Kx, i_2](c), and since it contains all hori-
zontal vectors at c, Bib)c contains F([ä"i, K2]i¿)). This with Lemma 3 shows

(9) This lemma is an extension of one due to Borel and Lichnerowicz [l ], and the proof is a
variation on theirs.
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B(b)c contains also Q(c) tor any QGQ. and dGB(b) with V([KU K2](d))
= Q(d). Finally, if Qu Q2G^and Qi(c), Q*(c)GB(b)c then [Qu Q2](c)GB(b)c,
for if QÍ, QÍ are their restrictions to B(b) then Lemma 3 shows Qi (d), Q{ (d)
GB(b)d tor all dGB(b), hence [Qu Qt]{c) = [Q{, Qi](c)GB(b)c. This proves
AcQB(b)c tor all cGB(b).

Thus A is a distribution on the manifold B(b). We prove now that A is
involutive and has a differentiable base in the neighborhood of any point of
B(b). Let Qi, - - - , Çrbeany base for =£(2>) and K~i, ■ ■ ■ , Kd any differentiable
base for H in the neighborhood of any cGB(b). Let Qi and K{ denote the
restrictions of Qi and K~i to B(b). The QI and Ki are clearly a differentiable
base for A throughout a neighborhood of c and to show A involutive it is suf-
ficient, by Proposition 1, p. 88 of [6] to show the bracket of any pair of ele-
ments from such a base belongs to A. But [QI, Qi ] belongs to A because
jÇfb) is closed under brackets, [Ki, K¡] belongs to A from the definition of
Ad, and [Qi, Kj ] belongs to A because Lemma 1 of §1 implies it is horizontal.

Now we show AC2-B(Z>C), hence A„ = B(b)„ for all cGB(b). Let p be a piece-
wise differentiable horizontal curve in B(b) from b to c. Because it is hori-
zontal, A is involutive, and Ad^>Hd, we can prove p lies in the integral mani-
fold D of A through b. This can be done by extending the tangent vectors to
p to a differentiable horizontal vector field K on a neighborhood of b; then K,
when restricted to D, must have an integral curve through b in B and by
uniqueness of integral curves in B(b) this must be p. This shows D^B(b),
hence AcZ)B(b)c.

Now note, for any cGB(b), that if s and i are in Hc and Ki, K2 are any
horizontal differentiable vector fields on a neighborhood of c with Ki(c) =s,
Ki(c)=t, then ti(s, t) = — co([Ki, Kï](c)). This holds because the formula
for fi = £>co as the "horizontal part" of the exterior derivative gives, for any
vector fields Wi, W2 on B and linear functional / on L,

f(Dw(Wi(c), W2(c))) = (HWi(c))((fou)(HW2)) - (HW2(c))((foœ)(HWi))
- (foœ)([HWi, HW2](c)).

Because co is vertical, i.e. vanishes on all horizontal vectors, this reduces to

f(Du(Wi(c), W2(c))) = - (foœ)([HWi, HW,](c))
and hence

Du(Wi(c), W2(c)) = - u([HWi, HWi](c)).

This trivially implies the above statement. Hence, for any fixed cGB, the set
of all such fi(s, i) is the set of all co( V[KU Kt] (c)). Thus the set R of all fi(s, i)
where s and i run through B(b)c and c runs over B(b) is the set of all
u(V[K~i, K2](c)) where Ki and K2 run through all horizontal vector fields
defined on a 5-neighborhood of c and c runs over B(b). The set of all these
F[Äi, K2](c) is the same as the set of all Q(c) where QGfland cGB(b) and,
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since «((2(c)) =uiQid)), Lemma 3 implies î\is the set of all «(Q(è)) (2> fixed).
Thus g(P) =f\ and hence g(i(è)) =„£(&). Our definition of the differentiable
structure on Bib) shows, for <p any strip map taking (m, e)—>& im — wb), that
<pm takes the set of all -1(e), where A is in the Lie algebra of Gib)0, onto the
vertical part of Bib). Hence, by what was proved above, <pm takes the set of
all such A (e) onto the vertical part of Ab, i.e. onto the set of all Qib) where
QGjÇfb). Because g(Z,(ô)) =.£(&) this shows that Lib) is the Lie algebra of
Gib)0. Theorem 2 now follows from Lemma 4.

Corollary. If L' is the subalgebra of L generated by all ß(s, t) where s and
t run through all pairs of tangent vectors at all points of B, then the subgroup of
G generated by L' is the component of the identity of the normal subgroup of G
generated by all the Gib) for bGB.
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