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A theorem on metric polynomial structures

by B. Opozpa (Krakéw)

Abstract. Let f be a metric polynomial structure with respect to a metric tensor g and let 7
denote the Riemannian connection defined by g. The purpose of this paper is to give a necessary
and sufficient condition for ¥f = 0 to hold.

0. All objects considered in this paper are assumed to be C*.
The following theorem is well known [3]:

THEOREM 1. For an almost Hermitian manifold M with almost complex
structure J and metric g, the following conditions are equivalent:

1° VJ = 0, where V is the Riemannian connection defined by g;

2° The Nijenhuis product [J, J] vanishes and the fundamental 2-form of
the almost Hermitian manifold M is closed.

The subject of this paper is to give and to prove an analogous theorem
in the case where J is replaced by an arbitrary metric polynomial structure.
At first we recall some facts about polynomial structures.

Let M be a manifold of dimension n. By a polynomial structure on M
we mean a (1, 1) tensor field f on M satisfying a polynomial equation

P(f) = fi+a, [ '+ ... +q,1 = 0,

where [ is the identity (1, 1) tensor field on M, a,, ..., a; are real numbers
and the polynomial P() = +a, & '+ ... +4, is the minimal polynomial
of f. at every point xe M. Decompose the polynomial P(¢) into the prime
factors:

P(&) =Ri(&) .- Ry (&) R{(D) ... R (&),

where

’

R = (E—b)f, Kk =1, o,

=1,
CRJ(E) = (E2+28+d)t, L= 1, j=1,..,¢, c2—d < O.
Let D = (D4, ..., D,,, DY, ..., D;) be the almost product structure as-
sociated with the polynomial structure f, ie. D; = ker Ri(f) and D
= ker R} (f). It is known that there exist polynomials P;, P} such that P{(f),
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Pj(f) are projectors, respectively, onto D; and Dj'. The following theorem is
due to Kobayashi [2].

THEOREM 2. Ler f be a polynomial structure:such that
degRj =1 or dimD, i=1,...,r,
degR/ =2 or dimDj, j=1,....,1"

Then f is integrable if the Nijenhuis product [f, f]1 = 0.

1. Let (M, g) be a Riemannian manifold and let f be a metric polynomial

structure on M. In other words, suppose that f is a polynomial structure

such that g(fX, fY) = g(X, Y) for any tangent vectors X and Y. The
following proposition is due to J. Bure§ and J. VanZura ([1]).

PrRoOPOSITION 3. There are exactly four types of metric polynomial struc-
tures, whose minimal polynomials are given by

I P(Q) = (£+2a,¢+1) ... (€2 +24,8 +1),

(In P(&) = E-1)(&+2a, &+ 1) ... (E2+2a,_, E+1),

(1ID) P@) = €+ +2a,¢+1) ... (F+2a,_, £+ 1),

(Iv) P@) = €-DE+1)(¢*+2a,E+1) ... (2 +2a,-,¢+1),

where af < 1 and a; # a; for i # .
Let D = (Dy, ..., D) be the almost product structure associated with f.
Projectors of this structure will be denoted by Py, ..., P,. It is easy to verify

that if fis a metric polynomial structure of the first type, then a tensor field J
defined by

i f+a I
i=1 /11—
1s an almost complex structure on M. J is called the almost complex structure
associated with f.
ProposiTiON 4. If f is a metric polynomial structure of the first type and J

is defined as above, then g(JX,JY) = g(X, Y) for any tangent vectors X and
Y.

Proof. Since f (D;) = D;, we have f " '(D;) < D, fori = 1, ..., s. Since
f?+2af+1 = 0 on D;, we have f (f+2a,I) = —I on D,. Hence

(1) [t = Z (—f—2a,1)P

i=

We set

=yl tal +‘”P,.

i=1 \/1—
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By equality (1) it is obvious that J' = —J. Given two vectors X and Y, we
obtain ' '
1
= ——=(fX, V)+ag(X, V)
ViTa
1

/T_? g(X, f71Y)+g(X, a; 7))
J1-d

'

“lyal
\/l—a,

Therefore

gUX,JY) = —g(X,J(JY) = g(X, Y)

and this together with the following proposition, proves our assertion.

ProposiTiON 5. The almost product structure D = (D,, ..., D,) associated
with a metric polynomial structure f is orthogonal, i.e. D; is orthogonal to D, if
i #j

Proof. It is sufficient to give a proof for a metric polynomial structure
of type (IV). We shall consider the following cases:

1° XGDl aﬂd YEDz. Then

g(X.Y) = g(fX, fY) = g(X, =Y) = —g(X, Y).
Thus ¢(X,Y) = 0.
2 XeD,, YeD;, j =2 3. We have

2 g(X,Y) =g(fX, fY) = g(X, fY) = g(fX, [2Y) = g(X, f*Y).

Since f2Y+2a;_, fY+Y = 0, we have g(X, f2Y+2a4,_, fY+Y) = 0. By
equalities (2) we obtain

0=g(X, f2Y+2a;_, fY+Y) = g(X, f2Y)+2a_,9(X, fY)+g(X, 7)
= g(X) Y)+zaj—29(Xr Y)+g(X’ Y)‘
It is known that a;_, # —1, and so g(X,Y) = 0.

3* XeD,, YeD,, j = 3. The following equalities are evident:

g(X,Y) = g(UX, fY) = —g(X, [Y) = —g(f X, [2Y) = g(X, [?Y).
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Analogously to case 2°, we have
» g(X, Y)—=2a,_,9(X, Y)+g(X,Y) = 0.

But a;_, # 1 and hence g(X, Y) = 0.
4 XeD,, YeD;and i # j, i.j 2 3. In this case

gUX,Y) =gX, f7'Y) = —g(X, fY+2q,_,Y)

= —g(X, fY)—-2a,_,9(X,Y)

= —g(f™' X, Y)-2a4/_,9(X, Y)

= —g(—fX-20,,X,Y)-2a,,4(X, Y)
g(f X, Y)+2a,_,9(X, Y)—2a;_,9(X, Y).

From Proposition 3 we know that a,_, # a;_;; hence g(X, Y} = 0. The
proof is finished.
Let us define a 2-form ¢ on M by

for all tangent vectors X and Y.

Note that if fis an almost complex structure, then @ = 2y, where y is
the fundamental 2-form of the almost complex structure f The form ¢
defined above will be called the fundamental 2-form of a metric polynomial
structure f.

Let V denote the Riemannian connection on M induced by g.

ProposiTION 6. Let T = (T;, ..., T,,) be an almost product structure on
M such that all distributions T, ..., T,, are parallel with respect to V. Then
Sfor any vector fields XeT,, YeT, i # j, [X,Y] =0, we have Vy Y = 0.

Proof. Since the connection F is without torsion, FyY—F, X
= [X, Y]. This means that VyY = Vy X. But T, and T; are parallel with
respect to ¥, and so TaVyX = VyYeT,. Hence VyY = Fy X = 0.

The main purpose of this paper is to prove the following theorem.

THEOREM 7. Let (M, g) be a Riemannian manifold and let f be a metric
polynomial structure on M with respect to g. Then the following conditions are
equivalent :

1° Pf =0;

® [f, f1 =0, the fundamental 2-form @ of f is closed and the dis-
tributions of the almost product structure associated with f on which fis a multiple
of identity are parallel with respect to V.

Proof. Assume 2°. At first we shall consider a metric polynomial
structure of type (I).



Theorem on metric polynomial structures 143
Let us define
(X, Y) = g(X,JY)—gUX, Y).

We shall show that d¥ = 0. For any vector fields X, Y, Z the following
formula holds:

Y(X,Y,2) = X(P(Y, Z)+Y(¥(Z, X)+Z(P(X, Y)-
—-¥([X, Y], 2)-¥Y([Z, X], I-¥([Y, Z], X).

Obviously, it is sufficient to verify that d¥ (X, Y, Z) = 0 for X = 8/ox*, Y
= ¢/¢x!, Z = ¢/0x™, where (x!, ..., x") is a chart on M. Since the Nijenhuis
product [f, f] vanishes on M, the polynomial structure f is integrable by
Theorem 2. If ¢ = (x!,..., x" is a chart associated with the integrable
polynomial structure f, then this chart is also associated with the integrable
almost product structure D = (D,, ..., Dy).

Let ¢ = (x',..., x") be a chart associated with the integrable tensor
field fand let X = ¢/ax*, Y = d/ix!, Z = ¢/¢x™ Vector fields obtained in
this way will be called f-holonomic vector fields. There are three cases:

(I) XeD;, YeD;, ZeD,and i #j,j#k, i #Kk,
() X,YeD;,, ZeD;, i # j,
(I X, Y, ZeD,.

In case (1) the equality d¥(X, Y, Z) = 0 is an immediate consequence
of the definition of ¥ and Proposition 5. As regards case (II), we have

3d¥(X,Y,Z) = Z¥(X, Y) =Z(g(X, J;;E’fa_’zy))—z(g( %x Y))
- AN -4

v i

1
1—a}

1

Z(g(X, fY)+ag(X, Y)-

Z@(fX, V) +a4g(X, 7))

]

2
VAT

1

J1-a

But
0=3d®(X,Y,Z) = Z&(X,Y) = Z(g(X, fY)—g(f X, Y)).
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Hence d¥P (X, Y, Z) = 0. If vector fields X, Y, Z are as in case (III), then
3d¥Y (X, Y, 2Z2) = X(¥Y(Y, Z))+Y('P(Z X)+Z(¥(X, 7))

oz >>—x<e<%.—w>>
(o(z Z2e)) (o))
2o G )) 2o G v)

= = ddi(XYZ)—O

+Y

It is clear that [f, f] = 0 implies [J,J] = 0 (see [2]). Applying
Theorem 1, to the almost Hermitian manifold M with the almost complex

structure J, we obtain PJ = 0. Since f = ). (1-a?J—a )P, Vf = 0if
i=1

and only if ¥J = 0 and VP, =0 for i = 1, ...,s. Now it is sufficient to
show that VP, = O fori = 1, ..., s. In order to get this we shall show that
for any f-holonomic vector fields X, Y, Z such that XeD;,, ZeD; and i # j
we have, g(Fx Y, Z) = 0. On account of Proposition 5 this will prove our
assertion.

Let ¢ = (x!, ..., x") be a chart associated with the integrable tensor
field f and let X = 8/dx', Y = d/ox*, Z = 0/ox™. Then

3 2(PxY,Z) = X(g(Y, 2)+Y(9(X, 2)-Z(9(X, Y)).

Let YeD,. If XeD; and ZeD,;, i#j;, then 29(VyxY,2Z) =
~Z(g(X, Y)). Given Y' = J~'Y, there exists .a vector ceR" such that Y’
= J~'Y. This follows from the obvious fact that the chart ¢ is also
associated with the integrable almost complex structure J.

We have already proved that d¥ (X, Y’, Z) = 0. Therefore

0=3d¥Y(X,Y,2) = Z¥(X, Y) = 2Z(g(X,JY") = 2Z(g(X, Y)).

If XeDy, ZeD; and i # k, k # j, i ;é], then the equality g(Vx Y, Z)
set Z' = J~'Z and we obtain

0=3d¥(X,Y,Z) = ~Y¥(X, Z) = —2Y(g(X,JZ)) = —2Y(9(X, Z)).

If XeDy, ZeD;and i # k, k # j, i # j, then the equality g(Vx Y, Z)
= 0 is evident by formula (3) and Proposition 5. Thus the proof of the
assertion in the first case is completed.

Returning to the general case, we shall show that fVyY = Py Y for
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any vector fields X, Y. We set T, =ker(/=I), T, = ker(f+I), T,
=D;®..@D,, where D;,...,D; are all distribution of the almost
product structure D on which f is not a multiple of identity. Of course, it
may happen that T, = Oor T, = O or Ty = 0, but in such a case we simply
need not comnsider all possibilities which can occur. The projective of the
almost product structure T = (T}, T, T;) will be denoted by Q,, Q,, Qs,
respectively. Clearly, ¥Q; = 0 for i = 1, 2, 3.

At first notice that it suffices to prove, the equality fFyY = Vyx fY for
f-holonomic vector fields X and Y. In fact, if f¥VyY = Fy fY, then

Vef@Y) =a(PyfY)+(Xa) fY = af V Y+ f(Xa)Y
= flalyY+(Xa)Y} = fPx(aY).

Let ¢ = (x!,..., x") be a chart associated with the integrable tensor
field f and let X = d/éx*, Y = 0/0x'. Then we have one of the following cases :

1° YeT;. Since VQ, = 0, VxYeT,. Therefore
fVPxY =VyY =V, fY.
2 YeT,. Since VQ, =0, VxYeT, and just as above we have
SJVyY)y= —VyY =V, fY.

¥YeT, XeT,®T,. Since [X,Y] =0, Py Y = 0 by Proposition 6.
Hence fVyY = 0. ¢ is a chart associated with the integrable tensor field f,
and so there exists a vector ceR" such that fY = dg~!(c). Consequently
[X, fY] = 0. Of course, fYe T, and, by Proposition 6, Vy /Y = 0.

4° XeTy,, YeT;. Let xeM and let N be an integral manifold of
distribution Ty through x. We set X' = X_, Y' = Y5, f" = fln, 9 = 4ly,
(fYY = (fY)|y. (N, g') is a Riemannian manifold and f’ is a metric poly-
nomial structure on N of the first type. If @' denote the fundamental 2-form
of f, then the assumption that @ is closed implies that the [undamental 2-
form @' is closed. Vanishing of the Nijenhuis product {f, f] implies vanish-
ing of [f’, f']. From the first part of our proof we have

fPY = VY,

where V' is the Riemannian connection on M defined by g'. Since the
distribution T, is parallel with respect to F, we obtain

fPxeY = f'Pp ¥ = Py f'Y = Px(fY) = PrfY.

Assume 1°. Since Pf = 0 and the connection F is torsion-free, f is
integrable and hence [f, f] = 0. Since the projectors P,,..., P; of the
almost product structure D are polynomials in f; VP; = 0. In other words,
the distributions Dy, ..., D, are parallel with respect to V. Tensor fields g
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and f are parallel with respect to V, and so is @, ie, V@ = 0. Since V is
torsion free, we have d®¢ = A(V®), where A denotes the alternation of the
covariant tensor V@ ([3], Chapter I, § 8). This means that @ is closed and
this finishes the proof.

Theorem 7 is not true without the assumption that the distributions on
which fis 2 multiple of identity are parallel with respect to V. For example,
let M = R* and let (x', x2, x3, x*) denote the canonical coordinate system
in R* Let X, = 0/éx', X, = ¢/dx%, X, = 8/éx®, X, = 0/0x*. We set
fX) =Xy, f(X2) = X4, f(Xs) = X4y f(Xy) = —X,. Of course, f
is an integrable polynomial structure and D, = RX,, D, = RX,, D,
= RX; ® RX,. If we define a metric tensor g on R* by one of the following
matrices:

@ [e20 00 ) [0 00
0 ' 00 0 e’ 00
o o 10}f 0 0o 10}
O 0 01 0 o0 01
() [e= 000]
0 100
o otol
0 001

then f is a metric polynomial structure with respect to g. It is also easy to
_check that the fundamental 2-form @ is closed in each of cases (a), (b), (c). In
case (b) neither of distributions D,, D,, D, is parallel with respect to the
Riemannian connection V defined by g. In particular, D, is not parallel with
respect to V, because

0
cx

29(Vy, X), X;) = —5—=¢€"* # 0  whenever x, # 0.

In case (a) only the distribution D5 is parallel with respect to V. In case (c)
only D, is parallel with respect to V.

Therefore, example (a) means that in the case of metric polynomial
structure of type (IV) it is not sufficient to assume that the distribution
D, @ D, is parallel with respect to V. By example (c), it is seen that it is also
not sufficient to assume that one of distributions on which f is a multiple of
identity is parallel with respect to V.
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