A theorem on metric polynomial structures

by B. Opozda (Kraków)

Abstract. Let f be a metric polynomial structure with respect to a metric tensor g and let V denote the Riemannian connection defined by g. The purpose of this paper is to give a necessary and sufficient condition for Vf = 0 to hold.

0. All objects considered in this paper are assumed to be C^{∞} . The following theorem is well known [3]:

THEOREM 1. For an almost Hermitian manifold M with almost complex structure J and metric g, the following conditions are equivalent:

1° $\nabla J = 0$, where ∇ is the Riemannian connection defined by g;

 2° The Nijenhuis product [J, J] vanishes and the fundamental 2-form of the almost Hermitian manifold M is closed.

The subject of this paper is to give and to prove an analogous theorem in the case where J is replaced by an arbitrary metric polynomial structure. At first we recall some facts about polynomial structures.

Let M be a manifold of dimension n. By a polynomial structure on M we mean a (1, 1) tensor field f on M satisfying a polynomial equation

$$P(f) = f^{d} + a_{1} f^{d-1} + \dots + a_{d} I = 0,$$

where I is the identity (1, 1) tensor field on M, a_1, \ldots, a_d are real numbers and the polynomial $P(\xi) = \xi^d + a_1 \xi^{d-1} + \ldots + a_d$ is the minimal polynomial of f_x at every point $x \in M$. Decompose the polynomial $P(\xi)$ into the prime factors:

$$P(\xi) = R'_1(\xi) \dots R'_{r'}(\xi) \cdot R''_1(\xi) \dots R''_{r''}(\xi),$$

where

$$R'_{i}(\xi) = (\xi - b_{i})^{k_{i}}, \quad k_{i} \geq 1, \ i = 1, ..., r',$$

$$R''_{i}(\xi) = (\xi^{2} + 2c_{j}\xi + d_{j})^{l_{j}}, \quad l_{j} \geq 1, \ j = 1, ..., r'', \ c_{j}^{2} - d_{j} < 0.$$

Let $D = (D'_1, ..., D'_{r'}, D''_1, ..., D''_{r''})$ be the almost product structure associated with the polynomial structure f, i.e. $D'_i = \ker R'_i(f)$ and $D''_j = \ker R''_j(f)$. It is known that there exist polynomials P'_i , P''_j such that $P'_i(f)$,

 $P''_{j}(f)$ are projectors, respectively, onto D'_{i} and D''_{j} . The following theorem is due to Kobayashi [2].

THEOREM 2. Let f be a polynomial structure such that

$$\deg R'_{j} = 1$$
 or $\dim D'_{i}$, $i = 1, ..., r'$,
 $\deg R''_{i} = 2$ or $\dim D''_{i}$, $j = 1, ..., r''$.

Then f is integrable if the Nijenhuis product [f, f] = 0.

1. Let (M, g) be a Riemannian manifold and let f be a metric polynomial structure on M. In other words, suppose that f is a polynomial structure such that g(fX, fY) = g(X, Y) for any tangent vectors X and Y. The following proposition is due to J. Bureš and J. Vanžura ([1]).

Proposition 3. There are exactly four types of metric polynomial structures, whose minimal polynomials are given by

(I)
$$P(\xi) = (\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_s \xi + 1),$$

(II)
$$P(\xi) = (\xi - 1)(\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_{s-1} \xi + 1),$$

(III)
$$P(\xi) = (\xi + 1)(\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_{s-1} \xi + 1),$$

(IV)
$$P(\xi) = (\xi - 1)(\xi + 1)(\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_{s-2} \xi + 1),$$

where $a_i^2 < 1$ and $a_i \neq a_j$ for $i \neq j$.

Let $D = (D_1, ..., D_s)$ be the almost product structure associated with f. Projectors of this structure will be denoted by $P_1, ..., P_s$. It is easy to verify that if f is a metric polynomial structure of the first type, then a tensor field J defined by

$$J = \sum_{i=1}^{s} \frac{f + a_i I}{\sqrt{1 - a_i^2}} P_i$$

is an almost complex structure on M. J is called the almost complex structure associated with f.

PROPOSITION 4. If f is a metric polynomial structure of the first type and J is defined as above, then g(JX, JY) = g(X, Y) for any tangent vectors X and Y.

Proof. Since $f(D_i) \subset D_i$, we have $f^{-1}(D_i) \subset D_i$ for i = 1, ..., s. Since $f^2 + 2a_i f + I = 0$ on D_i , we have $f(f + 2a_i I) = -I$ on D_i . Hence

(1)
$$f^{-1} = \sum_{i=1}^{s} (-f - 2a_i I) P_i.$$

We set

$$J' = \sum_{i=1}^{s} \frac{f^{-1} + a_i I}{\sqrt{1 - a_i^2}} P_i.$$

By equality (1) it is obvious that J' = -J. Given two vectors X and Y, we obtain

$$g(JX, Y) = \frac{1}{\sqrt{1 - a_i^2}} g(fX + a_i X, Y)$$

$$= \frac{1}{\sqrt{1 - a_i^2}} \{ g(fX, Y) + a_i g(X, Y) \}$$

$$= \frac{1}{\sqrt{1 - a_i^2}} \{ g(X, f^{-1} Y) + g(X, a_i Y) \}$$

$$= g\left(X, \frac{f^{-1} + a_i I}{\sqrt{1 - a_i^2}} Y\right) = -g(X, JY).$$

Therefore

$$g(JX, JY) = -g(X, J(JY)) = g(X, Y)$$

and this together with the following proposition, proves our assertion.

PROPOSITION 5. The almost product structure $D = (D_1, ..., D_s)$ associated with a metric polynomial structure f is orthogonal, i.e. D_i is orthogonal to D_j if $i \neq j$

Proof. It is sufficient to give a proof for a metric polynomial structure of type (IV). We shall consider the following cases:

1° $X \in D_1$ and $Y \in D_2$. Then

$$a(X, Y) = a(fX, fY) = a(X, -Y) = -a(X, Y).$$

Thus q(X, Y) = 0.

$$2^{\circ} X \in D_1$$
, $Y \in D_j$, $j \ge 3$. We have

(2)
$$q(X, Y) = q(fX, fY) = q(X, fY) = q(fX, f^2Y) = q(X, f^2Y).$$

Since $f^2 Y + 2a_{j-2} f Y + Y = 0$, we have $g(X, f^2 Y + 2a_{j-2} f Y + Y) = 0$. By equalities (2) we obtain

$$0 = g(X, f^2 Y + 2a_{j-2} f Y + Y) = g(X, f^2 Y) + 2a_{j-2} g(X, f Y) + g(X, Y)$$

= $g(X, Y) + 2a_{j-2} g(X, Y) + g(X, Y).$

It is known that $a_{j-2} \neq -1$, and so g(X, Y) = 0.

 $3^{\circ} X \in D_2$, $Y \in D_1$, $j \ge 3$. The following equalities are evident:

$$g(X, Y) = g(fX, fY) = -g(X, fY) = -g(fX, f^2Y) = g(X, f^2Y).$$

Analogously to case 2°, we have

$$g(X, Y) - 2a_{l-2}g(X, Y) + g(X, Y) = 0.$$

But $a_{j-2} \neq 1$ and hence g(X, Y) = 0.

 $4^{\circ} X \in D_i$, $Y \in D_j$ and $i \neq j$, $i, j \geqslant 3$. In this case

$$g(fX, Y) = g(X, f^{-1}Y) = -g(X, fY + 2a_{j-2}Y)$$

$$= -g(X, fY) - 2a_{j-2}g(X, Y)$$

$$= -g(f^{-1}X, Y) - 2a_{j-2}g(X, Y)$$

$$= -g(-fX - 2a_{i-2}X, Y) - 2a_{j-2}g(X, Y)$$

$$= g(fX, Y) + 2a_{i-2}g(X, Y) - 2a_{i-2}g(X, Y).$$

From Proposition 3 we know that $a_{i-2} \neq a_{j-2}$; hence g(X, Y) = 0. The proof is finished.

Let us define a 2-form Φ on M by

$$\Phi(X, Y) = g(X, fY) - g(fX, Y)$$

for all tangent vectors X and Y.

Note that if f is an almost complex structure, then $\Phi = 2\chi$, where χ is the fundamental 2-form of the almost complex structure f. The form Φ defined above will be called the *fundamental 2-form* of a metric polynomial structure f.

Let V denote the Riemannian connection on M induced by g.

PROPOSITION 6. Let $T=(T_1,\ldots,T_m)$ be an almost product structure on M such that all distributions T_1,\ldots,T_m are parallel with respect to V. Then for any vector fields $X \in T_i$, $Y \in T_j$, $i \neq j$, [X,Y]=0, we have $V_XY=0$.

Proof. Since the connection \mathcal{V} is without torsion, $\mathcal{V}_X Y - \mathcal{V}_Y X = [X, Y]$. This means that $\mathcal{V}_X Y = \mathcal{V}_Y X$. But T_i and T_j are parallel with respect to \mathcal{V} , and so $T_i \ni \mathcal{V}_Y X = \mathcal{V}_X Y \in T_j$. Hence $\mathcal{V}_X Y = \mathcal{V}_Y X = 0$.

The main purpose of this paper is to prove the following theorem.

THEOREM 7. Let (M, g) be a Riemannian manifold and let f be a metric polynomial structure on M with respect to g. Then the following conditions are equivalent:

$$1^{\circ} \nabla f = 0;$$

 2° [f, f] = 0, the fundamental 2-form Φ of f is closed and the distributions of the almost product structure associated with f on which f is a multiple of identity are parallel with respect to ∇ .

Proof. Assume 2°. At first we shall consider a metric polynomial structure of type (I).

Let us define

$$\Psi(X, Y) = g(X, JY) - g(JX, Y).$$

We shall show that $d\Psi = 0$. For any vector fields X, Y, Z the following formula holds:

$$3d\Psi(X, Y, Z) = X(\Psi(Y, Z)) + Y(\Psi(Z, X)) + Z(\Psi(X, Y)) - \Psi([X, Y], Z) - \Psi([Z, X], Y) - \Psi([Y, Z], X).$$

Obviously, it is sufficient to verify that $d\Psi(X, Y, Z) = 0$ for $X = \partial/\partial x^k$, $Y = \partial/\partial x^l$, $Z = \partial/\partial x^m$, where $(x^1, ..., x^n)$ is a chart on M. Since the Nijenhuis product [f, f] vanishes on M, the polynomial structure f is integrable by Theorem 2. If $\varphi = (x^1, ..., x^n)$ is a chart associated with the integrable polynomial structure f, then this chart is also associated with the integrable almost product structure $D = (D_1, ..., D_s)$.

Let $\varphi = (x^1, ..., x^n)$ be a chart associated with the integrable tensor field f and let $X = \partial/\partial x^k$, $Y = \partial/\partial x^l$, $Z = \partial/\partial x^m$. Vector fields obtained in this way will be called f-holonomic vector fields. There are three cases:

(I)
$$X \in D_i$$
, $Y \in D_i$, $Z \in D_k$ and $i \neq j$, $j \neq k$, $i \neq k$,

(II)
$$X, Y \in D_i, Z \in D_i, i \neq j$$

(III)
$$X, Y, Z \in D_i$$
.

In case (I) the equality $d\Psi(X, Y, Z) = 0$ is an immediate consequence of the definition of Ψ and Proposition 5. As regards case (II), we have

$$3d\Psi(X,Y,Z) = Z\Psi(X,Y) = Z\left(g\left(X, \frac{f+a_i I}{\sqrt{1-a_i^2}}Y\right)\right) - Z\left(g\left(\frac{f+a_i I}{\sqrt{1-a_i^2}}X,Y\right)\right)$$
$$= \frac{1}{\sqrt{1-a_i^2}}Z\left(g(X,fY) + a_i g(X,Y)\right) - \frac{1}{2}$$

$$-\frac{1}{\sqrt{1-a_i^2}}Z(g(fX, Y) + a_i g(X, Y))$$

$$= \frac{1}{\sqrt{1-a_i^2}}Z(g(X, fY) - g(fX, Y)).$$

But

$$0 = 3d\Phi(X, Y, Z) = Z\Phi(X, Y) = Z(g(X, fY) - g(fX, Y)).$$

Hence $d\Psi(X, Y, Z) = 0$. If vector fields X, Y, Z are as in case (III), then

$$3d\Psi(X, Y, Z) = X(\Psi(Y, Z)) + Y(\Psi(Z, X)) + Z(\Psi(X, Y))$$

$$= X\left(g\left(Y, \frac{f + a_i I}{\sqrt{1 - a_i^2}}Z\right)\right) - X\left(g\left(\frac{f + a_i I}{\sqrt{1 - a_i^2}}Y, Z\right)\right) +$$

$$+ Y\left(g\left(Z, \frac{f + a_i I}{\sqrt{1 - a_i^2}}X\right)\right) - Y\left(g\left(\frac{f + a_i I}{\sqrt{1 - a_i^2}}Z, X\right)\right) +$$

$$+ Z\left(g\left(X, \frac{f + a_i I}{\sqrt{1 - a_i^2}}Y\right)\right) - Z\left(g\left(\frac{f + a_i I}{\sqrt{1 - a_i^2}}X, Y\right)\right)$$

$$= \frac{3}{\sqrt{1 - a_i^2}}d\Phi(X, Y, Z) = 0.$$

It is clear that [f, f] = 0 implies [J, J] = 0 (see [2]). Applying Theorem 1, to the almost Hermitian manifold M with the almost complex structure J, we obtain $\nabla J = 0$. Since $f = \sum_{i=1}^{s} (\sqrt{1-a_i^2} J - a_i I) P_i$, $\nabla f = 0$ if and only if $\nabla J = 0$ and $\nabla P_i = 0$ for i = 1, ..., s. Now it is sufficient to show that $\nabla P_i = 0$ for i = 1, ..., s. In order to get this we shall show that for any f-holonomic vector fields X, Y, Z such that $X \in D_i$, $Z \in D_j$ and $i \neq j$ we have, $g(\nabla_X Y, Z) = 0$. On account of Proposition 5 this will prove our assertion.

Let $\varphi = (x^1, ..., x^n)$ be a chart associated with the integrable tensor field f and let $X = \partial/\partial x^i$, $Y = \partial/\partial x^k$, $Z = \partial/\partial x^m$. Then

(3)
$$2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(X, Z)) - Z(g(X, Y)).$$

Let $Y \in D_i$. If $X \in D_i$ and $Z \in D_j$, $i \neq j$; then $2g(\nabla_X Y, Z) = -Z(g(X, Y))$. Given $Y' = J^{-1}Y$, there exists a vector $c \in \mathbb{R}^n$ such that $Y' = J^{-1}Y$. This follows from the obvious fact that the chart φ is also associated with the integrable almost complex structure J.

We have already proved that $d\Psi(X, Y', Z) = 0$. Therefore

$$0 = 3d\Psi(X, Y', Z) = Z\Psi(X, Y') = 2Z(g(X, JY')) = 2Z(g(X, Y)).$$

If $X \in D_k$, $Z \in D_j$ and $i \neq k$, $k \neq j$, $i \neq j$, then the equality $g(\nabla_X Y, Z)$ set $Z' = J^{-1}Z$ and we obtain

$$0 = 3d\Psi(X, Y, Z') = -Y\Psi(X, Z') = -2Y(g(X, JZ')) = -2Y(g(X, Z)).$$

If $X \in D_k$, $Z \in D_j$ and $i \neq k$, $k \neq j$, $i \neq j$, then the equality $g(\nabla_X Y, Z) = 0$ is evident by formula (3) and Proposition 5. Thus the proof of the assertion in the first case is completed.

Returning to the general case, we shall show that $f\nabla_X Y = \nabla_X f Y$ for

any vector fields X, Y. We set $T_1 = \ker(f-I)$, $T_2 = \ker(f+I)$, $T_3 = D_{i_1} \oplus \ldots \oplus D_{i_k}$, where D_{i_1}, \ldots, D_{i_k} are all distribution of the almost product structure D on which f is not a multiple of identity. Of course, it may happen that $T_1 = 0$ or $T_2 = 0$ or $T_3 = 0$, but in such a case we simply need not consider all possibilities which can occur. The projective of the almost product structure $T = (T_1, T_2, T_3)$ will be denoted by Q_1, Q_2, Q_3 , respectively. Clearly, $\nabla Q_i = 0$ for i = 1, 2, 3.

At first notice that it suffices to prove, the equality $f \nabla_X Y = \nabla_X f Y$ for f-holonomic vector fields X and Y. In fact, if $f \nabla_X Y = \nabla_X f Y$, then

$$\nabla_X f(\alpha Y) = \alpha (\nabla_X f Y) + (X\alpha) f Y = \alpha f \nabla_X Y + f(X\alpha) Y$$
$$= f \{ \alpha \nabla_X Y + (X\alpha) Y \} = f \nabla_X (\alpha Y).$$

Let $\varphi = (x^1, ..., x^n)$ be a chart associated with the integrable tensor field f and let $X = \partial/\partial x^k$, $Y = \partial/\partial x^l$. Then we have one of the following cases:

1° $Y \in T_1$. Since $\nabla Q_1 = 0$, $\nabla_X Y \in T_1$. Therefore

$$f \nabla_{\mathbf{r}} Y = \nabla_{\mathbf{r}} Y = \nabla_{\mathbf{r}} f Y.$$

2° $Y \in T_2$. Since $\nabla Q_2 = 0$, $\nabla_X Y \in T_2$ and just as above we have

$$f(\nabla_{\mathbf{x}} Y) = -\nabla_{\mathbf{x}} Y = \nabla_{\mathbf{x}} f Y.$$

3° $Y \in T_3$, $X \in T_1 \oplus T_2$. Since [X, Y] = 0, $V_X Y = 0$ by Proposition 6. Hence $f \nabla_X Y = 0$. φ is a chart associated with the integrable tensor field f, and so there exists a vector $c \in \mathbb{R}^n$ such that $f Y = d\varphi^{-1}(c)$. Consequently [X, fY] = 0. Of course, $f Y \in T_3$ and, by Proposition 6, $\nabla_X f Y = 0$.

 4° $X \in T_3$, $Y \in T_3$. Let $x \in M$ and let N be an integral manifold of distribution T_3 through x. We set $X' = X_x$, $Y' = Y|_N$, $f' = f|_N$, $g' = g|_N$, $(fY)' = (fY)|_N$. (N, g') is a Riemannian manifold and f' is a metric polynomial structure on N of the first type. If Φ' denote the fundamental 2-form of f', then the assumption that Φ is closed implies that the fundamental 2-form Φ' is closed. Vanishing of the Nijenhuis product [f, f] implies vanishing of [f', f']. From the first part of our proof we have

$$f' \nabla'_{X'} Y' = \nabla'_{X'} f' Y',$$

where ∇' is the Riemannian connection on M defined by g'. Since the distribution T_3 is parallel with respect to ∇ , we obtain

$$f \nabla_{X'} Y = f' \nabla'_{X'} Y' = \nabla'_{X'} f' Y' = \nabla'_{X'} (f Y)' = \nabla_{X'} f Y.$$

Assume 1°. Since $\nabla f = 0$ and the connection ∇ is torsion-free, f is integrable and hence [f, f] = 0. Since the projectors P_1, \ldots, P_s of the almost product structure D are polynomials in f, $\nabla P_i = 0$. In other words, the distributions D_1, \ldots, D_s are parallel with respect to ∇ . Tensor fields g

and f are parallel with respect to \mathcal{V} , and so is Φ , i.e., $\mathcal{V}\Phi = 0$. Since \mathcal{V} is torsion free, we have $d\Phi = A(\mathcal{V}\Phi)$, where A denotes the alternation of the covariant tensor $\mathcal{V}\Phi$ ([3], Chapter III, § 8). This means that Φ is closed and this finishes the proof.

Theorem 7 is not true without the assumption that the distributions on which f is a multiple of identity are parallel with respect to V. For example, let $M = \mathbb{R}^4$ and let (x^1, x^2, x^3, x^4) denote the canonical coordinate system in \mathbb{R}^4 . Let $X_1 = \partial/\partial x^1$, $X_2 = \partial/\partial x^2$, $X_3 = \partial/\partial x^3$, $X_4 = \partial/\partial x^4$. We set $f(X_1) = X_1$, $f(X_2) = -X_2$, $f(X_3) = X_4$, $f(X_4) = -X_3$. Of course, f is an integrable polynomial structure and $D_1 = \mathbb{R}X_1$, $D_2 = \mathbb{R}X_2$, $D_3 = \mathbb{R}X_3 \oplus \mathbb{R}X_4$. If we define a metric tensor g on \mathbb{R}^4 by one of the following matrices:

(a)
$$\begin{bmatrix} e^{x^1 x^2} & 0 & 0 & 0 \\ 0 & e^{x^1 x^2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
 (b)
$$\begin{bmatrix} e^{x^1 x^2 x^3} & 0 & 0 & 0 \\ 0 & e^{x^1 x^2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
 (c)
$$\begin{bmatrix} e^{x^1 x^3} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

then f is a metric polynomial structure with respect to g. It is also easy to check that the fundamental 2-form Φ is closed in each of cases (a), (b), (c). In case (b) neither of distributions D_1 , D_2 , D_3 is parallel with respect to the Riemannian connection $\mathcal V$ defined by g. In particular, D_1 is not parallel with respect to $\mathcal V$, because

$$2g(V_{X_1} X_l, X_2) = -\frac{\partial}{\partial x^2} e^{x^1 x^2} \neq 0$$
 whenever $x_1 \neq 0$.

In case (a) only the distribution D_3 is parallel with respect to \mathcal{V} . In case (c) only D_2 is parallel with respect to \mathcal{V} .

Therefore, example (a) means that in the case of metric polynomial structure of type (IV) it is not sufficient to assume that the distribution $D_1 \oplus D_2$ is parallel with respect to ∇ . By example (c), it is seen that it is also not sufficient to assume that one of distributions on which f is a multiple of identity is parallel with respect to ∇ .

References

- [1] J. Bureš and J. Vanžura, Metric polynomial structures, Ködai Math. Sem. Rep. 27 (1976), p. 345-352.
- [2] E. T. Kobayashi, A remark on the Nijenhuis tensor, Pacific J. Math. 12 (1962), p. 963.
- [3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publishers, vol. I, 1963; vol. II, 1969.

Reçu par la Rédaction le 21.9.1978