Jourval of Science of the Hiroshima University, Ser. A, Vol. 18, No. 3, March, 1955

A Theorem on Operator Algebras

By
Tôzirô OGASAwara
(Received Sep. 10, 1954)

Let \boldsymbol{A} be a B^{*}-algebra, that is, a Banach *-algebra with the property $\left\|A^{*} A\right\|$ $=\|A\|^{2}$ for ϵ very $A \in \boldsymbol{A}$. Such an algebra is $*$-isomorphically representable as a uniformly closed algebra of operators on a Hilbert space \mathfrak{F}. In the sequel we assume that \boldsymbol{A} is represented such an algebra of operetors on $\mathfrak{5}$. It is the purpose of this paper to prove the following theorem ${ }^{11}$:

Theorem. Let \boldsymbol{A} be a B^{*}-algebra. Then for $A, B \in \boldsymbol{A}^{+}$
(a) if $A \geq B$, then $A^{\frac{1}{2}} \geq B^{\frac{1}{2}}$;
(b) if $A \geq B$ implies always $A^{2} \geq B^{2}$, then \boldsymbol{A} is commutative.

1. Proof of (a). First consider the case that $\mathfrak{5}$ is finite-dimensional. Suppose the contrary. Let $\operatorname{Tr}(C)$ stand for an ordinary trace of operators C on \mathfrak{K}. It is a positive linear functional and has the property that $\operatorname{Tr}(C D) \geq 0$ for $C \geq 0$ and $D \geq 0$. Put $S=A^{\frac{1}{2}}$ and $T=B^{\frac{1}{2}}$. Owing to the spectral resolution of $T-S$ there exists a non-zero projection P such that $P(T-S)=(T-S) P \geq \delta P>0$ for a positive number δ. Then $\operatorname{Tr}(P(T-S)(T+S)) \geq \delta \operatorname{Tr}(P(T+S)) \geq 0$. On the other hand $\operatorname{Tr}(P(T-S)(T+S))=\frac{1}{2}\{\operatorname{Tr}(P(T-S)(T+S))+\operatorname{Tr}((T+S)(T-S) P)\}=\frac{1}{2}\{\operatorname{Tr}(P(T-S)$ $(T+S))+\operatorname{Tt}(P(T+S)(T-S))\}=\operatorname{Tr}(P(B-A)) \leq 0$. From these inequalities we have $\operatorname{Tr}(P(T+S))=0$ and therefore $P(T+S) P=0$, which entails that $P T P=P S P=0$. Then $P(T-S)=P(T-S) P=P T S-P S P=0$. It contradicts $P(T-S) \geq \delta P>0$.

Now we consider the general case. Without loss of generality we may assume that \boldsymbol{A} is the algebra \mathscr{B} of operators on \mathfrak{g}. For each finite-dimensional projection P_{δ} we designate by A_{δ} the greatest positive operator $\leq A$ such that $A_{\delta} P_{\delta}=P_{\delta} A_{\delta}=A_{\delta}$.
 set by the ordering " \geq " of operator algebras and it is easy to see that $\left\{A_{\delta}\right\}$ converges to A in the strong topology (cf. [1]). $P_{\dot{\delta}} \geq P_{\hat{\delta}^{\prime}}$ entails $A_{\delta} \geq A_{\delta^{\prime}}$ and therefore $A_{\delta}{ }^{\frac{1}{2}} \geq A_{\delta}{ }^{\frac{1}{2}}$ by the above discussion. Let T be the strong limit of the directed

[^0]set $\left\{A_{\delta}^{\frac{1}{2}}\right\} .\left\langle T^{2} f, f\right\rangle=\langle T f, T f\rangle=\lim _{\delta}\left\langle A_{\delta}^{\frac{1}{2}} f, A_{\delta}^{\frac{1}{2}} f\right\rangle=\lim _{\delta}\left\langle A_{\delta} f, f\right\rangle=\langle A f, f\rangle$ for every $f \in \mathfrak{F}$. Hence $T=A^{\frac{1}{2}}$. Let $\left\{B_{\delta}\right\}$ be the corresponding directed set of positive finitedimensional operators for B. Evidently $A_{\delta} \geq B_{\delta}$ and therefore $A_{\delta}{ }^{\frac{1}{2}} \geq B_{\delta}{ }^{\frac{1}{2}}$. This implies $A^{\frac{1}{2}} \geq B^{\frac{1}{2}}$.
2. Some partial order in \mathscr{B}^{+}. Let \mathscr{B}^{+}be the set of all positive operators on 5. Let $A=\int_{0}^{\infty} \lambda d E_{\lambda}$ and $B=\int_{0}^{\infty} \lambda d F_{\lambda}$ be the spectral resolutions of positive operators A and B respectively. After Dixmier [2] we write $A \gg B$ if $\dot{E}_{\lambda} \leq F_{\lambda}$ for every $\lambda>0 . f \in E_{\lambda} \mathfrak{J}$ if and only if $\left\langle A^{2^{n}} f, f\right\rangle \leq \lambda^{2^{n}}\langle f, f\rangle$ holds for every non-negative integer n. Therefore $A \gg B$ is equivalent to $A^{2^{n}} \geq B^{2^{n}} \quad(n=0,1,2, \cdots)$. The order " \gg is evidently a partial order in \mathscr{B}^{+}. The l.u.b. of A and B exists and is given by $\int_{0}^{\infty} \lambda d G_{\lambda}$ where $G_{\lambda}=E_{\lambda} \cap F_{\lambda}$. For example, if P and Q are projections, then $P \vee Q$ coincides with the usually defined $P \cup Q$. We note that if A is any self-adjoint operator $\in \mathscr{B}$ and $A=\int_{-\infty}^{+\infty} \lambda d E_{\lambda}$ is its spectral resolution, then $|A|=$ $\mathrm{A}_{+} \vee A_{-}$, where $A_{+}=\int_{0}^{\infty} \lambda d E_{\lambda}, A_{-}=-\int_{-\infty}^{0} \lambda d E_{\lambda}$.
3. Proof of (b). The condition of (b) is the same as the following: For any $A, B \in \boldsymbol{A}, A \geq B$ is equivalent to $A \gg B$. Let \boldsymbol{A}^{\prime} be the linear space of all self-adjoint operators of \boldsymbol{A}. We shall show that the order " \geq " is a lattice order. To this end it is sufficient to show that, for any $A \in \boldsymbol{A}^{\prime},|A|$ is the $l . u . b$ of A and ${ }^{\prime}$ $-A$, where $|A|$ is the absolute of A in the usual sense. Let C be any operator $\in \boldsymbol{A}^{\prime}$ such that $A,-A \leq C$. Then $A_{+} \leq C+A_{-}$and $A_{-} \leq C+A_{-}$. As the order " \geq " coincides with the order " \gg ", we have $|A|=A_{+}+A_{-} \leq C+A_{-}$from the remark given in 2, and therefore $A_{+} \leq C$. Similarly $A_{-} \leq C$. Hence $|A| \leq C$. Since $A,-A \leq|A|$, it follows that $|A|$ is the l.u.b. of A and $-A$. Then by a result of Sherman [4] we can conclude that \boldsymbol{A} is commutative. The proof is completed.

The above proof is based on a result of Sherman. Without using his result we can prove that \boldsymbol{A} is commutative. For any $A, B \in \boldsymbol{A}^{+}, A+B \geq A-B, B-A$. Therefore $(A+B)^{2} \geq|A-B|^{2}=(A-B)^{2}$, which entails that $A B+B A=\frac{1}{2}\left\{(A+B)^{2}-\right.$ $\left.(A-B)^{2}\right\} \geq 0$. We can write $A B=C+i D, C \in \boldsymbol{A}^{+}, D \in \boldsymbol{A}^{\prime}$. We have only to show that $D=0$. Suppose the contrary. $A(B A B)=C^{2}-D^{2}+i(C D+D C) . \quad C^{2} \geq D^{2}$ since $B A B \geq 0$. Let α be the greatest positive number such that $C^{2} \geq \alpha D^{2}$ for every
$A, B \in A^{+} . \quad\left(C^{2}-D^{2}\right)^{2} \geq \alpha(C D+D C)^{2}$, which is written as $C^{4}+D^{4}-C^{2} D^{2}-D^{2} C^{2} \geq$ $\alpha\left(C D C D+D C D C+C D^{2} C+D C^{2} D\right) .2 D^{4} \leq C^{2} D^{2}+D^{2} C^{2}$ since $\left(C^{2}-D^{2}\right) D^{2}+D^{2}\left(C^{2}-D^{2}\right) \geq 0$. $C D C D+D C D C \geq 0$ since $D C D=\left(D C^{\frac{1}{2}}\right)\left(D C^{\frac{1}{2}}\right)^{*} . \quad C D^{2} C \geq 0 . \quad D C^{2} D \geq \alpha D^{4}$ since $D C^{2} D$ $-\alpha D^{4}=D\left(C^{2}-\alpha D^{2}\right) D \geq 0$. Therefore we have $C^{4}-D^{4} \geq \alpha^{2} D^{4}$, which implies $C^{2} \geq \sqrt{\alpha^{2}+1} D^{2}$. This is a contradiction.
4. A generalization of (a). Hither-to we have been only concerned with bounded operators. We shall generalize (a) for unbounded operators. Let T and S be self-adjoint operators such thta $T \geq S \geq 0$. We show that $T^{\frac{1}{2}} \geq S^{\frac{1}{2}}$. We first assume that S is bounded. Let $T=\int_{0}^{\infty} \lambda d E_{\lambda}$ be the spectral resolution of T. Put $T_{n}=T E_{n}=\int_{0}^{n} \lambda d E_{\lambda}$. We have $T_{n} \geq E_{n} S E_{n}$ and therefore $T_{n}^{\frac{1}{2}} \geq\left(E_{n} S E_{n}\right)^{\frac{1}{2}}$ by (a). Since $E_{n} S E_{n}$ converges strongly to S, it follows from a theorem of Kaplansky [3] that $\left\{E_{n} S E_{n}\right\}^{\frac{1}{2}}$ converges strongly to $S^{\frac{1}{2}}$. Therefore $T^{\frac{1}{2}} \geq S^{\frac{1}{2}}$. Next we omit the assumption that S is bounded. Let $S=\int_{0}^{\infty} \lambda d F_{\lambda}$ be the spectral resolution of S and put $S_{n}=S F_{n}=\int_{0}^{n} \lambda d F_{\lambda} . \quad T \geq S \geq S_{n}$ implies that $T^{\frac{1}{2}} \geq S_{n}^{\frac{1}{2}}$ and therefore $T^{\frac{1}{2}} \geq S^{\frac{1}{2}} . \quad$ The proof is completed.

References

[1] J. Dixmier, Sur les opérateurs self-adjoint d'un espace de Hilbert, C. R. Acad. Sci. Paris, 230 (1950), 267-269.
[2] \qquad , Remarques sur les applications \mathfrak{h}, Arcd. der Math., 3 (1952), 290-297.
[3] I.'Kaplansky, A theorem on rings of operators, Pacific J. Math., 1- (1951), 227-232.
[4] S. Sherman, Order in operator algebras, Amer. J. Math., 73 (1951), 227-232

[^0]: 1) Added in proof. (a) follows as a special case from a theorem dus to E. Heinz (Math. Ann. 123 (1951), 415-438, §1 Satz 2). Cf. also T. Kato, Math. Ann. 125 (1952/53), 208-212, Theorem 2.
