JOURNAL OF SCIENCE OF THE HIROSHIMA UNIVERSITY, SER. A, VOL. 18, No. 3, MARCH, 1955

A Theorem on Operator Algebras

By

Tôzirô OGASAWARA

(Received Sep. 10, 1954)

Let A be a B^* -algebra, that is, a Banach *-algebra with the property $||A^*A|| = ||A||^2$ for every $A \in A$. Such an algebra is *-isomorphically representable as a uniformly closed algebra of operators on a Hilbert space \mathfrak{H} . In the sequel we assume that A is represented such an algebra of operators on \mathfrak{H} . It is the purpose of this paper to prove the following theorem ¹⁾:

THEOREM. Let A be a B^* -algebra. Then for $A, B \in A^+$

(a) if $A \ge B$, then $A^{\frac{1}{2}} \ge B^{\frac{1}{2}}$;

(b) if $A \ge B$ implies always $A^2 \ge B^2$, then A is commutative.

1. Proof of (a). First consider the case that § is finite-dimensional. Suppose the contrary. Let Tr(C) stand for an ordinary trace of operators C on §. It is a positive linear functional and has the property that $Tr(CD) \ge 0$ for $C \ge 0$ and $D \ge 0$. Put $S = A^{\frac{1}{2}}$ and $T = B^{\frac{1}{2}}$. Owing to the spectral resolution of T-S there exists a non-zero projection P such that $P(T-S) = (T-S)P \ge \delta P > 0$ for a positive number δ . Then $Tr(P(T-S)(T+S)) \ge \delta Tr(P(T+S)) \ge 0$. On the other hand $Tr(P(T-S)(T+S)) = \frac{1}{2} \{Tr(P(T-S)(T+S)) + Tr((T+S)(T-S)P)\} = \frac{1}{2} \{Tr(P(T-S)(T+S)) + Tr(P(T+S)(T-S)P)\} = Tr(P(B-A)) \le 0$. From these inequalities we have Tr(P(T+S)) = 0 and therefore P(T+S)P=0, which entails that PTP = PSP = 0. Then P(T-S) = P(T-S)P = PTS - PSP = 0. It contradicts $P(T-S) \ge \delta P > 0$.

Now we consider the general case. Without loss of generality we may assume that A is the algebra \mathscr{B} of operators on \mathfrak{H} . For each finite-dimensional projection P_{δ} we designate by A_{δ} the greatest positive operator $\leq A$ such that $A_{\delta}P_{\delta}=P_{\delta}A_{\delta}=A_{\delta}$. Such an A_{δ} is determined by $\langle A_{\delta}f, f \rangle = \mathfrak{g}$. I. b. $\langle Ag, g \rangle$ (cf. [1]). $\{A_{\delta}\}$ is a directed $P_{\delta}g=P_{\delta}f$ set by the ordering " \geq " of operator algebras and it is easy to see that $\{A_{\delta}\}$ converges to A in the strong topology (cf. [1]). $P_{\delta} \geq P_{\delta'}$ entails $A_{\delta} \geq A_{\delta'}$ and therefore $A_{\delta}^{\frac{1}{2}} \geq A_{\delta}^{\frac{1}{2}}$ by the above discussion. Let T be the strong limit of the directed

¹⁾ Added in proof. (a) follows as a special case from a theorem due to E. Heinz (Math. Ann. 123 (1951), 415-438, §1 Satz 2). Cf. also T. Kato, Math. Ann. 125 (1952/53), 208-212, Theorem 2.

T. OGASAWARA

set $\{A_{\delta}^{\frac{1}{2}}\}$. $\langle T^{2}f, f \rangle = \langle Tf, Tf \rangle = \lim_{\delta} \langle A_{\delta}^{\frac{1}{2}}f, A_{\delta}^{\frac{1}{2}}f \rangle = \lim_{\delta} \langle A_{\delta}f, f \rangle = \langle Af, f \rangle$ for every $f \in \mathfrak{H}$. Hence $T = A^{\frac{1}{2}}$. Let $\{B_{\delta}\}$ be the corresponding directed set of positive finitedimensional operators for B. Evidently $A_{\delta} \ge B_{\delta}$ and therefore $A_{\delta}^{\frac{1}{2}} \ge B_{\delta}^{\frac{1}{2}}$. This implies $A^{\frac{1}{2}} \ge B^{\frac{1}{2}}$.

2. Some partial order in \mathscr{B}^+ . Let \mathscr{B}^+ be the set of all positive operators on \mathfrak{H} . Let $A = \int_0^\infty \lambda dE_\lambda$ and $B = \int_0^\infty \lambda dF_\lambda$ be the spectral resolutions of positive operators A and B respectively. After Dixmier [2] we write $A \gg B$ if $E_\lambda \leq F_\lambda$ for every $\lambda > 0$. $f \in E_\lambda \mathfrak{H}$ if and only if $\langle A^{2^n}f, f \rangle \leq \lambda^{2^n} \langle f, f \rangle$ holds for every non-negative integer n. Therefore $A \gg B$ is equivalent to $A^{2^n} \geq B^{2^n}$ $(n=0, 1, 2, \cdots)$. The order " \gg " is evidently a partial order in \mathscr{B}^+ . The l.u.b. of A and B exists and is given by $\int_0^\infty \lambda dG_\lambda$ where $G_\lambda = E_\lambda \cap F_\lambda$. For example, if P and Q are projections, then $P \lor Q$ coincides with the usually defined $P \lor Q$. We note that if A is any self-adjoint operator $\in \mathscr{B}$ and $A = \int_{-\infty}^{+\infty} \lambda dE_\lambda$ is its spectral resolution, then |A| = $A_+ \lor A_-$, where $A_+ = \int_0^\infty \lambda dE_\lambda$, $A_- = -\int_{-\infty}^0 \lambda dE_\lambda$.

3. Proof of (b). The condition of (b) is the same as the following: For any $A, B \in A, A \geq B$ is equivalent to $A \gg B$. Let A' be the linear space of all self-adjoint operators of A. We shall show that the order " \geq " is a lattice order. To this end it is sufficient to show that, for any $A \in A', |A|$ is the *l. u. b* of A and -A, where |A| is the absolute of A in the usual sense. Let C be any operator $\in A'$ such that $A, -A \leq C$. Then $A_+ \leq C + A_-$ and $A_- \leq C + A_-$. As the order " \geq " coincides with the order " \gg ", we have $|A| = A_+ + A_- \leq C + A_-$ from the remark given in 2, and therefore $A_+ \leq C$. Similarly $A_- \leq C$. Hence $|A| \leq C$. Since $A, -A \leq |A|$, it follows that |A| is the *l. u. b.* of A and -A. Then by a result of Sherman [4] we can conclude that A is commutative. The proof is completed.

The above proof is based on a result of Sherman. Without using his result we can prove that A is commutative. For any $A, B \in A^+$, $A+B \ge A-B$, B-A. Therefore $(A+B)^2 \ge |A-B|^2 = (A-B)^2$, which entails that $AB+BA=\frac{1}{2}\{(A+B)^2-(A-B)^2\}\ge 0$. We can write AB=C+iD, $C \in A^+$, $D \in A'$. We have only to show that D=0. Suppose the contrary. $A(BAB)=C^2-D^2+i(CD+DC)$. $C^2\ge D^2$ since $BAB\ge 0$. Let α be the greatest positive number such that $C^2\ge \alpha D^2$ for every 4. A generalization of (a). Hither-to we have been only concerned with bounded operators. We shall generalize (a) for unbounded operators. Let T and S be self-adjoint operators such that $T \ge S \ge 0$. We show that $T^{\frac{1}{2}} \ge S^{\frac{1}{2}}$. We first assume that S is bounded. Let $T = \int_0^\infty \lambda dE_\lambda$ be the spectral resolution of T. Put $T_n = TE_n = \int_0^n \lambda dE_\lambda$. We have $T_n \ge E_n SE_n$ and therefore $T_n^{\frac{1}{2}} \ge (E_n SE_n)^{\frac{1}{2}}$ by (a). Since $E_n SE_n$ converges strongly to S, it follows from a theorem of Kaplansky [3] that $\{E_n SE_n\}^{\frac{1}{2}}$ converges strongly to $S^{\frac{1}{2}}$. Therefore $T^{\frac{1}{2}} \ge S^{\frac{1}{2}}$. Next we omit the assumption that S is bounded. Let $S = \int_0^\infty \lambda dF_\lambda$ be the spectral resolution of S and put $S_n = SF_n = \int_0^n \lambda dF_\lambda$. $T \ge S \ge S_n$ implies that $T^{\frac{1}{2}} \ge S_n^{\frac{1}{2}}$ and therefore $T^{\frac{1}{2}} \ge S^{\frac{1}{2}}$. The proof is completed.

REFERENCES

[1] J. Dixmier, Sur les opérateurs self-adjoint d'un espace de Hilbert, C. R. Acad. Sci. Paris, 230 (1950), 267-269.

- [2] _____, Remarques sur les applications \$, Arcd. der Math., 3 (1952), 290-297.
- [3] I. Kaplansky, A theorem on rings of operators, Pacific J. Math., 1- (1951), 227-232.
- [4] S. Sherman, Order in operator algebras, Amer. J. Math., 73 (1951), 227-232