Notre Dame Journal of Formal Logic Volume XVI, Number 3, July 1975 NDJFAM

A THEOREM ON RECURSIVELY ENUMERABLE VECTOR SPACES

RICHARD GUHL

This paper* is based on [1] and [2], but since we study only r.e. spaces, we prefer an exposition which is almost self-contained. Let F be a countable field for which there is a one-to-one mapping ϕ from F onto a recursive subset of $\varepsilon = (0, 1, \ldots)$ such that: $\phi(0_F) = 0$, $\phi(1_F) = 1$, $+_F$ and $+_F$ correspond to partial recursive functions, $\phi(F) = (0, \ldots, q-1)$, if $\operatorname{cord}(F) = q$ and $\phi(F) = \varepsilon$, if $\operatorname{cord}(F) = \aleph_0$. We write \mathscr{U}_F for the vector space over F which consists of all sequences of field elements with at most finitely many nonzero components, together with component-wise addition and scalar multiplication. Put

(1)
$$\Phi\{x_n\} = \prod_{n \le k} p_n \phi(x_n) - 1, \text{ for } \{x_n\} \in \mathcal{U}_F,$$

where $p_0 = 2$, $p_n =$ the n'th odd prime, k any number such that $x_n = 0_F$, for n > k. Then Φ maps \mathcal{U}_F onto a vector space $\overline{U}_F = [\varepsilon_F, +, \cdot]$, where ε_F is an infinite recursive set and + and \cdot are partial recursive functions. Note that the ordinary number 0 is also the zero element of \overline{U}_F . Set $\underline{e}_n = p_n - 1$, $\eta = (e_0, e_1, \ldots)$, then η is an infinite recursive basis of \overline{U}_F , hence $\dim(\overline{U}_F) = \aleph_0$. The word "space" will be used in the sense of "subspace of \overline{U}_F ". A space $\overline{V} = [\alpha, +, \cdot]$ is called r.e., if the set α is r.e., recursive, if \overline{V} is r.e. and has at least one r.e. complementary space, decidable, if α is a recursive set, i.e., if both α and $\varepsilon_F - \alpha$ are r.e.

The *purpose* of this paper is to examine the relationship between (I) \overline{V} is a recursive space, and (II) \overline{V} is a decidable space. We shall prove:

- (a) if F is finite, (I) \Leftrightarrow (II),
- (b) if F is infinite, (I) \Rightarrow (II), but not conversely.

A linearly independent subset of ε_F is called a *repère*. According to [1], p. 2, there is an effective procedure which enables us to decide for any

^{*}This paper was written under Dr. J. C. E. Dekker.

finite subset σ of ε_F whether σ is a repère. It follows ([1], p. 3) that a space is r.e. if and only if it has a r.e. basis. If $\overline{\beta}$ is a r.e. basis of the r.e. space \overline{V} we can (cf.[1], p. 5), given any $x \in \overline{V}$, test whether $x \in \overline{\beta}$; moreover, if $x \neq 0$ and $x \notin \overline{\beta}$, we can effectively express x as a linear combination of elements in $\overline{\beta}$, i.e., find the nonzero elements $r_0, \ldots, r_k \in F$ and the distinct elements $b_0, \ldots, b_k \in \overline{\beta}$ such that

(2)
$$x = r_0 b_0 + \ldots + r_k b_k$$
.

For a subset S of \overline{U}_F we write L(S) for the span of S. A repere β is perfect, if for $x \in \varepsilon_F$,

(3)
$$x \in L(\beta) \iff x \in L\{y \in \varepsilon_F | y \in \beta \text{ and } y \leq x\}.$$

A basis of a space V is a *perfect* basis of V, if it is also a perfect repère. One can prove ([2], Prop. B) that every space V has exactly one perfect basis, say π_V , and that V is a decidable space if and only if π_V is a recursive set. If f(n) is a function from ε into ε , we write ρf for the range of f(n). Let V and W be spaces; then $W \leq V$ means that W is a subspace of V and $W \leq V$ that W is a proper subspace of V.

Proposition A Every recursive space is decidable.

Proof: Let \overline{V} be a recursive space with \overline{W} as a r.e. complementary space. Suppose that $\overline{\beta}$, $\overline{\partial}$ are r.e. bases of \overline{V} , \overline{W} respectively. An element $x \in \varepsilon_F$ belongs to \overline{V} , if either (i) x = 0, or (ii) $x \neq 0$ and relative to the r.e. basis $\overline{\beta} \cup \overline{\partial}$ of \overline{U}_F all coordinates of x with respect to elements in $\overline{\partial}$ are zero. Thus \overline{V} is a decidable space.

Proposition B If the field F is finite, a r.e. space \overline{V} is recursive if and only if it is decidable.

Proof: Let \overline{V} be a decidable space. Since every finite dimensional space is r.e., every r.e. space of finite codimension is recursive. We may therefore assume that $\operatorname{codim}(\overline{V}) = \aleph_0$. Put

(4)
$$c_{0} = (\mu x) [x \in \varepsilon_{F} \& x \neq 0 \& x \notin \overline{V}],$$

$$c_{n+1} = (\mu x) [x \in \varepsilon_{F} \& x \notin L(c_{0}, \ldots, c_{n}) \& \overline{V} \cap L(c_{0}, \ldots, c_{n}, x) = (0)],$$

then $\overline{V} \oplus L(\rho c) = \overline{U}_F$. The number c_0 can be computed from (the recursive characteristic function of) \overline{V} . Assume that c_0, \ldots, c_n have been computed and that $\overline{V} \cap L(c_0, \ldots, c_n) = (0)$. Then we can for every $x \in \mathcal{E}_F$ test whether

(i)
$$x \notin L(c_0, \ldots, c_n)$$
, i.e., whether $x \notin (c_0, \ldots, c_n)$ and (c_0, \ldots, c_n, x) is a repere.

(ii) in case (i) holds, whether
$$\overline{V} \cap L(c_0, \ldots, c_n, x) = (0)$$
.

Note that (i) can be tested whether F is finite or infinite. However, in (ii) we use the fact that F is finite. For if $\operatorname{card}(F) = q$, we can for every $x \notin L(c_0, \ldots, c_n)$ compute the q^{n+2} elements of $L(c_0, \ldots, c_n, x)$ and determine whether any belongs to \overline{V} . Hence the function c_n defined by (4) is recursive and so is the space \overline{V} .

Proposition C If \overline{V} is a recursive space and $p \in \varepsilon_F$, then $\overline{V} + L(p)$ is also a recursive space.

Proof: We only need to show that

(6) \overline{V} recursive & $p \notin \overline{V} \Rightarrow \overline{V} \oplus L(p)$ recursive.

Assume the hypothesis. Let $\overline{\beta}$ be a r.e. basis of \overline{V} , $\overline{\partial}$ a r.e. basis of some r.e. complementary space of \overline{V} and $\overline{\delta} = \overline{\beta} \cup \overline{\partial}$. Let $p = r_0 d_0 + \ldots + r_n d_n$, where $r_0, \ldots, r_n \in F - (0)$ and d_0, \ldots, d_n are distinct elements of $\overline{\delta}$. Since $p \notin V$ at least one of d_0, \ldots, d_n belongs to $\overline{\partial}$; we may assume w.l.g. that $d_0 \in \overline{\partial}$. Define $\partial^* = [\overline{\partial} - (d_0)] \cup (p)$, then $L(\partial^*)$ is also a r.e. complementary space of \overline{V} . It follows that $\overline{\beta} \cup (p)$ is a r.e. basis of $\overline{V} \oplus L(p)$, while $\overline{\partial} - (d_0)$ is a r.e. basis of the r.e. complementary space $L[\overline{\partial} - (d_0)]$ of \overline{V} . Thus $\overline{V} \oplus L(p)$ is a recursive space.

Corollary The sum of a recursive space and a finite dimensional space is again a recursive space.

We say that the element $x \in F$ can be computed, if we can compute $\phi(x)$. Similarly, a function f(n) from ε into F is recursive, if the function $\phi f(n)$ from ε into ε is recursive. These definitions become superfluous if one identifies F with a subset of ε , but it remains important to distinguish the field operations of F, the vector space operations of \overline{U}_F , and ordinary addition and multiplication in ε . If x>0 we write x^- for x-1; thus $e_n=p_n^-$, for $n \in \varepsilon$. Finally, for $r \in F$ we abbreviate the number $2^{\phi(r)}$ by h(r). The next proposition plays the key role in our paper.

Proposition D For every infinite field F and every one-to-one recursive function s_n ranging over a subset of (p_1, p_2, \ldots) , there is a recursive function m(n) from ε into F such that

(7)
$$\overline{D} = L[m(0) \cdot e_0 + s_0^-, m(1) \cdot e_0 + s_1^-, \ldots]$$

is a decidable space.

Proof: Let the one-to-one recursive function s_n be given. Define for every function m(n) from ε into F,

(8)
$$\overline{D}_n = \lfloor [m(0) \cdot e_0 + s_0^-, \ldots, m(n) \cdot e_0 + s_n^-],$$

(9)
$$q_0 = \min[\overline{D}_0 - (0)], q_{n+1} = \min[\overline{D}_{n+1} - \overline{D}_n].$$

If we can define a recursive function m(n) such that the function q_n is strictly increasing and recursive, we are done. For then (q_0, \ldots, q_n) is the perfect basis of \overline{D}_n , hence ρq the perfect basis of \overline{D}_n ; moreover, ρq is a recursive set, hence \overline{D} a decidable space. First of all, for *every* recursive function m(n), the function q_n defined by (8) and (9) is recursive. For if

$$a_n = [m(0) \cdot e_0 + s_0^-] + \ldots + [m(n) \cdot e_0 + s_n^-],$$

then a_n is a recursive function such that

$$a_0 \in \overline{D}_0$$
 - (0) and $a_{n+1} \in \overline{D}_{n+1}$ - \overline{D}_n .

Also,

$$\begin{array}{l} q_0 = (\mu y \leqslant a_0) \big[\ y \ \epsilon \ \overline{D}_0 - (0) \big], \\ q_{n+1} = (\mu y \leqslant a_{n+1}) \big[\ y \ \epsilon \ \overline{D}_{n+1} - \overline{D}_n \big]. \end{array}$$

Since we know a finite basis for each of \overline{D}_0 , \overline{D}_1 , ... and given any finite repère β , we can for every $x \in \varepsilon_F$ test whether $x \in L(\beta)$, it follows that q_n is a recursive function. All that remains is the definition of a recursive function m(n) from ε into F such that the function q(n) is strictly increasing. We put $m(0) = 1_F$. Assume as inductive hypothesis that field elements $m(0), \ldots, m(n)$ have been defined such that $q_0 < \ldots < q(n)$. As observed above, q_0, \ldots, q_n can be computed from $m(0), \ldots, m(n)$, hence q_n is known. We now examine how m(n+1) and q_{n+1} should be related in order that

$$(10) \quad q_{n+1} = \min \left[\overline{D}_{n+1} - \overline{D}_n \right] > q_{n}.$$

An element $x \in \overline{D}_{n+1}$ - \overline{D}_n looks like

$$[t_0 m(0) \cdot e_0 + t_0 \cdot s_0^-] + \dots + [t_{n+1} m(n+1) \cdot e_0 + t_{n+1} \cdot s_{n+1}^-],$$

where $t_0, \ldots, t_{n+1} \in F$ and $t_{n+1} \neq 0$. Thus, by (1),

(11)
$$x = \left[h \left(\sum_{i=0}^{n+1} t_i m(i) \right) \prod_{i=0}^{n+1} s_i \phi^{(t_i)} \right]^{-},$$

where the summation sign refers to addition in F and the product sign to ordinary multiplication in ε . Replacing m(n+1) by v, we can rewrite (11) as

(12)
$$x = \left[h \left(\sum_{i=0}^{n} t_i m(i) +_F t_{n+1} v \right) \prod_{i=0}^{n+1} s_i \phi^{(t_i)} \right]^{-}.$$

The expression between the brackets in (12) will be abbreviated by Δ_v . Hence $x = \Delta_v^-$. Note that Δ_v is a function of (t_0, \ldots, t_{n+1}) , for every $v \in F$. We wish to choose v = m(n+1) in such a way that for all (t_0, \ldots, t_{n+1}) ,

(13)
$$(t_0, \ldots, t_{n+1}) \in F^{n+2} \& t_{n+1} \neq 0 \Longrightarrow \Delta_v > q(n) + 1.$$

For a specific ordered (n + 2)-tuple satisfying the hypothesis of (13), each of the following two conditions will guarantee that the conclusions of (13) be true:

(14)
$$s_i^{\phi(t_i)} > q(n) + 1$$
, for some $i \le n + 1$,

(15)
$$h\left[\sum_{i=0}^{n} t_{i} m(i) +_{F} t_{n+1} v\right] > q(n) + 1.$$

We call an ordered (n+2)-tuple (t_0,\ldots,t_{n+1}) with $t_{n+1}\neq 0$, bad, if it does not satisfy (14); let B denote the set of all bad (n+2)-tuples. If B is empty, $\Delta_v > q(n)+1$, for every v, hence x>q(n) for every choice of m(n+1); then we define $m(n+1)=1_F$. From now on we assume that B is nonempty. B is finite, since for every $i \leq n+1$, there are only finitely many elements t_i ; such that $s_i \phi^{(t_i)} \leq q(n)+1$. Let $\operatorname{card}(B)=w+1$, then w can be computed and B can be effectively generated in a finite sequence β_0,\ldots,β_w . With every $u \leq w$ we wish to associate a field element r(u) such that for all $v \in F$,

(16)
$$\phi(v) > \phi r(u) \Longrightarrow \Delta_v > q(n) + 1$$
.

Such an element r(u) exists, for if we put

$$a = \sum_{i=0}^{n} t_i m(i), b = t_{n+1},$$

then a and b are constants (depending on u) and Δ_v is of the form $h[a \bigoplus_F bv]$, a one-to-one function of v. From a and b we can compute the set

$$\delta_u = \{v \in F \mid h[a + bv] \leq q(n) + 1\},\$$

i.e., find out whether it is empty and determine its elements and cardinality if it is nonempty. Put

(17)
$$r(u) = \begin{cases} 0_F, & \text{if } \delta_u \text{ is empty,} \\ \\ y, & \text{if } \delta_u \text{ is nonempty and } \phi(y) = \max \phi(\delta_u). \end{cases}$$

It follows that (a and b being defined in terms of u, i.e., in terms of β_u), we have for all $v \in F$,

$$\phi(v) > \phi r(u) \Longrightarrow v \not\in \delta_u \Longrightarrow h[a +_F bv] > q(n) + 1.$$

The set $(r(0), \ldots, r(w))$ of field elements can be computed from B, hence from $m(0), \ldots, m(n)$. Thus the element $c \in F$ such that

$$\phi(c) = 1 + \max(\phi r(0), \ldots, \phi r(w))$$

can be computed. Then we have for all $v \in F$,

$$\phi(v) > \phi(c) \Rightarrow v \notin \bigcup_{u=0}^{w} \delta_{u} \Rightarrow h[a +_{F} bv] > q(n) + 1,$$

and this holds for every $\beta_u \in B$. Thus $h[a +_F bc] > q(n) + 1$ and (12) will be true if we take v = c. We therefore define m(n+1) = c. Then all elements of $\overline{D}_{n+1} - \overline{D}_n$ exceed q(n) by (11); in particular, $q_{n+1} > q_n$. This completes the proof.

Proposition E For every infinite field F there is a decidable, but not recursive space.

Proof: Suppose s_n is a one-to-one recursive function ranging over a subset of (p_1, p_2, \ldots) . Let m(n) be a recursive function from ε into F such that the r.e. space \overline{D} defined by (7) is decidable. Then $e_0 \notin \overline{D}$ and

(18)
$$\overline{D} \oplus L(e_0) = L(e_0, s_0^-, s_1^-, \ldots).$$

In fact, $(e_0, s_0^-, s_1^-, \ldots)$ is the perfect basis of $\overline{D} \oplus L(e_0)$. We now choose s_n in such a way that the r.e. set ρs is not recursive; then the perfect basis of $\overline{D} \oplus L(e_0)$ is not recursive, hence $\overline{D} \oplus L(e_0)$ is not decidable. If, however, \overline{D} were a recursive space, $\overline{D} \oplus L(e_0)$ would be recursive by (b) and decidable by Proposition A. We conclude that the space \overline{D} is not recursive.

Remark. This proof implies that for every infinite field F there is a r.e. space \overline{V} and an element $p \in \mathcal{E}_F$ such that

(19) \overline{V} decidable & $p \in \overline{V}$ & $\overline{V} \oplus \bot(p)$ not decidable,

in striking contrast with (b).

REFERENCES

- [1] Dekker, J. C. E., "Countable vector spaces with recursive operations," *The Journal of Symbolic Logic*, vol. 34 (1969), pp. 363-387 and vol. 36 (1971), pp. 477-493.
- [2] Dekker, J. C. E., "Two notes on vector spaces with recursive operations," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 329-334.

Rutgers, The State University New Brunswick, New Jersey