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A Theorem on Riemannan Manifolds o
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Department of Mathematics, Ochanomizu University

(Comm. by Kinjir5 KUNU(I, M. $. A., April 18, 1974)

Let M (n2) be a compact orientable Riemannian manifold. If
there exists a positive constant k such that
( --Ruu>=2kuu
holds good or any skew symmetric tensor u at any point, then M is
called to be of positive curvature operator. M. Berger [1] has proved
b(M)--O or the second Betti number o such manifolds, and then b(M)
=0 by D. Meyer [3] or i=l,...,n--1.

The purpose of this note is to prove the ollowing.
Theorem. If a compact orientable Riemannian manifoldM (n 2)

of positive curvature operator satisfies
( R-O,
then M is a space of constant curvature.

We remark that the condition () is satisfied when M has one of
the following properties"

( ) the Ricci tensor is proportional to the metric tensor,
(ii) the Ricci tensor is parallel,
(iii) conformally flat, and the scalar curvature is constant.
Denoting the Ricci tensor by R R we define a scalar unctioa

Kby
K=R,,R*R+(1/2)RR,,R+2R*RR

Then we have
Lemma 1 ([2], [4]). In a compact orientable Riemannian manifold,

the integral formula

=AA etc.holds good, whereA
As it ollows rom () that

f K=---1I IV,RI<O,

we shall calculate K under he condition (,).
Le P be any poin of M and consider all quaniies wih respec

o an orhonormal base field around P. For fixed , , i, h we define a
local skew symmetric ensor field, byvvl



302 S. TACHIBANA [Vo|. 50,

um R,+R,6m+Rm,+Zm

Then, after long but simple calculations we can get
Lemma 2. ,m,=--16K.

,m,,q

Lemma 3. ,(),() =8(--1) [W,[,
where Wm is the projective curvature tensor"

1

Now, by virtue of Lemma 2, 3 and (.) we have
K(n-- 1)k W,0.

Hence it follows that

Consequently we have Wy,=0 and hence M is of constant curvature.
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