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1. Introduction.

Let A=A(z) be a transcendental entire function and let wu w2 be two
linearly independent entire solutions of the differential equation

(1) w"+Aw=0.

It is known that any non-zero solution of (1) is an entire function of infinite
order ([1]). Put

It then holds ([1], p. 354) that

( 2) 4A=(E'/E)2-2E''/E-(c/E)2,

where c is the Wronskian of wγ and w2, which is a non-zero constant in this
case.

For an entire function / we denote the order of / by p(f), the lower order
of / by μ(f) and the order of N(r, 1//) by λ(f).

S. B. Bank and I. Laine ([1], Theorem 2, (A)) proved from (2) that ρ(A)<
1/2 implies Λ(£)= + oo. They also gave examples of (1) with two linearly in-
dependent entire solutions each having no zeros, in each case of which, p{A)
is either a positive integer or +oo ([1], p. 356).

It is conjectured that if p(A) is finite and not a positive integer, then we
always have λ(E)= + °° (see [2], p. 164). In this direction J. Rossi ([12]) and
L.-C. Shen ([13]) proved some results which contains that ^(^4)^1/2 implies
λ(E)=-{-oo. Recently, C.-Z. Huang ([9]) proved the following result which
generalizes them.

THEOREM A. // μ(A)<l, then either Λ(£)= + oo or
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μ{A)-ι+λ(E)~ι^2 ([9], Theorem 1).

One of our main purpose of this paper is to give a result which contains
Theorem A. To prove it, we need a growth property of A(z) in the set

{z: | J 4 ( Z ) | > 1 }

and so we shall first give a result on the growth of entire functions along
asymptotic paths. We shall assume that the reader is familiar with the satndard
notation of the Nevanlinna theory of meromorphic functions ([5]).

2. Growth of entire functions along asymptotic paths.

A few years ago J. Rossi and A. Weitsman ([11]) proved the following.

THEOREM B. Let f{z) be a transcendental entire function. Suppose that for
some constant K the set

{z: \f{z)\>K)

contains at least two components. Then there exists a path Γ from 0 to oo such
that for zεΓ

(3) \og\f(z)\>\z\<ι(if>w>-1>-βw (0^ε(z)->0 as *->«>).

(We consider p(f)/(2p(f) + k)=l/2 when p(f)=+ oo and k is finite.)
Examples showing that Theorem B is sharp are given in [4]. Besides

this result we can find interesting results on the growth of entire and subhar-
monic functions along asymptotic paths ([3], [4], [10], [11], [14], [15] and
Chapter 8 in [8]).

The purpose of this section is to improve Theorem B and to give a sub-
harmonic analogue, which is an improvement of Theorem 1 in [4].

2-1. Lemmas.

We shall give some lemmas for later use. Let D be an unbounded regular
plane domain. We put

E(r)={θεtO, 2π): reiθεD)
and

f +oo if { |z |=r}cZ?
(4) θ(r)={

{ the measure of E(r) otherwise.

It is clear that there is a positive number a such that θ(r)>0 for all r^a.

LEMMA 1. / /

limmf
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then there exists u>0 harmonic in D such that for all zεD

\^-^z) (0^εO)->0 as z-*oo)

([11], Lemma 1 and its correction).

LEMMA 2. Let g(z) be regular in D and continuous on the closure of D
such that

\g{z)\^l (zεdD).

If there exists one point z0 in D such that

\g(zo)\>l,
then

loglogM(r, £ ) ^

where M(ry g)=sup{\ g(z)\ : (\z\=r)(ΛD] ([17], p. 117).

LEMMA 3. Let v{z) be a non-constant subharmonic function in \z\<oo. Then
there exists a path Γ tending to oo such that

υ(z) — > + °° as z — > oo on Γ

([14], Theorem 1).

2-2. Theorem.

We shall give a result generalizing Theorem B.

THEOREM 1. Let fiz) be a transcendental entire function with μ(f)< + °°.
Suppose that for some constant K the set

{z: |/(2)| >K]

contains at least N components Du •••, DN, where N^2. Then for each / ( = 1 , •••,
N) there exists a path Γ3 tending to oo in Ό3 such that on Γj

(5) \og\f(z)\>\z\^f)i*p^+l-N)-^z) (0 ê/2r)->0 as z->oo).

Proof. It is clear that Du •••, DN are mutually disjoint unbounded regular
domains in | z |<oo and there exists an α>0 such that for all r^a

{\z\=r}nDjΦφ 0 = 1, - ,Λ0.

We here use Θ3(r) for D3 instead of θ(r) defined for D in (4). Then

θj(r)>0

and
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(6) Σ

From (6) we obtain the inequality

( 7 )

and by the Cauchy-Schwarz inequality we have

From (7) and (8) we have

N

(9) Σ

Applying Lemma 2 to f(z)/K in Zλ, we obtain the following inequalities:

(10)

from which we have

(11) li

From (9) and (10) we have for each / ( = 1 , •••, N)

Nzl i l -Q
{log(r/α)}-1{loglogM(2r, f)+O(l)\ {{ {r/a)].,J

r__J1_
Jα tθj(f)

and hence
N—l 1

+ 2

tσj(t)

From (11) and (12) we have for each / ( = 1 , •••, N)

Since p(f)/(2p(f)+l—N)^l/2 in (13), there exists a positive harmonic function
Uj in Z), such that for all Z<ΞDJ

(14) Uj(z)^\z\P<f)«2pcf)+i-N>-ow (0<εQ(z)->0 as

by Lemma 1. We can find z3 in D3 for which
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\f{zs)\>K

and choose a positive constant 5 so small that

\og\f(zJ)\->δuj(zj)+\ogK.
We then define

max{log(i/(z)|//O-ίu/z), 0}

Since UJ(ZJ)>0 and Uj{z)—ΰ for z<£D3, it is clear that Uj(z) is a non-constant
sub harmonic function in | z |<oo. Hence by Lemma 3 there exists a path Γ3

tending to oo such that

Uj(z) —> +00 as z — > 00 on Γ}.

We may assume without loss of generality that

Uj(z)>0 on Γj

so that Γj lies in D3 and on Γ3

Uj(z)=\og\f(z)\-δuj(z)-\ogK>0.

Thus λve have by (14)

as z->oo) on Γj.

Remark 1. By a well-known Ahlfors' theorem (see [6], p. 255), it is known
that N=l when μ(f)<\ and N<2μ(f) when

From (9) and (10) we obtain for r^a

N^2{\og\ogM(2r,

wτhich reduces to N<2μ(f) when N^2.

Example 1. Let

f(z)=coshzN'2 (N=2, 3, •••).
Then,

2

It is easily seen that for k=0, 1, •••, N— 1 and for 0 ^

and

log|/(^ 2 Λ ? r ι/Λ Γ) |>ίΛ Γ/ 2- ε ί ί ) (0<e(f)->0 as ί->+o

Remark 2. This example shows that Theorem 1 is sharp.
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Example 2. Let f(z) be an entire function of finite lower order with N(^2)
distinct finite asymptotic values. Then, for a sufficiently large K the set

{z: \fiz)\>K]

has at least N components.
We can find a concrete example of f(z) with N distinct finite asymptotic

values in [8], p. 562.

2-3. Subharmonic analogue.

Let viz) be a non-constant subharmonic function in | z | < o o . Put

B(r, v)= sup viz),
\z\=r

^l imsuplogi^r, v)/\ogr (the order of v),
r -»oo

μ=lim inf logBir, v)/\ogr (the lower order of v).

It is said that v{z) has at least N tracts in \z\<oo if and only if

{z: viz)>K\

has at least N components for all sufficiently large K, where N is a positive
integer ([7], [8]). When /V^2, the following result is given ([8], p. 593).

THEOREM C. Suppose that viz) has at least 7V(^2) tracts in the finite plane.
Then there exist sectionally polygonal paths γlf •••, γN from 0 to oo such that

l) rjr\ΐk={o, oo} ijφk),
2) Tj and γJ+ι bound a domain Dj and DjΓ\yk—φ (7V+i=7Ί),
3) viz) is bounded on the y3 and not bounded above in the DΓ

Put
B/r, y)=supM2r): i\z\=r)Γ\Dj} .

By 3) in Theorem C, there exists Zj<=Dj for each / such that

vizj)>0

and for all sufficiently large r

Bjir,v)>0.

Further there exists a positive number M such that

Viz)=viz)-M

is negative on γiU

LEMMA 4. log£/r, v)^π[r/2-J^—+0(1)
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where we use Θ3(r) for D3 instead of θ(r) defined for D in (4).

We can prove this lemma by applying Theorem 8.3 ([8], p. 548) to VjU) —
max{F(2), 0} if z^DJf =0 otherwise.

THEOREM 2. Suppose that v(z) has at least N(^2) tracts in the finite plane
and μ<-|-oo. Then there exists a path Γ3 tending to oo in D3 such that

{ ) \ \ ( / ) - > 0 as z->oo)

on Γj(j=l, ~,N).

We can prove this theorem as in the case of Theorem 1 using Lemma 4
instead of Lemma 2. We note that N<2μ as in Remark 1.

3. Application to the oscillation theory of ιv"+Aw=0.

We shall first give some lemmas for later use. We use the same notation
as in the section 1.

LEMMA 5. // ρ(E)< + oo, for a given ε>0 there exists a positive number
d = d(ε) such that

I {Ef/E)\reiθ)-2(E»/E)(reiθ)| rgrd

for all r ^ r o > l and all θ$Ξj(r), where the angular measure of /(r), m(J(r))^επ
([12], Lemma 1).

LEMMA 6. If λ(E)<p(E), then

μ(E)=p(E)=μ(A)=p(A)

and these numbers are equal to an integer or +co.

Proof. From (2) we easily have

(15) 2T(r, E)=2N(r, l /£)+T(r , -4)+S(r, E).

Set
E(z)=Π(z)ePw,

where Π(z) is the Weierstrass product of the zeros of E and P{z) is an entire
function. Then, it is known that p(Π)=λ(E) (see [5]).

a) The case p(E)= + cπ. In this case, P{z) is transcendental and it is
easy to see that μ(E)— + oo. Let a be any number such that λ(E)<a< + oo.
Then from (15) we have

(16) 2Ta(r, E)=2Na(r, l/E)+Ta{r, A)+Sa(r, E),

where
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rr T(t E)
Ta(r, £)=l -—-^dt is of lower order +00,

j 1 1

Na(r, l/E)=^^^l^-dt is bounded,

Ta{r, i4)=\ -^—-β-dt^Tir, A)/a

and
( Y h \ — \ ___ π f — n( I (V" H i i

(X\ί , J->/ \ •. , "' u-1 t/\ i a\i , -ί->//

(see [16], Proposition 1 and Lemma 1), so that

= lim infM™1*> =lim i n f i 2 S f ^ i ) <μ(A).r-oo logr r-,00 logr ~~r

We have
b) The case p(E)<. + 00. In this case, P(z) must be a polynomial and it

is easy to see that

(17) μ(E)= p(E)=the degree of P(z)

since λ(E)<rp(E). From (15) and (17) we have

μ(A)=p(A)=μ(E)=p(E)=an integer.

THEOREM 3. Suppose that μ{A)< + oo and for a positive constant K not
smaller than 1/2 the set

{z: \A(z)\>K)

has at least N components. Then, either p(E)= +00 or

μ{A) ' />(£) =

Proof. Suppose that jθ(£) < + oo. Let Do be a component of the set

{z: \E(z)\>\c\\,

which is a non-empty unbounded set since E is transcendental by (2).
The set {z: \A{z)\>K) has at least iV components, and since A{z) is

transcendental and Theorem 1 holds for N^2, for any positive integer p and
for /Γ^maxfiΓ, M(l, A)} the set

{z: \og\A(z)\-p\og\z\-\ogK1>0}

has at least Af unbounded components. Let Du •••, DN be those N unbounded
components. For 7 = 0 , 1, •••, N, put



436 NOBUSHIGE TODA

{0e[O, 2π): reiβ

and
ί + ~ if {\z\=r}aDJ

θj(r)={
{ the measure of Ej(r) otherwise.

Then there is a positive number a such that #/r)>0 for all r^a and for all
j . By Lemma 2 we have

(18) loglogM(r, E)^

and

r/2 AiS r

for ; = 1 , -, .V.
For any fixed positive number ε < l , let p be a positive integer such that

/)><i, where d is the constant given in Lemma 5. We define for 7=0, 1, •••, N

2π if β/ί)= + °o

θj(t) otherwise.

Then applying Lemma 5 to (2) we obtain the inequality

(20) Σ
i

for all r ^ 6 = m a x ( α , r0) from which we have

(21) Σ lψ-dt£(2+ε)π\og(r/b).

By the Cauchy-Schwarz inequality

From (21) and (22) we obtain the inequality

Define
B0={r: θ o ( r ) = + ^ } .

Then, Bo is a sum of intervals. Let

1 if r belongs to Bo

0 otherwise.
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If r belongs to Bo and r^b, we have

θj(r)=lj(r) for / = 1 , ••• , Λ/
and

from (20). Thus, if we set

then

(24) B o c U ί , .

Define

1 if r belongs to /<\

0 otherwise
and put

M(r)=logM(r, -4)—/> logr-logΛΊ

We then have from (24)

(25) ^ r f ί ^ s Γ
Jb t .7=1 Jδ ί

since ε^ψjφ^π/θjit) and so

by (19).
( i ) The case /V^2. In this case it is clear that for / = 1 ,

0<θj(r)<2π and θj(r)=lj(r)
Since

t

from (18), (19), (23) and (25) we obtain for r^b

N log ( r / b ) \ o g ( r / b )
K } logM(2r)+O(l)logM(2r)+O(l) loglogM(2r,

Let {rn} be a sequence tending to +00 such that

l ί mloglogM(2rn,.4)

Iog2rn ^ v

Put r—rn in (27) and let n tend to +00. We then obtain
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N 1

+ J(E)+~Nεμ(Λ)/2-2+ε'

Tending ε->0, we have

(28) N + — — <2
^ ; μC4)%(£)-

(ii) The case Λί=l. Let

B,= {r: 0&)= + <*>).

Then, £ x is a sum of intervals. Define

1 if r belongs to B]_
Ur)=\

0 otherwise.

If r belongs to Bx and r^b, we have

by (20). Put

and

We then have

(29)

1 if r belongs to Fo

0 otherwise.

Jb ΐ Jb ΐ

since BLCF0, ε-'φ^^π/θ.it) and so

by (18). Since

d t _ rr jt lfrZ,(t)jr d t _ rr jt lfr

J» ίtft(ί) ~ Jί tf,(ί) 2J» '

from (18), (19), (23) and (25) for N=l, (26) and (29), we have

( 3 0 )

logM(2r)+εloglogM(2r,

+ Όgfr/fr) < 2 + ε

^ loglogM(2r, £)+(β/2)logAf(2r)+O(l) =

Then as in the case of N>2 where we obtained (28) from (27), we obtain
the inequality
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μ(A) p(E)
from (30).

CORLLARY. Under the same assumption as in Theorem 3,
1) // μ(A)<p(A)= + °o, then Λ(£)= + co.
2) When p(A) < + oof if μ(A)<p(A) or tf A is of regular growth and p{A)

is not equal to an integer, then either λ{E)—-\-^ or

+ * 2

3) // ^(4)^1/2 or if μ(A)^N/2 in case of N^2, then

Proof. 1) We easily have

from (15) and since μ(A)<p(A)= + °o we have

by Lemma 6.
2) In this case, we have

λ(E)=p(E)

by Lemma 6. We obtain (31) from Theorem 3.
3) Noting the fact that

"N = l if μ(A)<l and N <2μ(A) if

(see Remark 1), we easily obtain Λ(£)= + oo when μ(A)£l/2 or μ(A)—N/2 in
case N is odd from 2) of this corollary.

When N is even and positive, μ(A)=N/2 implies ^(^rr-f-oo by Theorem
3. If ^(E)<. + oo, then μ(A)= p(E)—-^ oo by Lemma 6. This is a contradiction.
λ(E) must be equal to +oo.

Remark 3. The functions of Examples 1 and 2 in the section 2 satisfy the
conditions of Theorem 3 for iV^2.
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