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A THEOREM ON THE UNIQUENESS OF SOLUTIONS
IN NONLINEAR HEAT CONDUCTION*

By ROBERT P. HERRMANN and R. RAY NACHLINGER

(University of Houston)

1. Introduction. Recently, there have appeared several papers concerning unique-
ness of solutions to heat conduction problems. Of these works, [1, 2, 3, 4] concern them-
selves with linear problems, while [5] considers a system of nonlinear parabolic equations.
In [5], however, only uniqueness of the first boundary-initial-value problem was estab-
lished. Our purpose here is to establish uniqueness for solutions with more general
boundary conditions. It might also be mentioned that the method we employ is signifi-
cantly different from that used in [5]. Our result is limited to homogeneous conductors and
three dimensions, but the argument can be easily modified to remedy these shortcomings.

2. Uniqueness. For a rigid stationary heat conductor, the energy balance assumes
the form

e - — V-q + r on R X (— ra, (2.1)

in which r designates the heat supply, e the internal energy, q the heat flux, and R denotes
the region of space occupied by the conductor. Since the divergence theorem is essential
to the developments that follow, we assume that R stands for the interior of a bounded
regular region as defined by Kellogg [6]. For such regions, the divergence theorem is
applicable to vector fields in class Q(R dR) C\ Q'(R), where OR refers to the boundary
of R, and R to its interior.

In addition to the energy balance (2.1), we specify the constitutive equations

e = e{6), q = -q(0, g) (2.2)

where g = V0. Since restrictions on (2.2) are crucial to the developments that follow,
we notice that if, as is normally assumed, ee > 0, then (2.2) is equivalent to

e = e, q = -q*(e, k) (2.3)

where k = Ve. We will not only adopt (2.3), but also demand that: for each continuous
vector k, there exists a positive number M such that

f |q*(ex , k) - q*(e2 , k)2| dV < M f \eY - e2\2 dV, (2.4)
J B J B

and for each pair of continuous (e, k) there exists a positive number N such that
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N f |h|2 dV < f K(e, k)hh dV (2.5)
J B J B

for every vector field h. In (2.5) K is the partial derivative (gradient) of the function q*
with respect to its second argument. Notice that (2.4) is implied by the condition that
q* be differentiable, while (2.5) is essentially a condition that the conductivity tensor be
positive definite.

For simplicity, in the sequal, we will denote the difference of two functions by a super-
posed ~, and we will also omit the argument of functions when no confusion can arise.
We now state without proof a Lemma established in [4].

Lemma. Let es , qs (5 = 1, 2) be in the class Q(R VJ dR X (— 00 , 00)) A Q'(R X
(— oo; oo)) and assume that

es = — V-q5 + rs on R X (— ). (2.6)

Then

i [i h e~2 ~dv = L ~e~r dv+L e^n dA' (2.7)

where n is the unit outward normal to dR.
With these preliminaries, we are in a position to establish

Theorem. Let es, qs, rs (S = 1, 2) satisfy the hypothesis of the Lemma, and suppose
that (2.4) and (2.5) are satisfied. Let t0 and T be numbers such that

(a) r! = r2 on R X [<0 , T], (2.8)

(b) el(x, t0) = e2(x, t0) for every x £ R, (2.9)

and for every t G [<o , T]

(c) f f |>i(x, r) - e2(x, r)][q,(x, r) - q2(x, r)]-n(x) dV dr = 0. (2.10)
J to ''dR

Then ex = e2 on R X [t0 , T],
Proof. Clearly, it suffices to show that

a(t) = f e2(x, t.) dV = 0 for t G [to , T], (2.11)
J R

Toward this end, define

t* = sup \t E [t0 , T] | oc(s) =0 for s E [^0 , <]}■ (2.12)

If t* = T, there is nothing to prove. Thus assume that t* < T. If we now apply the
Lemma using (2.8), (2.9), (2.10), and (2.12), we obtain for t £ [<*, T]

x(t) = 2 f J
Jt* Jr

k q dV dr, (2.13)

which can be rewritten as

ot(t) = 2 f f k-[q*(e2 , k2) - q*(e2 , k,) + q*(e2 , k,) - q*(e! , k,)] dV dr. (2.14)
Jt* jr
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Now, since q* is differentiable with respect to the second argument,

q*(e2 , k2) - q*(e2 , k,) = -K(e2 , k,)k + L(e2 , k, , k)k, (2.15)

where

lira L(-, •, k) = 0. (2.16)
Ik 1-0

If we now use (2.16) and (2.15) in (2.14), we obtain

a(t) + 2 f f k • K(e2 , kx)k dr dv
J t* Jr

< 2 f f [|L(e2 ,kl ,6)| |k| + |h|] |k| clr dv, (2.17)
J t* J R

where h = q*(et , k,) — q*(e2 , k2). If we now use the fact that

2|k||h|<^!k|2+f |h|2, (2.18)

Along with (2.5) and (2.4), (2.17) can be used to get

dr, (2.19)

where

and

a(t) + 2N j3(t) dr < 25(0 0(r) dr + J |jV/3(r) + ~ a(r)

(3(t) = [ \k(x, t)\2 dV (2.20)
J R

5(0 = sup |L(e2(x, £), k^x, £), k(x, £))|. (2.21)
(x,Z)eRX[t*,t\

Notice that by (2.16) and the fact that k(-, t*) — 0,

lira 5(0 = 0. (2.22)
t->t*

Thus there exists a time I E (t*, T] such that

5(0 < N/2 for t E (t*, t). (2.23)
Now if (2.19) is rearranged to yield

/" M2 r'a{t) + [N — 25(0] J P(t) dr < -jy- J a(r) dr, (2.24)

we may use (2.23) to obtain, for t E [<*, I]

M2 r'a(0 < J at(r) dr. (2.25)

An application of Gronwall's Lemma now yields

a(0 =0 for t E [t*, t].

But this contradicts (2.12) and hence completes the proof.
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Finally, notice that the crucial hypotheses (2.4) and (2.5) can be restated in terms of
the constitutive equations (2.4) by requiring e and q to be continuously differentiable,
the heat capacity ee to be strictly positive, and the conductivity qg to satisfy a condition
qgh-h > M |h|". Also, notice that our theorem is applicable not only for the standard
mixed problem, but also for mixed problems in which the part of the boundary on which
the energy or heat flux is specified can change with time.

Finally, it should be noticed that our method of proof would be applicable under
weaker smoothness assumptions, if "solution" is interpreted in a generalized sense.
The obstacle which must be overcome is to establish (2.7) for this class of problem.
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