
J Sched (2009) 12: 315–344
DOI 10.1007/s10951-008-0080-x

A theoretic and practical framework for scheduling in a stochastic
environment

Julien Bidot · Thierry Vidal · Philippe Laborie ·
J. Christopher Beck

Received: 17 May 2007 / Accepted: 4 July 2008 / Published online: 23 August 2008
© Springer Science+Business Media, LLC 2008

Abstract There are many systems and techniques that ad-
dress stochastic planning and scheduling problems, based
on distinct and sometimes opposite approaches, especially
in terms of how generation and execution of the plan, or
the schedule, are combined, and if and when knowledge
about the uncertainties is taken into account. In many real-
life problems, it appears that many of these approaches
are needed and should be combined, which to our knowl-
edge has never been done. In this paper, we propose a ty-
pology that distinguishes between proactive, progressive,
and revision approaches. Then, focusing on scheduling and
schedule execution, a theoretic model integrating those three
approaches is defined. This model serves as a general tem-
plate to implement a system that will fit specific applica-
tion needs: we introduce and discuss our experimental pro-
totypes which validate our model in part, and suggest how

This article is a longer and extended version of a conference paper
which appears at IJCAI’07 (Bidot et al. 2007).
J. Bidot is partially supported by Convention Industrielle de
Formation par la REcherche 274/2001.

J. Bidot (�)
Universität Ulm, Ulm, Germany
e-mail: julien.bidot@uni-ulm.de

T. Vidal
IRISA-INRIA, Rennes, France
e-mail: thierry.vidal@irisa.fr

P. Laborie
ILOG S.A., Gentilly, France
e-mail: plaborie@ilog.fr

J.C. Beck
University of Toronto, Toronto, Canada
e-mail: jcb@mie.utoronto.ca

this framework could be extended to more general planning
systems.

Keywords Scheduling · Planning · Uncertainty ·
Robustness · Combinatorial optimization · Constraint
programming · Simulation · Flexibility · Stability

1 Introduction

Scheduling usually starts from a given set of activities,
which must satisfy a set of temporal and resource con-
straints, and search for a schedule in which precise start
times are set and precise resources are allocated to each
activity. Very often an optimal schedule is actually looked
for, taking into account some optimization criteria (mini-
mal makespan, minimal resource consumption, etc.). In Job-
Shop Scheduling, usually addressed by Operations Research
techniques, the set of activities to schedule comes from the
so-called jobs, consisting of sequences of predetermined ac-
tivities, which must be included in a shop, accounting for
resource demands. In Artificial Intelligence planning, the
set of activities is produced by the planning search engine,
which reasons about goals to achieve, available generic ac-
tivities, and causality relations among them, to provide a
plan of activities (i.e., instantiated activities ordered through
their preconditions and effects), which usually disregards re-
source usage conflicts and may not commit to a precise com-
plete ordering.

But the frontier between Artificial Intelligence planning
and scheduling is not that clear, especially when time, re-
sources, and uncertainty must be considered (Smith et al.
2000). This is why people are more and more interested in a
more general planning and scheduling framework in which
all kinds of planning and scheduling decisions to make to

mailto:julien.bidot@uni-ulm.de
mailto:thierry.vidal@irisa.fr
mailto:plaborie@ilog.fr
mailto:jcb@mie.utoronto.ca

316 J Sched (2009) 12: 315–344

reach the eventually executed schedule are considered all at
once: we propose in this paper to use the general term of
schedule generation to refer to such an extended framework.

It is particularly true when uncertainties come into the
picture: in that case, in both Job-Shop Scheduling and Ar-
tificial Intelligence planning, even the usual strict distinc-
tion between the generation and the execution of the sched-
ule must be relaxed. Classical approaches for solving plan-
ning and scheduling problems are both predictive and de-
liberative, in that a schedule is designed offline and then
sent to the execution controller, which can execute it online
in a straightforward manner, but with no ability to recon-
sider anything. However, in practical applications, we have
to plan or schedule with incomplete, imprecise, and/or un-
certain data: simply executing a strictly and completely de-
termined predictive schedule is not sufficient, as there is a
high chance that such a schedule will not fit the real situa-
tion that will arise. As we are going to see it, in stochastic en-
vironments, both planning (i.e., which activities to choose)
and scheduling (i.e., when to start them and on which re-
sources) decisions might either be anticipated at generation
time, or postponed until execution time, when some uncer-
tainties are resolved.

That is exactly the focus of this paper: we are inter-
ested in the way generation and execution of the effective
schedule should be jointly considered to best fit uncertainty
management needs. This means we are not deeply con-
cerned with the actual planning search or job-shop schedul-
ing techniques that are used to generate that schedule. The
questions we want to address are: How a global genera-
tion/execution loop should be designed? If available, should
knowledge about possible deviations be used, and if yes,
how could one integrate them in the solution process? How
much one should commit to the predictive decisions made
offline? Should online revision of such decisions be al-
lowed? To what extent? Alternatively, how much of the de-
cision process may be postponed and only be taken online?
How do our choices influence the online efficiency, mem-
ory consumption, or the quality of the eventually executed
schedule? In other words, our goal is to study planning and
scheduling under uncertainty in terms of how and when de-
cisions are made.

In this paper, we have chosen to focus on a basic optimal
scheduling problem: we want to allocate resources and as-
sign start times to a set of activities, so that temporal and re-
source constraints are satisfied and so as to optimize a given
quality metric. We will also use constraint-based techniques
to validate our model. However, the work presented here can
be extended to a more general schedule generation frame-
work in which planning decisions are integrated, since we
are interested in when and how various decisions get made,
and not what those decisions are. Somehow, as we will see,
some limited planning concerns already fit in the picture,

since we allow alternative sequences of activities to be gen-
erated, the selection being done at execution time, in a con-
ditional planning like manner.

After having proposed some basic definitions in Sect. 3,
we provide a brief review of some relevant work in planning
and scheduling to exhibit a thorough classification of the
techniques for planning and scheduling under uncertainty,
discussing their strengths and weaknesses. We show that in
real-life applications, mixing those techniques within a sin-
gle system appears to be highly desirable. For that purpose
we propose (in Sect. 4) a new conceptual model encompass-
ing both the generation and the execution of schedules and
in which a variety of techniques for dealing with uncertainty
can be concurrently implemented. Section 5 presents exper-
imental prototypes that validate our model in part. Finally,
we discuss how our framework can be extended to planning
in Sect. 6.

2 Some basic definitions

Before presenting our formal model in Sect. 4, we infor-
mally describe the problem we are interested in, only to in-
troduce basic concepts and properties that are relevant when
addressing schedule generation and schedules in an uncer-
tain environment.

A standard scheduling problem comprises a set of activ-
ities and a set of resources. Each activity has a duration,
there are temporal relations between activities, and each re-
source has a limited capacity. The objective is to assign re-
sources and times to activities given temporal and resource
constraints. To achieve this, we have to make scheduling de-
cisions which are typically: choosing allocations, choosing
sequences, and setting activity start times. We endow the tra-
ditional scheduling system with the capability of represent-
ing alternative subsets of partially-ordered activities, among
which only one must be chosen and executed.

In general, scheduling problems are also optimization
problems: typical optimization criteria are makespan, num-
ber of tardy activities, tardiness or allocation cost, etc.

If we assume an execution environment without uncer-
tainty, one usually generates a schedule offline that is then
executed online without any problem. There are, however,
many possible sources of uncertainty in scheduling, e.g.,
some activity durations or some resource capacities are im-
precise (as resources may break down).

We now give some definitions to avoid ambiguity of
terms commonly used by different communities.

Definition 2.1 (Complete schedule) A complete schedule
is the solution of a scheduling problem, i.e., all decisions
are made: activity start times are set, resource allocations
are done, sequencing decisions are made, and no alternative
subsets of partially ordered activities remain.

J Sched (2009) 12: 315–344 317

Definition 2.2 (Flexible schedule) A flexible schedule is an
incomplete schedule: decisions have still to be made. Con-
straints are associated with a flexible schedule to restrict the
set of complete schedules that can be derived from it.

Definition 2.3 (Conditional schedule) A conditional sched-
ule is a schedule in which distinct alternative subsets of par-
tially ordered activities can be modeled. The schedule con-
tains a condition to test for each choice between such alter-
natives at execution time.

Definition 2.4 (Predictive schedule) A predictive schedule
is a schedule that is generated before the end of its execution.
A predictive schedule is generated before or during execu-
tion.

We may have to modify predictive schedules to adapt
them to online situations we do not know beforehand.

Definition 2.5 (Executable schedule) A schedule is exe-
cutable at time t if and only if it does not violate any con-
straint known at time t .

Definition 2.6 (Adaptive scheduling system) An adaptive
scheduling system is a system that is able to generate a
new executable schedule whenever the currently executing
schedule is no longer executable.

Definition 2.7 (Robust predictive schedule) A predictive
schedule is said to be robust if the quality of the eventu-
ally executed schedule is close to the quality of the pre-
dictive schedule. More formally, we can state that a pre-
dictive schedule with quality qpred is ε-robust for a given ε

and optimization criterion if the quality, qexec, of the eventu-
ally executed schedule is such that (1 − ε) × qpred ≤ qexec ≤
(1 + ε) × qpred given an execution controller and known on-
line perturbations.

The possible values of ε are in [0,1]. We use ε values to
compare the robustness of predictive schedules: the smaller
the ε value, the more robust the predictive schedule.

Definition 2.8 (Stable predictive schedule) A predictive
schedule is said to be stable if the decisions made in the
eventually executed schedule are close to the decisions made
in the predictive schedule. More formally, we can state
that a predictive schedule containing the set of decisions
DESpred is �-stable for a given � if the set of decisions,
DESexec, in the eventually executed schedule is such that
(1 −�)×|DESpred| ≤ |DESpred ∩ DESexec| given an execu-
tion controller and known online perturbations.

The possible values of � are in [0,1]. We use � values
to compare the stability of predictive schedules: the smaller
the � value, the more stable the predictive schedule.

Stability and robustness may be independent as long as
the quality of the predictive schedule is low when compared
to the optimal one: it will not be very difficult to maintain
such a low quality online, still changing no decision. But
as soon as the schedule quality is high enough the two may
quickly become antagonistic. A flexible schedule can be sta-
ble but not robust, which means that we do not change de-
cisions but its actual quality (obtained after execution) devi-
ates from its predictive quality (i.e., the quality we estimate
before execution). On the contrary, a flexible schedule can
be robust but not stable in the case where we change deci-
sions online to keep its effective quality after execution close
enough to its predictive quality (i.e., the quality that was es-
timated before changing decisions).

3 Classification

In this section, we concisely describe a taxonomy of tech-
niques for scheduling and planning under uncertainty that
is independent of any specific representation or reasoning
technique. Such classifications have already been done, es-
pecially in the Operations Research community (as in Bil-
laut et al. 2007; Herroelen and Leus 2005), but none is to-
tally satisfactory to our needs, since they only distinguish
between offline and online techniques: proactive techniques
take into account knowledge about uncertainty to make de-
cisions offline, while reactive techniques are used online to
adapt the current schedule when an unpredicted event oc-
curs such as a machine that breaks down. We go beyond this
distinction and consider issues such as how, when, and what
decisions are made, optimality requirements, etc.

3.1 Our taxonomy in brief

We will in the following distinguish between three main
families of techniques, which refer to three main ways of
balancing schedule generation and execution:

Proactive techniques Such techniques stick to the classical
idea of building a global solution at generation time, which
will never be reconsidered at execution time. It is proactive
(and not only predictive) in that knowledge about the un-
certainties is taken into account in order to generate more
reliable schedules. To reach such a goal, one may

• Generate one complete generic schedule which is proved
to cover most cases, i.e., to execute correctly in most of
the possible situations that will arise at execution time.

• Generate a flexible solution, i.e., in which some deci-
sions have not been made and are postponed until ex-
ecution time.

• Generate a conditional solution, i.e., a solution in which
various mutually exclusive decisions are developed, the
one being effectively chosen being dependent on some
condition which will only be observed at execution time.

318 J Sched (2009) 12: 315–344

Revision techniques Such techniques generate a complete
schedule in the classical predictive way, and at execution
time, whenever that solution does not fit the observed situ-
ation, it is revised, i.e., some of the decisions already made
are modified through online schedule regeneration.

Progressive techniques Also known as continuous, such
techniques generate and execute in the classical way,
but only locally, in the short term: a new part of the
global schedule is generated online, either at predefined
timestamps, or whenever a condition expressing that some
uncertainties are resolved is satisfied.

3.2 Proactive techniques

A proactive technique takes into account the knowledge
about uncertainty to produce schedules that are more robust,
more stable, or both more stable and more robust than they
would be without using this piece of information.

A first naive method for making a schedule insensitive to
online perturbations is to produce offline a complete, predic-
tive, robust schedule by taking into account the worst-case
scenario. A more balanced view is to account for the knowl-
edge on the possible deviations, and hence on all possible
scenarios that may emerge online, to compute a complete
but somehow generic solution that will be able to fit most
of such situations. In other words, one generates a cautious
complete schedule because one wishes to maximize the ex-
ecutability of such a solution online. That can be done, for
instance, when one knows distributions (e.g., of probability)
of the possible deviations, and can compute the solution that
has the highest probability of success.

Different uncertainty models (probability distributions,
possibility theory, etc.) can be used in proactive techniques
for the representation of the problem, and for solving it (e.g.,
find the schedule that will have the highest probability that
the makespan will not exceed a given value).

The research work of Dubois et al. (1993) is a good ex-
ample of such generic schedule generation: they use fuzzy
logic, tackling scheduling problems with fuzzy activity du-
rations, and try to find a schedule that minimizes the possi-
bility of performance less than a threshold. Standard search
techniques are used but the constraint-satisfaction require-
ment is replaced by “reasonably sure that no constraint will
be violated.” This is a realistic approach that lies between ac-
cepting only schedules that are sure to work and accepting a
schedule without taking into account possible deviations.

Another approach consists in introducing some flexibility
in the schedule: only a subset of decisions are made offline
with a search, and the rest are made online with no or only
very limited search; this is a kind of least-commitment ap-
proach with respect to decision-making since we only make
decisions when information is more precise, and/or more
certain. Morris et al. (2001), for instance, maintain a simple

temporal network representing a schedule with uncertain ac-
tivity durations in which start times are not set: they provide
algorithms to guarantee the executability of such schedules
whatever the actual durations will be. Here we have a flexi-
ble schedule.

In the same vein, redundancy-based scheduling can also
be considered as a proactive technique for scheduling. For
example, Davenport, Gefflot, and Beck proposed an ap-
proach in which they add slack times to critical activities,
i.e., the activities that are allocated on possibly breakable
resources (Davenport et al. 2001). This work extended the
Master’s thesis of Gao (1995). The new temporally pro-
tected problem can then be tackled with techniques usu-
ally used to solve deterministic scheduling problems, e.g.,
constraint propagation algorithms can be used to make tree
search more efficient. More precisely, activity durations are
set to be longer than the original ones to generate a predic-
tive schedule that can face possible machine breakdowns.
The activity durations used are based on breakdown statis-
tics, e.g., the mean time between failures or mean time to
repair may be used.

Experiments on job-shop problems show that this tech-
nique significantly reduces the gap between the predictive
quality and the effective quality, but it results in an increase
of tardiness. However, the temporal protection given to ac-
tivity a1, which should allow the following activity a2 allo-
cated to the same resource to start earlier if no breakdown
occurs, can be “lost” if a constraint prevents a2 from start-
ing earlier. This observation is at the outset of two meth-
ods, time-window slack and focused time-windows slack,
presented by Davenport, Gefflot, and Beck who proposed to
post additional constraints such that each activity has a mini-
mum temporal slack. Simulation results show that these two
methods are able to generate schedules whose tardiness is
smaller than the tardiness of the schedules determined by the
temporal protection technique. It is also shown that effective
quality is predicted more accurately, i.e., predictive qual-
ity a priori (before execution) is closer to the actual qual-
ity, observed a posteriori (after execution). Although this
approach is not based on real theoretical foundations, it is
simple and pragmatic such that it can be readily applied to a
real scheduling problem.

Generating partial-order schedules (POSs) is another ex-
ample of such flexible approaches: a subset of sequencing
decisions are made offline, and the remainder being made
online with using a dispatching rule. For example, Policella
et al. considered the problem of generating POSs for prob-
lems with discrete resources (Policella et al. 2004). They
tackle resource-constrained project scheduling problems us-
ing filtering algorithms and propose two orthogonal proce-
dures for constructing a POS. The first, which is called the
resource-envelope-based approach, uses computed bounds
on cumulative resource usage to identify potential resource

J Sched (2009) 12: 315–344 319

conflicts, and progressively reduces the total set of tempo-
rally feasible solutions into a smaller set of resource-feasible
solutions by resolving detected conflicts.1 The second, re-
ferred to as the earliest-start-time approach, instead uses
conflict analysis of an earliest-start-time solution to generate
an initial fixed-time schedule, and then expands this solution
to a set of resource-feasible solutions in a post-processing
step. As might be expected, the second approach, by virtue
of its more focused analysis, is found to be a more efficient
POS generator based on experimental results.

Wu, Byeon, and Storer proposed another way of produc-
ing partial-order schedules (Wu et al. 1999). They identify
a critical subset of decisions that, to a large extent, dictate
global schedule performance. These critical decisions are
made offline, and the rest of the decisions are done online.
They address job-shop problems in which a weight and a due
date are associated to each job. Before execution, they solve
an Order Assignment Problem (OAP) optimally, i.e., they
partition activities into groups such that original precedence
constraints are respected, and introduce a set of precedence
constraints to the problem between groups. Each possible
assignment of activities to these groups is associated with
a cost representing the minimum possible weighted tardi-
ness given the precedence constraints imposed between the
groups; the objective is to choose the assignment that min-
imizes this cost. After solving the OAP, we get a job-shop
scheduling problem that can be solved to evaluate the parti-
tion (the solution of the OAP).

Another way to address flexibility is to build a con-
ditional schedule: everything is set but with alternative
branches. Just-In-Case scheduling illustrates this method
perfectly. It is plainly a proactive technique for schedul-
ing. Drummond, Bresina, and Swanson proposed a contin-
gent scheduling method, called Just-In-Case (JIC) schedul-
ing, applied to a real-world telescope observation scheduling
problem where observation durations are uncertain (Drum-
mond et al. 1994). The solution consists in building a con-
tingent schedule that takes into account likely failures of the
automatic telescope and that does no waste valuable observ-
ing time. The objective is to increase the percentage of the
schedule that can be executed without breakage by assuming
there is a scheduling algorithm for solving the determinis-
tic problem, and probability distributions of the observation
durations are known, i.e., the mean values and the standard
deviations are known. The JIC scheduling proceeds as fol-
lows. Before execution, a schedule is generated assuming
deterministic durations, then the algorithm identifies the ac-
tivity with the highest break probability, the break point in
the schedule is split into two hypothetical cases accordingly:
one in which the schedule breaks and one in which it does

1Earlier, Muscettola proposed such an approach (Muscettola 2002).

not, and then the procedure finds an alternative schedule as-
suming the breakage. There are, of course, several likely
breakages, so the procedure is applied several times. Dur-
ing execution, if there is no breakage, we keep executing the
same schedule, otherwise, if the situation is covered by the
contingent schedule, we switch to a new schedule. This is
a successful, real-world solution. The online portion is triv-
ial since we only have to switch to an alternative schedule.
However, this method is applied to a one-machine schedul-
ing problem, and the combinatorial complexity seems to
hinder its generalization to multiple machine problems.

A last example of conditional models can be found in
the work in planning made by Tsamardinos et al. (2003).
They propose a conditional temporal model in which a plan
contains alternative branches depending on the state of the
world. They analyze the conditions under which observa-
tions of such states must be made prior to branching, taking
into account quantitative temporal constraints (durations).

In addition, all the literature on Markov Decision Process-
es (Puterman 1994; Geffner 1998) (which we will not de-
velop here) can be viewed as examples of such conditional
proactive models for planning.

3.3 Revision techniques

Revision techniques consist in changing decisions during e-
xecution when it is necessary or desirable, e.g., we change
decisions when the current predictive schedule becomes in-
consistent, when estimated quality deviates too much from
the predictive one, or, in a more opportunistic way, when a
positive event occurs (for example, an activity finishes ear-
lier than expected). In other words, we need an execution-
monitoring system able to react and indicate when it is rel-
evant to change decisions of the current predictive sched-
ule. Note that such a procedure is called rescheduling,
and a revision method is usually called predictive-reactive
in the literature (Sabuncuoglu and Bayiz 2000; La 2005;
Billaut et al. 2007).

Sadeh, Osuka, and Schnelbach, with the system called
Micro-Boss, worked on a job-shop scheduling problem
where machines may break down (Sadeh et al. 1993). Large
Neighborhood Search is used when partially rescheduling,
i.e., a set of activities to unschedule (“conflict propagation”)
is identified by using recovery rules: all the activities whose
start times are changed by these rules are unscheduled. The
original scheduling algorithm is then used to reschedule the
unscheduled activities. Simple rules are followed for identi-
fying the neighborhood and for conflict propagation:

• Right shift rule: activities are moved later in time while
preserving sequence.

• Right shift and jump rule: activities are moved later in
time, jumping over ones that do not need to be moved.

320 J Sched (2009) 12: 315–344

The idea is to use a simple rule to quickly repair each sched-
ule. When fully rescheduling Micro-Boss is used. This sys-
tem focuses on resource conflicts on a limited time pe-
riod. Micro-Boss has the ability to detect the emergence
of new bottlenecks during the construction of the sched-
ule and change the current scheduling strategy. Micro-Boss
is also able to schedule an entire bottleneck (or at least a
large chunk of it), i.e., it considers resource conflicts over
the complete time horizon. Resource contention is moni-
tored during the construction of a schedule, and the problem-
solving effort is constantly redirected towards the most seri-
ous bottleneck resource.

During execution, dispatching rules are used to adapt the
current schedule. Activities are scheduled one at a time, i.e.,
every time a machine becomes free, a ranking index is com-
puted for each remaining activity, and the activity with the
highest ranking index is then selected to be processed next
as follows:

• Weighted Shortest Processing Time (WSPT) tries to re-
duce overall tardiness by giving priority to short jobs and
taking into account the priority of each job.

• Slack per Remaining Processing Time (SRPT) combines
the Minimum Slack (MSLACK) rule and the durations
of the remaining activities; MSLACK computes the slack
time of each activity with respect to the due date of its job
and selects the activity with the smallest slack time.

• Weighted Cost OVER Time (WCOVERT) combines
WSPT, the expected waiting time of each remaining ac-
tivity, and MSLACK.

• Apparent Tardiness Cost (ATC) combines WSPT and
MSLACK.

According to Sadeh, these heuristics are well suited to solv-
ing problems in which some activities have to be performed
within non-relaxable time windows as well as repairing
schedules in the face of contingencies (Sadeh 1994). Us-
ing Micro-Boss is a reasonable, pragmatic approach where
there is no explicit reasoning about time to find a solution.
The system does not generate stable schedules: the number
of activities to reschedule may be large.

Another work of interest about partial rescheduling was
done by Smith (1994). OPIS is a full scheduling system
based on repeatedly reacting to events. It is a more sophis-
ticated reasoning mechanism for analysis of conflicts than
Micro-Boss on the basis of constraint propagation. This ap-
proach to incremental management of schedules is based
on a view of scheduling as an iterative, constraint-based
process.

El Sakkout and Wallace used a different approach to fully
reschedule (El Sakkout and Wallace 2000). Their approach
consists in a minimal-perturbation rescheduling. Given a
schedule and a reduction in resource capacity, their system
has to find a new schedule which minimizes the sum of

absolute deviations from activity start times in the original
schedule. The main idea is to combine Linear Programming
(LP) and Constraint Programming (CP), and using poten-
tially good assignments (probes) to solve the problem. The
cost function for measuring change involves a kind of earli-
ness/tardiness which is usually well solved by Simplex, if re-
source constraints are relaxed. One represents temporal con-
straints and the cost function in a linear program and tem-
poral constraints and resource capacity constraints in CP.
One uses the relaxed optimal start times from the linear pro-
gram to drive the CP branching heuristic, i.e., one adds new
linear constraints in the linear program when one branches
in the decision tree (CP model) and propagates these deci-
sions. This technique is named “Probe Backtrack Search.”
The experiment consists of one (non-unary) resource with
a given schedule; when an event reduces resource capacity
over some time interval the system reschedules. This method
is only practical in situations where the time-to-solve is ir-
relevant. The optimization criterion of the original schedule
is ignored. Their experiments show that this hybrid branch–
and–bound technique is better than pure CP, other combi-
nations of CP and LP, and pure Mixed Integer Program-
ming (MIP). These hybrid algorithms are not intended to be
used online; to be considered revision solution techniques,
the solution approach has to be adapted to take into account
the execution of schedules, i.e., unary temporal constraints
are added to the problem during execution corresponding to
committed activity start and end times.

In AI planning, Wang and Chien (1997) focused on re-
planning which preserves elements of the original (predic-
tive) plan in order to use more reliable domain knowledge
and to facilitate user understanding of produced plans. They
presented empirical results documenting the effectiveness of
these techniques in a NASA antenna operations application.
The authors assume there is a default value for each state
goal. They suppose there are well-known methods (activi-
ties) for establishing the default value for each state goal.
They assume the original plan is applicable from a state
where each relevant state goal is at its default value. When
an unexpected state change occurs, the replanning algorithm
then reuses as much of the original plan as possible while
minimizing the amount of re-execution. The replanner re-
turns a plan consisting of the activities that need to be re-
executed and those not executed, as well as additional or-
dering constraints.

3.4 Progressive techniques

The idea behind progressive techniques is to interleave
scheduling and execution, by solving the problem piece by
piece, where each piece can correspond to the activities in
a time window, for example. Reasoning is done as a back-
ground task online, i.e., we can afford more time to search,

J Sched (2009) 12: 315–344 321

we incrementally commit to scheduling decisions periodi-
cally or when new information arrives, and no decisions are
changed.

One way of proceeding when using a progressive ap-
proach is to select and schedule new subsets of activities
to extend the current executing schedule on a gliding time
horizon. A decision is made when the uncertainty level of
the information has become low enough, and/or when the
anticipation time horizon, the interval between the current
time and the expected end time of the last scheduled activ-
ity, has become too small. We can distinguish between the
commitment time horizon, which is the temporal window in
which decisions that are taken should not be reconsidered
during execution, and the reasoning time horizon, which is
the temporal window in which possible actions and expected
events are considered for the search process to make relevant
decisions. These two time horizons overlap but are not nec-
essary equal. One thus needs an execution-monitoring sys-
tem able to react and indicate when we have to make new
decisions, what information to reason about to make new de-
cisions, and what decisions to make.2 A short-term schedule
on which decisions are made is sometimes called an “over-
lapping plan” in manufacturing.

Vidal et al. (1996) presented an approach in which they
allocate container transfer activities in a harbor to robots
only as long as temporal uncertainty remains low enough
to be reasonably sure that the chosen robot will actually be
the best to choose. The objective is to minimize makespan.
There is an anticipation time horizon, but the commitment
time horizon merges with the reasoning time horizon.

3.5 Mixed approaches

Interestingly, there are not that many approaches that com-
bine different techniques along the classification that we just
proposed. Most of them combine a revision approach with a
progressive approach.

In the CASPER planning system (Chien et al. 2000),
planning is done on board an autonomous spacecraft, mixing
a replanning process when a failure occurs or a science op-
portunity is observed (i.e., new goal specifications are added
to the planning problem), and continuous planning. At each
time, the system updates the current plan, goals, state, and
next predictive states by using a telescoping-time horizon
approach. The current plan is generated given what is ex-
pected to happen. When a plan failure happens, an iterative-
repair procedure, which is a greedy search algorithm, is ap-
plied in the short-term horizon to change allocations, move,
renew, or remove actions.

2Alternatively, new subsets of activities can simply be integrated peri-
odically, and so no complex conditions are monitored.

Branke and Mattfeld tackled dynamic job-shop schedul-
ing problems making decisions on a gliding time horizon
and changing some decisions (Branke and Mattfeld 2002).
Note, however, that the progressive approach is not chosen
by the authors but required to solve such a dynamic problem
in which jobs arrive stochastically over time. No monitor-
ing of execution is used to decide when to select and sched-
ule activities. Activity durations are deterministic. Each job
is associated with a due date, and the goal is to minimize
the summed tardiness. An evolutionary algorithm is imple-
mented to find schedules with short makespans and low
early idle times. The generation–execution approach pro-
ceeds as follows. An initial schedule is created with the set
of known jobs and the execution of this schedule begins. At
some point a new job arrives. All the already executed and
executing activities are removed from the scheduling prob-
lem, the new job is added and a new solution is found by
changing some decisions. When the final activity in a job
executes, the contribution to the summed tardiness is calcu-
lated. There is no anticipation time horizon, and the commit-
ment time horizon merges with the reasoning time horizon.

Shafaei and Brunn published an empirical study of a
number of dispatching rules on the basis of a gliding-
time-horizon approach for a dynamic job-shop environment
(Shafaei and Brunn 1999a). The first purpose of the study
was to find the best dispatching rule, and the second was to
investigate the effects of the rescheduling interval on per-
formance and examine whether there is a policy that can
always improve performance. Activity durations are impre-
cise and randomly picked with equiprobability in ranges.
The job arrival rate follows a Poisson distribution, and shop
load is either heavy or moderate. A release date and a due
date are associated with each job. The performance measure
considered is an economic objective, which is to minimize
the sum of the cost of starting jobs too early and the cost
of work-in-progress inventory and tardiness. In general, un-
der tight due-date conditions, the rescheduling interval has
a much more significant effect on performance than under
loose due-date conditions: the smaller the interval, the lower
the costs. There is no anticipation time horizon, and the com-
mitment time horizon merges with the reasoning time hori-
zon.

In another report, Shafaei and Brunn investigated how
efficient these dispatching rules are in a dynamic and sto-
chastic shop environment (Shafaei and Brunn 1999b). The
number of activities per job is uniformly sampled, job routes
are randomly selected, activity durations are imprecise, and
machines may break down: machine breakdown intervals
and repair times follow exponential probability distribu-
tions. The simulation results, under various conditions in
a balanced and unbalanced shop, are presented and the ef-
fects of the rescheduling interval and operational factors in-
cluding shop load conditions and a bottleneck on the sched-
ule quality are studied. They conclude that more frequent

322 J Sched (2009) 12: 315–344

rescheduling generally improves performance in an uncer-
tain situation. There is no anticipation time horizon, and the
commitment time horizon merges with the reasoning time
horizon.

There is one approach which, as opposed to the previous
ones, does mix proactive (instead of progressive) and revi-
sion techniques: the one presented by Bresina et al. (2002),
which deals with planning for space rover applications. The
authors claim that it is not possible to do timely replan-
ning on board the rover when a failure occurs. They have
to deal with uncertainty about the power required, the nec-
essary data storage, the position and orientation of the rover,
and environmental factors that influence actions, such as soil
characteristics, etc. Therefore, it is necessary to plan in ad-
vance for some of the potential contingencies. But the plan-
ner can only afford to account for the “important” contin-
gencies, and must leave the rest to run-time replanning. They
are also concerned with looking for what we call a generic
(though flexible here) schedule, through decision-theoretic
planning: their objective is to find the plan with the maxi-
mum expected utility: each goal has a value or award associ-
ated with it, and an action’s uncertain effects on continuous
variables are characterized by probability distributions.

In his Ph.D. dissertation, Hildum (1994) presented the
Dynamic Scheduling System (DSS), an agenda-based black-
board system, which is capable of dealing with a wide
range of dynamic Resource-Constrained Scheduling Prob-
lems, and producing quality schedules under a variety of
real-world conditions. It handles a number of additional do-
main complexities, such as inter-order tasks (common tasks
that are shared by two or more jobs) and mobile resources
with significant travel requirements. The solution approach
of DSS is a proactive–revision–progression approach, since
flexible and stable schedules (with slack time) are generated
when a resource brakes down or a new order arrives. Slack
time is inserted into the schedules because some resource
allocations are still to be done and there are alternative and
mobile resources. This solution approach is applied to in-
dustrial applications. Furthermore, the basic DSS problem-
solving method is essentially a multiple-attribute, dynamic
heuristic approach that focuses on the most urgent unsolved
subproblem at any point in time. The system can deal with
both hard and soft constraints and uses constraint program-
ming techniques.

3.6 Discussion

We can compare the three families of techniques with re-
spect to the following criteria: online memory need, online
CPU need, schedule robustness and stability, commitment
time horizon, and use of the knowledge about uncertainty.

Revision techniques do not consume a lot of memory
online, since we only have to store one schedule. They

may require a lot of CPU online, depending on the time
spent on rescheduling, which may be done through back-
track search. And, since one will usually not have enough
time to process a complete search, the quality of revised so-
lutions may quickly degrade, which means the robustness of
schedules is not guaranteed. Stability may be very low, if we
change a lot of decisions. Commitment time horizon could
be expected to be high, as one computes a global schedule,
but it will effectively be very short, since we do not know in
advance what decisions will be changed online. The knowl-
edge about uncertainty is not taken into account to make
decisions.

Online memory may vary for proactive techniques, de-
pending on whether we have to store one or more sched-
ules: conditional schedules may require a lot of memory.
In general, online computational need is low, since we do
not have to search online for solutions with backtracking.
We can expect to generate highly robust or stable schedules,
since we take into account what may occur online to make
decisions, but with generic approaches and sometimes with
flexible schedules the solution found amounts to a compro-
mise which does not assure getting the highest quality so-
lution in the observed situation. That is not the case with
conditional approaches where each branch is expected to
be the optimal sub-schedule in the matching situation. The
commitment time horizon appears to be long with flexible
schedules, but that is at the price of not taking all decisions.
In conditional approaches, the commitment time horizon is
short as alternatives prevent from being committed to one
specific branch.

Progressive techniques permit us to limit our online
memory need to the minimum, since we only store a piece of
schedule. The requirement in CPU online is balanced, since
we need to search but only to solve sub-problems. Decisions
are made with a more or less short commitment time horizon
and a time granularity. This limited commitment time hori-
zon may prevent from getting very robust schedules, since
one loses a global view of the problem to solve, but that ac-
tually depends a lot on the type of decisions which are done
progressively. If precise scheduling (as in job-shop schedul-
ing) might often be done only in the short term with no loss
in the global optimality, that is, of course, not the case with
classical planning decisions, where one looks for a causal
sequence from the initial state to the final goal state, and
hence can hardly do without a global view of the solution.
Continuous planning is actually only feasible in applications
where new goals arrive periodically and can be treated sep-
arately and successively, as in Chien et al. (2000). However,
this family of techniques always generates stable schedules.

Table 1 synthesizes the different properties of each fam-
ily of solution-generation techniques used to handle uncer-
tainty, change, or both for scheduling. These features can
help a user to choose a technique in a specific application

J Sched (2009) 12: 315–344 323

Table 1 The properties of each family of solution-generation techniques

Online Online Quality Stability Commitment Knowledge

memory CPU and time horizon about

need need robustness uncertainty

Revision Average High Low Low Very short No

Proactive Low Very low Average Very high Long Yes

generic

Proactive Low Low High Very high Long Yes

incomplete

Proactive Very high Low Very high Very high Short Yes

conditional

Progressive Very low Average Average Very high Short No

domain: if memory usage is limited, then conditional sched-
ules are probably not the right answer; or if optimality is
a key concern, then proactive techniques must be favored,
provided that knowledge about uncertainty is available.

Of course, such properties only apply to “pure” proac-
tive, revision, or progressive techniques, and will be quali-
fied somehow when one mixes them: for instance, a progres-
sive conditional approach (i.e., compute several alternatives
but with limited commitment time horizon) will need aver-
age online memory, with both reasonable online CPU need
and rather high robustness. Therefore, one can see how such
mixed techniques are interesting for finding better compro-
mises with respect to those features a user wishes to meet in
her application. But there are also more pragmatic reasons,
making “pure” techniques usually unrealistic: in a highly
stochastic world, a pure revision approach would amount to
almost permanent rescheduling, which shall be limited, by
mixing the revision technique with a proactive or progres-
sive approach (see Sect. 3.5). On the contrary, a pure proac-
tive technique is not always realistic, since there will often
be unpredicted or unmodeled deviations that can only be
dealt with by a revision technique. And as suggested above,
purely conditional global schedules suffer from combinato-
rial explosion and are often simply infeasible: developing
only some of the branches progressively is a way to over-
come it.

As a matter of conclusion, a user should be given a global
system encompassing the three kinds of approaches, allow-
ing her to tune the levels of proactivity, progression, and
revision that will best fit her needs. As we have seen, few
mixed techniques have been proposed for making schedul-
ing decisions in a stochastic environment, but as far as we
know, no one has proposed a system or an approach that
combines the three ways of scheduling under uncertainty.

4 Representation

This section describes a model for scheduling in a stochas-
tic execution environment. This model integrates the three
families of approaches presented in the previous section.
Our model is not intended to be formal on each aspect of
the scheduling problem, but only on the key and new fea-
tures related to when and how decisions are made: in order
to also remain as generic as possible with respect to differ-
ent problem formulations and search techniques existing in
related literature, the model will be less formal on less rele-
vant aspects (as, for instance, the representation of resource
constraints).

4.1 Schedule

We are interested in extended scheduling problems with mu-
tually exclusive subsets of activities, in a way similar to what
was done by Tsamardinos et al. (2003) and by Beck and Fox
(2000). At the roots of our model, we need variables and
constraints inspired by the constraint paradigm.

Definition 4.1 (Variable) A variable is associated with a do-
main of values or symbols, and it is instantiated with one and
only one of the values or symbols in this domain.

Definition 4.2 (Constraint) A constraint is a Boolean func-
tion relating one (unary constraint), two (binary constraint),
or more (k-ary constraint) variables that restrict the values
that these variables can take.

The domain of a variable is reduced by removing values
that can be proved to not take part of any solution (given the
decisions already made).

324 J Sched (2009) 12: 315–344

We distinguish between two types of variables in the
problem: the controllable variables and the contingent vari-
ables.3

Definition 4.3 (Controllable variable) A controllable vari-
able is a variable instantiated by a decision agent.

One of the issues we are interested in this paper, with re-
spect to controllable variables, is to decide when to instan-
tiate them. For example, it may be difficult to set activity
start times in advance when activity durations are imprecise
because of temporal uncertainty.

Definition 4.4 (Contingent variable) A contingent variable
is a variable instantiated by Nature.

Moreover, a (probabilistic/possibilistic/etc.) distribution
of possible values may be attached to each contingent vari-
able, when knowledge about uncertainty is available and one
wishes to use it. Such distributions are updated during exe-
cution: they can be revised when new information arises, or
they can be truncated when one has observed, for example,
that an activity with an imprecise duration has not yet fin-
ished.

We can now define the basic objects of a scheduling prob-
lem, namely resources and activities.

Definition 4.5 (Resource) A resource r is associated with
one or more variables, that represent its capacity, efficiency,
and/or state. Its capacity is the maximal amount that it can
contain or accommodate at one time point. Its efficiency
describes how fast or how much it can do with respect to
its available capacity. Its state describes its physical condi-
tion. A resource capacity, efficiency, and state can all vary
over time. These variables are either controllable or contin-
gent. r is related to a global resource constraint ctr on all
its variables and the variables of the activities that require it.
The scheduling problem comprises a finite set of resources
noted R.

We can model the state of the execution environment as
a set of state resources, e.g., the outside temperature is mod-
eled by a resource that can be in only one of three states
depending on time: hot, mild, and cool.

Definition 4.6 (Activity) An activity a = 〈starta, da, enda ,
[C T a]〉 is defined by three variables: a start time variable
starta , a duration variable da , and an end time variable enda .
These variables are either controllable or contingent. a may

3Controllable variables correspond to decision variables, and contin-
gent variables to state variables in the Mixed Constraint-Satisfaction
Problem framework (Fargier et al. 1996).

be associated with an optional set of resource constraints
C T a that involve the variables of the resources it requires.

In a constraint-based model, we usually post the fol-
lowing constraint for each activity: enda − starta ≥ da . Of
course, constraints of any type between variables can be
posted on our scheduling problem, e.g., we can post tem-
poral constraints.

We assume that the distributions of possible values for
contingent variables are independent from the values chosen
for controllable variables, except for the end-time variables
of the activities that have contingent duration variables. The
activity end-time variables are contingent, and their distrib-
utions depend on the start times chosen for these activities.
For example, when we choose the resource to allocate to an
activity with a probabilistic duration, this does not effect the
probability distribution associated with the activity duration.

Our scheduling problem is composed of resources, activ-
ities, and constraints relating them, with possibly additional
variables describing the state of execution environment.

To fit the classification described in Sect. 3, addi-
tional constraints may have to be posted by the schedule-
generation algorithm to set resource allocations, make se-
quencing decisions, and/or set precise activity start times.
For example, when we want to set the start time of an activ-
ity, we post a new unary temporal constraint that relates to
the activity start time variable.

Central to our model is the notion of conditions that are
subsets of variables related by logical and/or arithmetic re-
lations: such conditions guide the branching within condi-
tional schedules, the selection of new subsets of activities in
a progressive technique, etc.

Definition 4.7 (Condition) A condition cond = 〈func, [atw]〉
is a logical and/or arithmetic relation func in which at least
one variable is involved. It may be associated with an op-
tional active temporal window that is an interval atw =
[st, et] between two time-points st and et in the current
schedule. If st = et, then it means the condition must be
checked at a precise time-point in the schedule.

A condition can involve characteristics of the distribu-
tions of contingent variables. A condition can be expressed
with conjunctions and disjunctions of conditions.

A typical example of a condition is what we will call a
branching condition. A branching condition will be attached
to one of mutually exclusive subsets of activities (see below)
and will be checked at a specific time point that we will call
a branching node. For example, given three mutually ex-
clusive subsets of activities and a contingent variable rep-
resenting the outside temperature, we observe the value of
this contingent variable at the start time of activity a11 (see
Fig. 1). The three branching conditions are the following:

J Sched (2009) 12: 315–344 325

Fig. 1 Example of a branching
condition with three mutually
exclusive subsets of activities

temperature is below 20 degrees, temperature is between 20
and 30 degrees, and temperature is above 30 degrees. When
the first condition is met, then we choose a15; when the sec-
ond condition is met, then we choose a14; when the third
condition is met, then we choose a16 and a17.

We propose the following recursive definition of a sched-
ule to describe our model with respect to these particular
mutually exclusive subsets of activities.4

Definition 4.8 (Schedule) A schedule S is either
• void S = ∅, or
• S = 〈aS , {C T S }∗, S ′〉 is an activity aS partially ordered
via constraints in {C T S }∗ with respect to the activities of a
schedule S ′, or
• S = 〈bndS ,nbS , {rcpS }∗, cndS 〉 is a set of nbS mutually
exclusive recipes rcpS , i.e., mutually exclusive recipes rep-
resent different ways of attaining the same goal, as defined
below; such recipes follow a branching node bndS and lead
to a converging node cndS , i.e., there are precedence con-
straints that enforce these ordering relations. A node is a
dummy activity adum of null duration that does not require
any resource: adum = 〈startdum

a ,0, enddum
a 〉, with startdum

a =
enddum

a .

Definition 4.9 (Recipe) A recipe rcp = 〈S, [Pyrcp], bcrcp〉
consists of a schedule S associated with an optional proba-
bility, possibility, or plausibility of being executed Pyrcp and
a branching condition bcrcp: it will be executed if and only
if bcrcp is met.

A recipe can describe one of several possibilities for per-
forming an action, e.g., a device can be built in different
ways that are mutually exclusive. At execution, for each set
of mutually exclusive recipes, only one will be executed.

The first two ways of defining a schedule are just an alter-
native way to recursively define a classical partially ordered
schedule without alternatives. The third introduces parts of a

4One should notice that what we call a schedule would be better re-
ferred to as a solution to a scheduling problem, which is possibly not
fully set but only defines a partial order. In the Operations Research
community, a schedule implies that all activity start times are set.

schedule that divide, at some given branching node, into mu-
tually exclusive recipes: each recipe rcpi will be executed, if
a branching condition is met at that point.

It should be noted that conditions must be designed such
that they are actually mutually exclusive and cover all cases.
Moreover, as usual with probability distributions, if ever
they are used, the sum of probabilities associated to the nbS
branches must equal 1.

The previous recursive definitions permit us to build a
schedule piece by piece, building subsets of partially or-
dered activities that are then composed into a set of mutu-
ally exclusive recipes, this set being in turn integrated into
a subset of partially ordered activities that is in turn one of
several mutually exclusive recipes, and so on: alternatives
may be nested within alternatives.

For tractability reasons, we assume there are no temporal
constraints between two activities that do not belong to the
same recipe. However, some precedence constraints must be
added to constrain branching conditions to be checked be-
fore their related recipes would be executed.

4.2 Generation and execution

We defined a model that a proactive method could use to
generate a schedule that would then be entirely sent to the
execution controller. To make it possible to use revision and
progressive techniques, we need to consider a situation in
which a schedule is executed in a highly stochastic environ-
ment, thus requiring scheduling decisions to be made and/or
changed while executing. Hence, we need to design a model
interleaving schedule generation and execution: the result-
ing system must be able to react, to know what to do (e.g.,
reschedule, schedule next subset, make new scheduling de-
cisions, etc.), and to know how to do it.

Two types of algorithms will be needed: execution algo-
rithms will be in charge of dealing with the current schedule
and both making the scheduling decisions that remain and
actually executing activities; generation algorithms will be
in charge of changing the current schedule, either because
some part is not valid anymore and must be modified (re-
vision approach), or because new activities must be added
(progressive approach).

326 J Sched (2009) 12: 315–344

The dynamic evolution of our model will be monitored
via condition meeting: if such a condition is met, then we
know we have to make or change decisions. A branching
condition is actually used by the execution algorithms, guid-
ing them into the proper alternative. We need to introduce
here two new types of condition: a generation condition,
when met, activates a new generation step through the gen-
eration algorithm; then a fire condition will actually enforce
the global monitoring system to turn to this newly generated
schedule. Such generation and fire conditions are needed
both in revision and progressive approaches.

Typical examples of generation and fire conditions are vi-
olations of some constraints in the current schedule, arrivals
of new activities to execute, critical resources no longer
available (implying a revision mechanism), or the anticipa-
tion time horizon has become too small and so we need to
schedule a new subset of activities to anticipate execution
(implying a progressive mechanism).

The generation and execution model can be represented
by a dynamic directed acyclic graph (DAG), similar to a
finite-state machine, whose nodes are called execution con-
texts.

Definition 4.10 (Execution context) An execution context
ect〈Sect, αect〉 is composed of a schedule Sect and an execu-
tion algorithm αect.

Sect is a flexible or complete schedule. In addition, it is
possible for an execution context to not contain all recipes
starting from a branching node, but only those with the high-
est values Py; another example of generation condition is
hence that when the value Py of a remaining recipe becomes
high enough, we generate in a progressive way a new sched-
ule composed of the current schedule and a new recipe.

αect makes decisions (start time setting, resource alloca-
tions, branching on one recipe among several candidates,
etc.) greedily: it cannot change decisions that are already
made. In case of pure execution approach, such as dispatch-
ing, αect makes all decisions.

The arcs of our dynamic DAG are transitions between
execution contexts.

Definition 4.11 (Transition) A transition tr = 〈ectsrc
tr , ecttat

tr ,
condgen

tr , condfir
tr , βtr〉 is composed of a source execution con-

text ectsrc
tr , a target execution context ecttat

tr , a generation con-
dition condgen

tr , a fire condition condfir
tr , and a generation al-

gorithm βtr .

The default situation for the temporal windows of the
generation and fire conditions of transition tr is the whole
source execution context ectsrc

tr , i.e., their temporal windows
equal the maximal interval between the start point and the
end points of ectsrc

tr .

When generation condition condgen
tr is met, generation al-

gorithm βtr generates target execution context ecttat
tr from

source execution context ectsrc
tr and the data of the problem

model. Execution algorithm αecttat
tr

is set by βtr from a li-
brary of template execution algorithms, that depend upon
the degree of flexibility (incompleteness or branching) of
the generated schedule. βtr can decide or change a part of
or all decisions; in particular, it can select a subset of activi-
ties to include into ecttat

tr (progressive approach). Transition
tr is fired when its fire condition is met. When tr is fired,
we change contexts: we go from source execution context
ectsrc

tr to target execution context ecttat
tr . Generation condition

condgen
tr must be more general than or equal to fire condition

condfir
tr since condgen

tr must be met before or when condfir
tr is

met.
Template transitions are defined offline, and each of them

is an implicit description of many transitions that may ap-
pear in a model. A template transition is active when it can
be instantiated, i.e., it is active when one of its implicit tran-
sitions can generate a new context. For example, a template
revision transition associated with a resource constraint rct1
is active each time one of the activities involved in rct1 is ex-
ecuting and allocated to the resource involved in rct1: when
the associated resource breaks down, then we have to change
a number of allocation decisions.

The generation algorithm generating ecttrl
and the execu-

tion algorithm associated with ecttrl
are complementary: the

former makes some decisions for a subset of activities, and
the latter makes the remaining decisions for these activities,
e.g., the former makes allocation and sequencing decisions,
and the latter sets activity start times.

It should also be noted that all conditions are checked
by execution algorithms. When a branching condition is
met, we do not change execution contexts. When a gener-
ation condition is met, a new execution context is generated.
When a fire condition is met, we change execution contexts.

Our first assumption is that uncertainty level decreases
when executing a context. Ergo, we leave some decisions to
the execution algorithm to limit the computational effort that
would be used to revise decisions, and the perturbations and
instability due to such revision. Decisions that can be made
in advance because they concern variables with low uncer-
tainty are taken by generation algorithms, while remaining
decisions will be taken later either by generation or execu-
tion algorithms when their uncertainty will be lower.

Our second assumption is that dynamics of the underly-
ing controlled physical system are low enough with respect
to the time allotted to the reasoning system to search for
schedules online. Therefore, one has enough time to gener-
ate new contexts before they are executed. Generation algo-
rithms should be anytime, i.e., generation algorithms should
be able to produce a schedule whose quality, robustness, or
stability increases with search time. In principle, the deci-
sions made by generation algorithms are better with respect

J Sched (2009) 12: 315–344 327

to an optimization criterion than the decisions made by exe-
cution algorithms. The former have more time to reason and
choose the best schedules among a set of executable sched-
ules, whereas the latter are greedy and return the first exe-
cutable they find. Generating a new execution context and
switching into it are not necessary synchronous, this permits
us to generate new execution contexts during the time period
in which the current execution context is under control and
executing.

One can see that any ‘pure’ technique can be easily in-
stantiated with our model. A pure proactive technique will
only need a single context, generation being made once of-
fline, the remaining decisions being taken by the sole execu-
tion algorithm. In a pure revision approach, contexts contain
complete predictive schedules with basic execution algo-
rithms, and generation/fire conditions associated with fail-
ures or quality deviations in the current context, and gen-
eration algorithms change the current schedule to fit the
new situation. In a pure progressive approach, contexts con-
tain complete schedule pieces with standard execution al-
gorithms, and generation/fire conditions related to the an-
ticipation time horizon getting too small or the uncertainty
level decreasing, and generation algorithms change the cur-
rent schedule by inserting a new subset of activities into it.
The strength of the model is that now all three kinds of ap-
proaches can be integrated and parameters can be tuned to
put more or less flexibility, more or less revision capabilities,
etc., upon needs that are driven by the application.

4.3 An illustrative example

This section presents an illustrative example in the context
of the construction of a dam that shows how our generation–
execution model is applied in practice.

We assume we have to schedule a set of activities:

• Construction of three roads road1, road2, and road3

• Construction of two houses house1 and house2

• Digging of a tunnel in one of two alternative ways tunnel1
and tunnel2 depending on geological conditions observed
at the end of road1

• Preparation of dam foundations foundation

In addition, we assume we can use two trucks, and each ac-
tivity requires one of them except house1 that requires both.
There are precedence relations between activities, due dates,
and a tardiness-cost function. Activity durations are impre-
cise and modeled by probability distributions. Our objective
is to generate a schedule that minimizes the expected tardi-
ness cost.

Figure 2 represents the temporal constraints between ac-
tivities of this small dam construction project. This is a di-
rected AND/OR graph. Each box symbolizes an activity, and
the box lengths depend on activity durations. Arcs represent
precedence constraints between activities, e.g., road2 must
start after the end of road1. Conjunctions are represented
by arcs connected with small arcs of a circle, e.g., activi-
ties house2 and road2 might be executed in any order or in
parallel. Disjunctions are represented by arcs that are not
connected with arcs of a circle, e.g., activities tunnel1 and
tunnel2 are mutually exclusive. Each recipe is associated
with a probability of being executed that may vary during
execution.

When creating a generation–execution model for this
illustrative problem, the first phase consists in deciding
whether we want to monitor schedule execution. Since our
knowledge about uncertainty is limited to probability distri-
butions, we want to be able to change decisions when ex-
pected tardiness cost deviates too much from its predictive
value. In addition, we want to be able to make decisions on
a gliding time horizon to limit our commitment. For these
reasons, we need to monitor schedule execution. We decide
to design two template transitions. The revision transition is
active during execution, whereas the progression transition
is active as long as there is at least one activity that is still
not scheduled. We decide to use the same execution algo-
rithm for any execution context. This execution algorithm
fixes activity start times as early as possible.

Fig. 2 Temporal representation
of a small dam construction
project

328 J Sched (2009) 12: 315–344

Fig. 3 Execution context
generated before starting
execution

Fig. 4 Execution context
generated during the execution
of road1

The first execution context ect1 is generated offline since
we need to schedule at least one activity before starting ex-
ecution. Figure 3 represents ect1. Notice that ect1 only in-
cludes a subset of activities since our progression genera-
tion algorithm makes scheduling decisions on a short-term
horizon. tunnel1 is scheduled because its probability of be-
ing executed is much higher than the one associated with
tunnel2 at this time. Two additional precedence constraints
are included in ect1 as we cannot use more than two trucks
at the same time: road2 starts after the end of house1; house2

starts after the end of road2. These sequencing decisions are
made to minimize the expected tardiness cost given proba-
bility distributions.

During execution we monitor the probabilities associ-
ated with recipes. We start executing ect1. During the ex-
ecution of road1, we assume the probability associated with
tunnel1 decreases, so the probability associated with tunnel2
increases. These changes fire the progression transition, and

a new context ect2 is generated. Figure 4 represents ect2 that
includes both tunnel1 and tunnel2.

When road1 finishes, we observe geological conditions
and choose tunnel2 accordingly. Figure 5 represents ect2 at
this time. Note that the branching node disappears in ect2.

The execution of ect2 continues until we observe that the
mean end time of house1 is later than predicted in such a
way that house2 is delayed and the expected tardiness cost
increases too much with respect to its predicted value. This
fires the revision transition that creates a new context ect3.
Figure 6 represents ect3, where road2 is now sequenced after
house2.

We are now executing ect3. When house2 is executing,
the progression transition is activated since we need to se-
lect and schedule new activities to maintain the lead of gen-
eration over execution. A new context ect4, which includes
all activities, is generated, see Fig. 7. Notice that the tem-
plate progression transition is no longer active as all activi-
ties have now been scheduled.

J Sched (2009) 12: 315–344 329

Fig. 5 Execution context
generated when road1 ends

Fig. 6 Execution context
generated during the execution
of house1

Fig. 7 Execution context
generated during the execution
of house2

5 Experimental system

In this section, we present a few software prototypes that we
implemented, and we show how they are special cases of our
global model and hence validate it. Detailed experimental
results using these prototypes appear in the cited papers.

5.1 Scheduling problem

The flexible job-shop scheduling problem (flexible JSSP) is
a scheduling problem where the set of activities A is par-
titioned into jobs, and with each job a total ordering over a
subset of the activities of A is associated. Each activity spec-

330 J Sched (2009) 12: 315–344

ifies a set of alternative resources. An activity must be as-
signed to one of its alternative resources and execute without
interruption on the assigned resource. No activities that are
assigned to the same resource can overlap their executions.
We represent these non-overlapping activities formally by
a partition of A into resource sets. The partition of A into
resource sets is based on which resource each activity is as-
signed to, i.e., resource sets are made during the search.

A solution corresponds to allocating one resource to each
activity and a total ordering on each resource set such that
the union of the resource and job orderings is an acyclic re-
lation on A.

For our experimental investigations, we focused on prob-
abilistic flexible job-shop problems. Activity end times are
observed during execution. Moreover, resources may break
down: for each resource, the duration between two consecu-
tive breakdowns and breakdown durations are observed dur-
ing execution as well. Random variables are fully indepen-
dent and associated with probability distributions. Random
variables represent activity durations, durations between
breakdowns, and breakdown durations. We focused our ex-
perimental study on two criteria to minimize: makespan, and
sum of tardiness and allocation costs.

5.1.1 Tardiness cost

Each job jobi ∈ JOB is associated with a due date duei . If the
last executed activity of jobi finishes later than duei , then a
tardiness cost is incurred:

tardiCosteff
i = φi × max(endJobeff

i − duei ,0),

where φi is a positive weight, and endJobeff
i is the effective

end time of jobi , observed during execution. A schedule is
associated with a tardiness cost Ktardiness defined as follows:

Ktardiness =
∑

∀jobi∈JOB

tardiCosteff
i .

5.1.2 Allocation cost

Another cost, called allocation cost, is associated with each
resource allocation: when a given activity aij ∈ A is ex-
ecuted with a given resource rl ∈ Rij , it incurs a cost
allocCostij l . A schedule is defined by a set of allocations
and associated with an allocation cost Kallocation: each activ-
ity aij is effectively allocated to a resource reff ∈ Rij and
this allocation costs allocCosteff

ij , so

Kallocation =
∑

∀aij ∈A

allocCosteff
ij .

5.1.3 Global cost

The global cost K represents the whole cost of a solution;
this cost takes both allocation and tardiness costs into ac-
count. It is formally defined as:

K = Kallocation + Ktardiness.

Each scheduling problem is characterized by a maximal
global cost, Kmax, that defines an upper bound with respect
to the schedule costs. We want to maximize the probability
that the global cost is less than the maximal global cost (ro-
bustness), i.e., we want to maximize the level of service of
each schedule; this can be formally expressed as follows:

max Pr(K ≤ Kmax).

Note that tardiness and allocation costs are antagonistic.
The tardiness cost is likely to be high, if we only want to re-
duce allocation cost by choosing systematically the cheapest
resources when allocating activities so that a small number
of activities can be scheduled in parallel. Conversely, the al-
location cost is likely to be high, if we only want to reduce
tardiness cost by choosing systematically the most expen-
sive resources when allocating activities so that a large num-
ber of activities can be scheduled in parallel.

5.2 Architecture

Our experimental system is composed of the following mod-
ules: a solver, a controller, and a world.5 Figure 8 represents
our software architecture. Plain arcs represent data flows,
while dotted arcs represent data controls. Boxes represent
architecture modules.

A solver module is in charge of making decisions with
a backtrack search and constraint propagation. The input of
the solver module is a stochastic model with variables and
conditions. The resolution procedure first computes a deter-
ministic approximation of this model, i.e., we pick a value
for each random variable given its probability distribution.
The computation can be parametrized, see Sect. 5.5.2. Then,
we partially explore the search tree corresponding to the op-
timization of this deterministic model in depth-first search.
The search procedure sequences the activities on each re-
source, and thus produces flexible solutions because activity
start times are not set. We search for flexible solutions un-
til the allotted time for searching is elapsed, i.e., we use an
anytime algorithm. When we stop the resolution procedure
the best flexible schedule is sent to the controller module.

The controller module is responsible for choosing activ-
ity start times given decisions made by the solver module

5The world module is not a real execution environment but a simulator
of it, it instantiates random variables.

J Sched (2009) 12: 315–344 331

Fig. 8 Architecture of our
experimental system

and what happens during execution (observations sent by
the world module). The controller module monitors progres-
sion and revision conditions to start either a selection of new
activities or a re-optimization, when it is relevant. The con-
troller module is also in charge of maintaining known and
unknown probability distributions online. For updating un-
known probability distributions, associated with contingent
variables, such as activity end times, we use Monte Carlo
simulation. For computing expected activity end times, we
run a series of simulations on the flexible schedule at hand
by assuming activities are executed as soon as possible. For
each activity aij that is allocated and sequenced but not yet
executed, we randomly pick a set of possible durations. The
probability distributions we know, such as the probability
distributions associated with activity durations, are truncated
and normalized. Suppose we have an activity whose exe-
cution started at date t = 0 and whose duration, which is
between 10 and 60, follows a normal law of mean 30 and
standard deviation 10. This activity duration is depicted by
the dotted curve in Fig. 9. Now suppose that at date t = 35
the activity is still executing, we will assume that the prob-
ability distribution of the activity end time is the initial law
truncated on the interval [35,60] and renormalized as shown
by the solid curve in Fig. 9. More formally, if the initial

Fig. 9 Two truncated and normalized normal laws

probability law of an activity duration is described by a dis-
tribution function p0(dur) defined in [durmin,durmax], and
if the activity has been executed dur0 units of time, the
current distribution is defined by the probability distribu-
tion pdur0(dur) as follows:

∀dur ∈ [
dur0,durmax], pdur0(dur) = p0(dur)

∫ durmax

dur0 p0(t) dt
.

332 J Sched (2009) 12: 315–344

A Monte Carlo simulation run consists in randomly pick-
ing a value for each random variable such that the two sets
of values that are randomly picked for two consecutive sim-
ulation runs may be completely different.

For computing expected activity end times, we run a se-
ries of simulations on the flexible schedule at hand by as-
suming activities are executed as soon as possible. For each
activity aij that is allocated and sequenced but not yet exe-
cuted, we randomly pick a set of possible durations, and for
each resource that is allocated to aij , we randomly pick a
series of breakdowns. For generating resource breakdowns,
we proceed as follows: for each resource allocated to aij , the
last breakdown generated occurs after the end time of aij ; if
a breakdown overlaps with the activity, then the activity end
time is delayed. For running simulation we use a precedence
graph that is generated for the temporal constraint network:
each node represents an activity, and each arc represents a
precedence constraint between two activities. We then topo-
logically sort the precedence graph and use this ordering in
the simulations. The simulation horizon equals the sum of
all activity durations. The complexity of a single simula-
tion run is in O(nbBk + nbAct + nbPCt), where nbBk is
the number of breakdowns, nbAct is the number of activi-
ties, and nbPCt is the number of precedence constraints; it
is in O(nbBk+nbAct) for our problem, since there are fewer
unary resources than activities and our problem has the same
number of precedence constraints as a job-shop scheduling
problem.

When progression conditions are met, we have to select
and schedule a new subset of activities to anticipate execu-
tion, e.g., when the time period between the current time and
the end time of the last scheduled activity is too short, we
need to select a new set of activities. This permits progres-
sive decision-making since the whole scheduling problem
is split into sub-problems and solved piece by piece dur-
ing execution with uncertainty level decreasing. We have
to change scheduling decisions, i.e., we have to revise the
current schedule when revision conditions are met: the cur-
rent schedule is no longer executable or its expected quality
deviates too much with respect to its baseline quality com-
puted just after its generation by the solver module. For ex-
ample, we reschedule when a resource breaks down. The
generation–execution loop is controlled by the controller
module on the basis of these conditions.

5.3 Revision approach

Our experimental revision approach is parametrized by
choosing a revision criterion and a sensitivity factor. A re-
vision criterion is a condition that is monitored during ex-
ecution. For example, we monitor the absolute difference
between the expected quality, computed before execution,
and the current expected quality, computed during execu-
tion based on what we observe. We compare this absolute

difference with a reference value, and if the revision crite-
rion is met, then we reschedule. A sensitivity factor sets the
sensitivity of the revision criterion with respect to pertur-
bations that occur during execution. The sensitivity factor
is set to indirectly choose the search effort that depends on
the number of reschedulings that occur online (Bidot et al.
2003).

5.3.1 Experimental results

In this section, we report the results of two experimental
studies aiming at determining the impacts of the revision cri-
terion and the uncertainty level on makespan with a limited
computational effort. We address JSSPs with probabilistic
durations, and we assume resources cannot break down. All
the programs run to perform these tests have been written in
C++, use ILOG Scheduler 5.3 (ILOG 2002) for scheduling,
and have been compiled with Microsoft Visual C++ 6. The
results presented here have been obtained with using a dual
processor Pentium II Xeon 450 MHz with 256 MB.

Impact of revision criterion on makespan We investi-
gated three different revision criteria for deciding when to
reschedule.6

First, we describe formally the three criteria. All these
criteria depend on a strictly positive parameter called the
sensitivity factor ω that can tune the sensitivity of the re-
vision criteria. When ω is very small, there will not be any
rescheduling. The larger the sensitivity factor, the higher the
number of reschedulings (and the smaller the stability of the
schedule).

The first criterion revCrit1 consists in monitoring the
makespan and is defined as follows: we reschedule when

Mexp >
Mpre

ω
,

where Mexp is the current expected makespan, and Mpre is
the makespan of the current predictive schedule. This crite-
rion will not result in rescheduling, if the effective activity
durations are shorter than expected. In other words, it does
not allow “opportunistic” rescheduling that would take ad-
vantage of unexpectedly short execution times.

A second variation revCrit2, based on the first, is oppor-
tunistic because it reschedules based on the absolute dif-
ference between the expected makespan and the predictive
makespan. We reschedule when

|Mexp − Mpre| > D

ω
,

where D is the mean of all activity durations of the initial
problem.

6The work reported here was partially published (Bidot et al. 2003).

J Sched (2009) 12: 315–344 333

The two versions based on makespan monitoring are
a priori rather crude: we mainly take into account the ob-
served durations of the activities of the critical paths. If these
activities do not slip too much, then, as a consequence, the
makespan will not slip too much either. However, it is pos-
sible that the expected makespan remains approximately the
same while the executions of the activities that do not be-
long to the critical paths are such that it is possible to find
a much better solution by rescheduling. We thus propose a
third variation of the approach revCrit3 that takes into ac-
count each activity duration. We reschedule when
∑

Anew
|endexp − endpre|
nbNewAct

>
D

ω
,

where Anew is the set of nbNewAct activities that were exe-
cuting the last time we rescheduled, and endexp and endpre

are the expected and predictive activity end times, respec-
tively.

The problem instances with imprecise durations are gen-
erated from classical JSSP instances (Lawrence 1984; Ap-
plegate and Cook 1991; Adams et al. 1988). Each activity is
associated with a normal probability distribution with mean,
p, corresponding to the duration in the classical instance,
and with standard deviation α × p with α > 0. α character-
izes the degree of uncertainty of the problem. The higher α,
the larger the standard deviation of each activity duration so
the more uncertainty in the system. α is constant and equals
0.3 for each experiment done in this first study.

During schedule execution, whenever we are informed
by the environment that an activity ends, we update all our
data structures, and simulate the continued execution of the

schedule. The updating frequency is sufficiently low to per-
mit 1,000 simulation runs each time. When the end of an
activity is observed, there might be other concurrent activ-
ities still executing for which distributions are updated. We
use simulation to calculate the revision criterion, and then
we reschedule only if the revision criterion is met.

Scheduling and rescheduling are done using the con-
straint-programming approach with a standard chronolog-
ical backtracking algorithm and a time limit of one sec-
ond. The new schedule is the best solution found within
the time limit using a depth-first search. Two heuristic rules
are used to make sequencing decisions: first, we have to
select the resource and second, we have to select the ac-
tivity to rank first on this resource. The resource r with
the minimal global slack is selected with priority, and then
the activity requiring r , with the minimal latest start time
is ranked first on r . The global slack of a resource is the
slack time of the activities that are allocated to it. The
global slack is computed on the basis of the temporal win-
dow of each activity, i.e., this temporal window is the time
period between its earliest start time and its latest end
time. During search, constraint propagation is used to prune
the search tree, in particular Edge-Finder (Nuijten 1994;
Baptiste and Le Pape 1996). Note that we do not use simu-
lation to filter solutions found by the tree search because we
assume that a solution with a low deterministic makespan
is also a solution with a low expected makespan (Beck and
Wilson 2007).

The results shown on Fig. 10 come from running 100 dif-
ferent execution scenarios per value of the sensitivity fac-
tor ω. These results are obtained from experimenting with

Fig. 10 Mean effective
makespan for la11 with a low
uncertainty

334 J Sched (2009) 12: 315–344

the problem la11 that consists of 100 activities (Lawrence
1984). We observe that monitoring schedule execution with
the use of each rescheduling criterion improves schedule
quality, i.e., mean effective makespan is smaller than the
mean effective makespan obtained without rescheduling that
equals 1,350: for example, after 2 reschedulings the mean
effective makespan approximately equals 1,290 (4.4% of
improvement). The most significant improvement is ob-
tained with less than about ten reschedulings. The mean
offline optimal makespan equals the average over the 100
optimal makespans, each of them is computed offline as-
suming we know the execution scenario in advance, i.e., we
have to solve 100 deterministic JSSPs to optimality. Each
of these 100 optimal makespans is a lower bound on the
best schedule quality that can be achieved. We actually ex-
perimented with other literature JSSPs of the same size:
la12, la13, la14, abz5, abz6, orb1, orb2, orb3, and orb4.
The results obtained with these instances corroborate these
observations (Lawrence 1984; Applegate and Cook 1991;
Adams et al. 1988). These curves confirm the criterion based
on the activity end times provides the smallest makespan for
a given computational effort since it is more opportunistic
than the first two revision criteria. We also think this is due
to the fact that the activities that do not belong to the critical
path have a smaller impact on makespan than the activities
of the critical path because of activity slack times.

Impact of uncertainty level on makespan All experiments
have been run with the same revision criterion. We chose
the revision criterion revCrit3 presented above. This revi-
sion criterion performs best when about ten reschedulings
are done.

Our study consists in varying the uncertainty level α and
observing how the effective makespan changes. α directly

changes the standard deviations of activity durations: the
higher α, the larger the standard deviations. We considered
the same 10 JSSP instances as those used in the study of
the impact of the revision criterion on makespan. We con-
ducted a series of three experiments, each of them corre-
sponds to a fixed value of α. The curves represented on the
next four figures have been obtained by testing 30 problem
instances, 100 different realizations per problem instance.
The search procedure is the same as the one presented above.
The tree search is limited to one second when reschedul-
ing and we run 1,000 simulation runs each time an activity
ends.

The curves on the next three figures represent the rela-
tionship between the mean number of reschedulings and the
mean relative error of effective makespan for thirty problem
instances. We tested ten problem instances per uncertainty
level. The mean relative error of makespan is computed over
the nbExecSce = 100 execution scenarios of each problem
instance as follows:

mean relative error = 1

nbExecSce
×

nbExecSce∑

sce=1

Meff
sce − M

opt
sce

M
opt
sce

,

where Meff
sce is the effective makespan obtained after schedul-

ing and rescheduling execution scenario sce, M
opt
sce is the

optimal makespan of sce computed offline knowing sce in
advance. Each M

opt
sce has been computed with a texture-

based search (Beck 1999). Note that we have actually ex-
perimented with 3,000 execution scenarios since there are
three uncertainty levels, 10 problem instances per uncer-
tainty level, and 100 execution scenarios per problem in-
stance.

Figure 11 represents the results obtained when α = 0.3.
Figure 12 represents the results obtained when α = 0.5.

Fig. 11 Mean relative error
with a low uncertainty

J Sched (2009) 12: 315–344 335

Fig. 12 Mean relative error
with a medium uncertainty

Fig. 13 Mean relative error
with a high uncertainty

Figure 13 represents the results obtained when α = 0.8.
Note that all these uncertainty levels are actually rather

high since even when α = 0.3 the standard deviation equals
about the third of the mean value of the probability distribu-
tion.

Figure 14 represents the aggregated results obtained
when α varies. These curves have been obtained by us-
ing linear approximation of the preceding results shown on
Figs. 11, 12, and 13, and by computing the average curve
over the 10 problem instances for a given uncertainty level.
We have to approximate linearly the curves to perform math-
ematical operations on them, such as computing the average
curve, because we do not control directly the number of
reschedulings that are performed but we control it via sensi-
tivity factor ω.

5.3.2 Conclusions

From the experimental results presented in Sect. 5.3.1, we
conclude that it is worth using a revision approach when
dealing with a JSSP with probabilistic activity durations
even with a high imprecision. The higher the number of
reschedulings, the lower the effective makespan. We ob-
serve that the higher the imprecision, the higher the effec-
tive makespan, and the improvement of the mean effec-
tive makespan is the same for the three uncertainty lev-
els; moreover, it is about 6% smaller than the mean effec-
tive makespan obtained without rescheduling. Note also that
the effective makespans of the schedules obtained without
rescheduling are not longer than 25% of their corresponding
optimal makespans on average. After about 10 reschedul-
ings effective makespans are not longer than 18% of their

336 J Sched (2009) 12: 315–344

Fig. 14 Mean relative error for
different uncertainty levels

corresponding optimal makespans on average. These opti-
mal makespans are strict lower bounds since they are ob-
tained when we know the execution scenario in advance.
These lower bounds are idealistic and are, therefore, rela-
tively far from the qualities of the best ever possible solu-
tions to actually compute and execute.

5.4 Progressive approach

Our progressive approach is characterized by four parame-
ters that can be set to choose indirectly the anticipation time
horizon and the size of each sub-problem (commitment time
horizon): δtmin controls the anticipation time horizon with
respect to time, σ tmin controls the anticipation time horizon
with respect to the uncertainty level, δtmax controls the size
of each sub-problem with respect to time, and σ tmax con-
trols the size of each sub-problem with respect to the uncer-
tainty level (Bidot et al. 2006).

The problem with such an approach is that we must be
very careful when taking an allocation decision or an or-
dering decision. (i) We have to wait until the uncertainty
level around the decision is low enough so that the deci-
sion is well informed, and (ii) we cannot wait too long be-
cause we do not just want to have a reactive and myopic
decision process. Determining when to select, allocate, and
order a new subset of activities will be done based on moni-
toring a progression criterion during execution. Determining
what activities to select will be done by using heuristics and
Monte Carlo simulation. Determining how to allocate and
order the activities of the selected subset will be done us-
ing constraint-based search, combined possibly with Monte
Carlo simulation.

More precisely, suppose that we are at a given time t

and we are executing a flexible schedule. We assume that

a subset of activities AallocOrder of the problem have al-
ready been allocated and ordered given all constraints at
t and the rest of the activities Apending of the problem
are not yet allocated and only ordered given the prece-
dence constraints of the original problem. A subset of ac-
tivities Aexecuted ⊆ AallocOrder have already been executed, a
second one Aexecuting ⊆ AallocOrder are executing, and a third
one AtoBeExe ⊆ AallocOrder have to be scheduled and exe-
cuted. An activity is scheduled when its start time is fixed
at a date before, at, or after the current time. (i) Of course,
we do not want to wait until the last activity of AtoBeExe fin-
ishes execution before allocating and ordering subsequent
activities of Apending because we would then have very little
time to react and could not easily come up with a good deci-
sion, and (ii) we do not want to make decisions too far in the
future in regions where there is still a lot of uncertainty. Fur-
thermore, we do not want to take the allocation and ordering
decisions one by one, which would be very myopic and cer-
tainly lead to a poor schedule quality. We want to select a
subset of activities and perform a combinatorial search on
this sub-problem in order to satisfy temporal, resource, and
cost constraints. So there are three questions here: (1) how
to design conditions that will be monitored during execu-
tion and say “now, we can try to extend the current flexible
schedule by allocating and ordering a new part of the prob-
lem,” (2) when these conditions are met, how to select the
subset of activities to be allocated and ordered, and (3) when
the subset of activities is selected, how to allocate and order
the activities of this subset in such a way that we maximize
the probability that the constraints will be satisfied and the
global cost will be minimal at the end of execution.

J Sched (2009) 12: 315–344 337

5.4.1 When to try extending the current flexible schedule?

To extend the current flexible schedule, we need to assess
what time we still have before being forced to select, allo-
cate, and order a new subset of activities of Apending and how
high the uncertainty level of the end times of the activities
of AtoBeExe is. We need to monitor two conditions during
schedule execution and when at least one of them is met, we
can try to extend the current flexible schedule.

We propose to evaluate the trade-off between the fact
that δtmin, controlling the anticipation time horizon, should
be large enough to have time to perform a combinatorial
search leading to a good solution and to ensure the stabil-
ity of the schedule, and the fact that execution has advanced
far enough to get reduced uncertainty on the expected end
times of the activities of AtoBeExe.

5.4.2 Temporal condition for starting selection

Given AtoBeExe, there exists a time point tD that is the last
time point before which we have to make at least an alloca-
tion decision if we want to anticipate execution. tD is equal
to the earliest of the expected end times of the activities of
AallocOrderLast ⊆ AtoBeExe that are ordered at last positions
in jobs: tD = min∀jobi∈JOB(max∀aij ∈AtoBeExe(endexp

ij)), where
the min is over all jobs jobi , the max is over all activities aij

of fixed job jobi that still have to be scheduled and executed,
endexp

ij is the expected end time of activity aij , and JOB is
the set of jobs. tD is maintained using Monte Carlo simula-
tion. We can try to extend the current flexible schedule from
the date at which tD − t ≤ δtmin. δtmin is a parameter of the
software prototype, depending on the application domain of
interest.

Figure 15 represents the execution of a flexible schedule;
only three jobs are partially represented; AallocOrder is the

subset of activities represented by nine shaded rectangles;
tD is the earliest expected end time of the activity of job1 or-
dered at the third position; AallocOrderLast is composed of the
three activities represented by the most shaded rectangles
and ordered at the last positions of jobs. Apending is com-
posed of the activities represented by white rectangles. Note
that all pending activities are not represented. Precedence
constraints are represented by arrows. The start times and
end times of the executed activities and the start times of the
executing activities are highlighted.

Uncertainty condition for starting selection When the
highest standard deviation of the end times of the activi-
ties to be executed is less than a given threshold σ tmin, we
can select a subset of pending activities. These standard de-
viations are maintained using Monte Carlo simulation. In a
more formal way, we extend the current flexible schedule
from the date at which

min∀jobi∈JOB

(
max∀aij ∈AtoBeExe

(
σ
(
endexp

ij

))) ≤ σ tmin,

where σ(endexp
ij) is the standard deviation of the end time of

activity aij . σ tmin is a parameter of our experimental system
and depends on the application domain.

5.4.3 How to select the subset of activities to be allocated
and ordered?

As soon as one of the two conditions defined above is sat-
isfied, we still need to select a subset of activities to allo-
cate and order. We do not want to select a too large prob-
lem because: (i) we do not have an infinite time to allocate
and order it (in any case less than tD − t) and (ii) we do
not want to take allocation and ordering decisions too far in
the future as they concern data with too much uncertainty.

Fig. 15 An example of a
progressive scheduling approach

338 J Sched (2009) 12: 315–344

Fig. 16 Example of the
assessment order of eligible
activities

We thus need to monitor two conditions during the selection
process. To select the subset of pending activities to be allo-
cated and ordered, we proceed in two steps as follows: (i) we
compute and associate priorities to a subset of pending ac-
tivities called the eligible activities to determine the order in
which we assess each of them and (ii) we assess the eligible
activities by using a temporal condition and an uncertainty
condition to determine which of them are selected.

Assessment order It is important to assess the eligible ac-
tivities in a relevant order because we need to consider the
eligible activities that have priority in terms of resource con-
tention and tardiness costs. An eligible activity is the pend-
ing activity that is ordered at the first position of a job. There
is thus one and only one eligible activity per job at the begin-
ning of the selection process. We proceed in several steps.
(1) We use a heuristic that gives the order in which we iter-
ate through the current eligible activities and assess the cur-
rent flexible schedule to determine which of them we select.
(2) Once all eligible activities have been labeled by a prior-
ity value we consider each eligible activity in the decreasing
order of priority and assess the probability distribution of the
end time of its preceding activity with respect to the job it
belongs to:

• If this distribution does not meet at least one of the two
conditions defined in the next paragraph, then the eligible
activity is selected and no longer eligible (and no longer
pending); this selected activity is ordered and allocated
in such a way that its mean end time is minimized; the
next activity of the same job, which is a pending activity,
becomes eligible and the priorities of the current eligible
activities are then (re)computed.

• If this distribution meets the temporal condition and the
uncertainty condition defined in the next paragraph, then
the eligible activity remains pending and is no longer eli-
gible concerning the current selection process. Both con-
ditions must be met to stop the selection because we want
to be sure to avoid selecting too small subsets of pending
activities.

(3) If there are no more eligible activities, then the selec-
tion process is stopped, otherwise the selection process goes
on by executing alternately (2) and (3).

Figure 16 gives an example of such an order; the three el-
igible activities are labeled in the assessment order. We com-
pute the priority of each eligible activity by using a heuristic
that is based on both an energy-based heuristic and the Ap-
parent Tardiness Cost rule described below.

We do not need to consider the online continued exe-
cution, and we can behave as if schedule execution was
stopped during the selection process since the dynamics of
the underlying physical system are much slower than the dy-
namics of the decision-making system.

In fact, we are only interested in the probability distri-
butions of the end times of the activities of AallocOrderLast

and in the probability distributions of resource breakdown
end times at time t when selecting and making decisions
on a new subset of activities. When an eligible activity is
selected, we run a set of simulations concerning this activ-
ity, its preceding activities, and the alternative resources it
requires to decide what resource to allocate during the se-
lection process. These allocation decisions are not definitive
since a combinatorial search is done when the selection is
finished. Figure 17 shows one simulation run of an eligi-
ble activity a46 associated with two alternative resources r3

and r4. This simulation is run at time t = 10. The duration of
a46 that is randomly picked given its probability distribution
equals 15 time units. The end time of its direct predecessor
a45 is randomly picked using the current distribution and
equals 25. a46 cannot start execution before 25 as there is a
precedence constraint between a45 and a46, and a46 cannot
finish before 40 (this value equals the sum of its start time
and its duration). Each of its alternative resources may be
already allocated, not available and/or broken down. After
picking activity end times, resource breakdown start times,
and resource breakdown end times randomly, we can com-
pute the expected end time of a46 for this simulation run. r3

is allocated to a14 that finishes at 30, and r3 breaks down at
50 and is fixed at 65. r4 breaks down at 30 and is repaired
at 40. From this simulation run, we can update the means
and standard deviations of the two end times of a46 (a mean
and a standard deviation for each resource) as follows: if
a46 is executed with r3, then its execution starts at 30 and
finishes at 45 without interruption; if a46 is executed with
r4, then its execution starts at 25, it is suspended at 30, it re-
sumes execution at 40 and finishes thus at 50. After updating

J Sched (2009) 12: 315–344 339

Fig. 17 Example of simulation
of a selected activity

the two expected end times of a46 we allocate the resource
that minimizes the expected end time of a46 (a46 would be
allocated to r3, if only considering this unique run).

Temporal and uncertainty conditions for stopping selection
Given the assessment order, we have to make sure both that
we will select enough pending activities to schedule these
activities long before executing them and that the uncer-
tainty level of the end time of each selected activity is higher
than a given threshold. An eligible activity aij is selected,
if the mean end time of its preceding activity of the same
job aij−1 is less than t + δtmax and/or the standard devia-
tion of aij−1 is less than σ tmax, otherwise it is not selected
and is no longer eligible during the current selection process.
δtmax and σ tmax are parameters. We assume δtmax ≥ δtmin

and σ tmax ≥ σ tmin, otherwise we could not select any pend-
ing activity.

Energy-based heuristic The energy-based heuristic is com-
bined with the Apparent Tardiness Cost rule based heuristic
(Aktürk and Yildirim 1999) to compute the priorities of el-
igible activities, and the estimations of the job queues and
the allocation costs of pending activities. We take resource
constraints into account by extending the mean durations of
the pending activities using an energy-based heuristic (Er-
schler 1976). We compute the criticality of each activity that
depends on the average loads and costs of the resources it
requires, we then modify its mean duration accordingly. We
first compute the artificial duration durResij l of activity aij

executed with resource rl as follows:

durResij l = mDurij

allocCostij l × ∑
∀rk∈Rij

1
allocCostijk

,

where mDurij is the mean duration of aij , allocCostij l is
the allocation cost when rl is allocated to aij , and Rij is
the set of all alternative resources required by aij . Note that
durResij l can be computed once offline.

It is also useful to compute the artificial duration of the
pending activities requiring rl :

durResl =
∑

∀aij ∈Apending∩Al

durResij l ,

where Al is the set of activities that require rl . We can then
compute the criticality degree critij of each pending activ-
ity aij :

∀aij ∈ Apending: critij = 1 +
∑

∀rl∈Rij

1 − durResij l

durResl

.

critij represents how high the probability is that the effective
duration of aij will be greater than the original mean dura-
tion of aij given resource constraints and allocation costs.
We then extend the mean duration mDurij of each pending
activity aij ∈ Apending with respect to how critical aij is:

extendedMDurij = mDurij × critij .

Heuristic based on apparent tardiness cost rule We com-
pute the priority of each eligible activity, the estimated job
queues and the allocation costs of pending activities by us-
ing a modified version of the Apparent Tardiness Cost rule
in which its weight is redefined (Aktürk and Yildirim 1999).
A weight weightij is associated with each pending activity.
It equals the sum of the expected tardiness cost of jobi and
the expected allocation cost of the eligible activity aij :

∀aij ∈ Aeligible: weightij = tardiCostexp
i + allocCostexp

ij .

The expected tardiness cost of jobi is computed as fol-
lows:

tardiCostexp
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φi × endJobexp
i − duei ,

if endJobexp
i − duei ≥ 0,

(1 − φi) × (endJobexp
i − duei),

otherwise,

where endJobexp
i = endallocOrderLast

i + queuei , and
endallocOrderLast

i is the expected end time of the selected ac-
tivity of jobi ordered at the last position. endallocOrderLast

i is
computed by running Monte Carlo simulations.

allocCostexp
ij is the mean allocation cost associated to aij :

allocCostexp
ij =

∑
∀rl∈Rij

allocCostij l

k
,

where k is the number of alternative resources required
by aij . In case no new activity is yet selected for jobi ,

340 J Sched (2009) 12: 315–344

endselectedLast
i is the expected end time of the allocated ac-

tivity of jobi ordered at the last position and is computed by
running Monte Carlo simulations. φi ∈ [0,1[is used to bal-
ance the expected tardiness cost among the jobs. Note that
allocCostexp

ij can be computed once offline. We set the look-
ahead parameter χ = 2, as suggested by Morton and Pentico
(1993), in the formula to compute each priority πij :

∀aij ∈ Aeligible: πij = weightij
queuei

× e
−max(0,duei−t−queuei)

χ×queuei ,

where t is the current time, queuei is the mean duration of
the pending part of jobi , and queuei is the average over the
mean durations of the pending activities of all the jobs but
jobi . queuei and queuei are computed by using the extended
mean durations. In a more formal way:

queuei =
∑

∀aij ∈Apending∩Ai

extendedMDurij

and

queuei =
∑

∀jobq∈JOB\{jobi } queueq

n − 1
,

where n is the number of jobs.

5.4.4 How to allocate and order the subset of activities?

The set of all the selected activities on all the jobs consti-
tutes the sub-problem to solve. After the selection process
is finished, we need to approximate the contribution of each
job in terms of cost, i.e., the allocation cost and the length
of the pending activities of each job. This approximation is
done by using the same heuristic as the one dedicated to the
selection of activities. To make decisions, we generate a de-
terministic problem, i.e., we use the mean durations of the
selected activities extended depending on resource break-
down distributions, and job queues estimated heuristically.
We use standard constraint programming techniques to ex-
plore and reduce the search space.

5.5 Discussion

5.5.1 Revision and progressive scheduling

With respect to the experimental study of our revision ap-
proach, we set the value of the sensitivity factor that in-
directly determines the number of reschedulings. When
rescheduling, we are looking for solutions that optimize a
criterion, there always exists a solution in our case. It could
be interesting to tackle more constrained problems with the
revision approach.

For the progressive approach, an experimental study has
still to be conducted to understand the relationships between

the different and numerous parameters, indicators, and prob-
lem characteristics.

If δtmin equals zero, then it amounts to only deciding to
extend the current flexible schedule when the uncertainty
condition is met. The temporal condition is met when at least
one of the activities of AallocOrderLast finishes execution, and
the uncertainty condition should be met before this date in
principle, if σ tmin is not too small, see below. If δtmax and
σ tmax are small, then it means we frequently extend the cur-
rent flexible schedule with small subsets of activities: this
is a reactive approach. If δtmax and/or σ tmax are very large,
then it amounts to selecting and scheduling all activities: this
is a predictive approach.

We can change both δtmin and σ tmin to choose when we
want to consider a subset of pending activities during exe-
cution of the current flexible schedule. If δtmin is small and
σ tmin is large, then it amounts to extending the current flex-
ible schedule when the uncertainty condition is met. If δtmin

is large and σ tmin is small, then it means we extend the cur-
rent flexible schedule when the temporal condition is met.
If both δtmin and σ tmin are small, then it means we extend
the current flexible schedule at the last time: the temporal
anticipation is short. If both δtmin and σ tmin are large, then
it amounts to extending the current flexible schedule very
early: the temporal anticipation is long.

5.5.2 Integrating proactive scheduling

We focused on revision and progressive scheduling ap-
proaches in our experimental prototypes because they are
more complex than pure proactive approaches. Because re-
vision and progressive approaches combine reasoning with
execution, it is necessary to build a framework such as the
one suggested here that combines generation and execution
algorithms as well as the ability to sense the environment.
In contrast, proactive techniques can be purely generative,
building schedules to minimize some measure of expected
performance and not making any assumptions about how the
schedule will be executed.

In this section, we discuss a particular example of proac-
tive scheduling from the literature, show how it can be con-
ceptualized as an instance of our framework, and further-
more demonstrate how this conceptualization opens up a
number of areas for future work which blur the boundaries
between proactive, progressive, and revision approaches. As
our thesis in this paper is that a system for scheduling un-
der uncertainty needs to combine these different approaches,
we see this blurring as a positive step toward an integrated
scheduling system.

Proactive scheduling with uncertain durations Beck and
Wilson (2007) address the job-shop scheduling problem
where all activities and resource capacities are fixed but

J Sched (2009) 12: 315–344 341

where the duration of each activity is represented as a nor-
mally distributed random variable with a known mean and
standard deviation. The objective is to find a sequence of ac-
tivities on each resource, consistent with the temporal con-
straints, that minimizes the makespan that is achievable with
a given probability threshold. For example, the activity se-
quence that results in makespan, D, that is achievable with
0.95 probability means that in 95% of the execution scenar-
ios for this schedule, the real makespan will be less than
or equal to D. The authors seek the activity sequence that
leads to the minimal such D. Unfortunately, just evaluating
the probability of achieving a given makespan for a potential
solution is in #P (Hagstrom 1988).

A number of algorithms are investigated, all using Monte
Carlo simulation to evaluate full and partial activities se-
quences. A branch–and–bound method evaluates partial se-
quences at each node in the search tree while a set of fil-
tering algorithms generate candidate solutions based on a
deterministic approximation and evaluate them with Monte
Carlo simulation.

It should be noted that the use of Monte Carlo simulation
in this context is different from that discussed in Sect. 5.2.
Here the simulation is used as a low complexity way of eval-
uating a solution to a hard problem. In Sect. 5.2, the simula-
tion was used as part of the experimental apparatus to take
the place of the “real” execution of the schedule.

Using the framework to model and extend Beck and Wilson
The algorithms studied by Beck and Wilson are generation
algorithms that create flexible schedules: the order of the
activities on each resource is defined but no activity start
times are assigned.

While, in general, a proactive technique does not require
an execution context or execution algorithm, our framework
does provide an interesting perspective on the algorithms
proposed by Beck and Wilson. In order to evaluate a so-
lution using Monte Carlo simulation, multiple scenarios are
generated which assign a duration to each activity. Beck and
Wilson evaluate the makespan of an activity sequence in a
single scenario by assuming that each activity starts as soon
as possible after its predecessors have ended: the start time
of an activity is the maximum over the end times of all its
direct predecessors.7 Another way of viewing this assump-
tion is as the right shift execution algorithm: each activity
is shifted to the right just far enough to incorporate the re-
alized durations of its preceding activities. In other words,
a particular execution algorithm has been incorporated into
the Monte Carlo simulation which evaluates the proactive
schedules.

7Recall that the direct predecessors of an activity consist of the activity
immediately preceding it in the same job and the activity immediately
preceding it on the same resource.

This conceptualization immediately suggests that other
execution algorithms could be incorporated. For example,
rather than completely sequencing the activities on each re-
source, the generation algorithm might leave some activities
unsequenced and rely on a more sophisticated simulation of
an execution algorithm. The execution algorithm may fol-
low the shortest expected processing time rule to decide on
the complete sequence of activities and the right shift rule to
set activity start times.

5.5.3 Comparison of the three families of techniques

Given information about uncertainty, an instantiation of our
framework can be used, offline, with simulation, to evalu-
ate a proactive algorithm, as in Beck and Wilson, a pro-
gressive approach, such as the one described above, or a
purely revision approach, by simulating an execution algo-
rithm. In terms of offline reasoning, when there is uncer-
tainty information available, the differences among these
approaches become simply a matter of degree of offline
decision-making. A sophisticated system may be able to de-
cide that in some situations (e.g., high uncertainty) a revision
approach will lead to better results, while in others (e.g., low
uncertainty) a more proactive approach will allow better co-
ordination with outside suppliers.

A proactive algorithm can be used online as well, e.g.,
when we need to change decisions (i.e., we combine revi-
sion and proactive approaches), or when we have to make
new decisions (i.e., we combine progressive and proactive
approaches).

6 Adapting our framework to planning

First of all, our study which is focused on a scheduling
problem is of course relevant in a more general planning
framework since uncertainties on resources and time, which
have been the focus in this paper, usually also play the main
part in stochastic planning, and precise scheduling is an
important sub-problem of planning, especially when time
and resources are explicitly taken into account (Smith et al.
2000), as in plan-space and/or constraint-based planning ap-
proaches.

In some sense, the capability of dealing with conditional
subsets of partially-ordered activities helps bridging the gap
between scheduling and planning as such choices introduce
some level of (limited) reasoning about actions, suggest-
ing for instance to represent the problem with AND/OR
graphs, as it is often done in the planning community (Nils-
son 1980).

But, of course, more can be done to introduce some more
planning “flavor” in the global picture. Let us look at what
can be done revisiting our taxonomy:

342 J Sched (2009) 12: 315–344

• Revision planning techniques can be easily incorpo-
rated, tracking causal inconsistencies (e.g., a precondi-
tion which does not hold as expected): one can first try
to adapt the plan locally, resolving the conflict through
adding new constraints (e.g., strictly ordering some un-
constrained activities) or inserting new activities that will
restore the broken causal link; in case that fails, then com-
plete replanning can be run.

• As it has been suggested, for instance, in Chien et al.
(2000), continuous planning can be considered to address
the arrival of new goals, simply extending the current plan
to satisfy the new goals: partial-order plan-space planning
is usually the best choice to address such issues.

• Flexible and conditional plans are now well-known
techniques for building plans, especially in temporal
constraint-based planning (Morris et al. 2001; Tsamardi-
nos et al. 2003), which is perfectly compatible with our
constraint-based scheduling framework: as we have al-
ready said, our conditional schedules are actually inspired
by the literature in conditional planning.

• Last, probabilistic planning (Kushmerick et al. 1995) is
another field of intensive research which proposes tech-
niques to look for a generic solution in terms of the most
probable plan to execute securely, considering distribu-
tions over known uncertainties, for instance the probabil-
ity of alternative effects of some activities. Adding such
probabilities (or possibilities, as in Dubois et al. 1993) and
computing the overall expected probability of success of
the resulting plan is no more difficult than adding proba-
bilities on resource breakdowns or activity durations.

Our framework can hence easily be extended, both theo-
retically, incorporating in our model new sources of uncer-
tainty (e.g., imprecise effects of actions) and specific algo-
rithms for switching contexts (replanning, plan adaptation),
and experimentally: techniques in the field of plan-space
search, and more specifically in partial-order and constraint-
based temporal planners, such as IxTeT (Lemai and Ingrand
2004) or HSTS (Muscettola 1994), are highly compatible
with our constraint-based scheduling prototypes.

To conclude with this section, and focusing on the IxTeT-
Exec system (Lemai and Ingrand 2004), one should no-
tice that it does actually cover our three main types of ap-
proaches: revision (plan repair and replanning are incorpo-
rated into the execution module), proactiveness (plans are
flexible) and progressiveness (new goals can be integrated
at any time). Therefore, IxTeT-Exec, which lies in the area
of plan-space temporal planning and uses widely constraint-
based techniques, is already an example of the relevance of
our work in planning. But it cannot be considered as an ex-
tension of our work, for (at least) four reasons: conditional
branches are not possible in IxTeT, uncertainty on resources
is not tackled, the models of uncertainty are very basic (e.g.,
no probabilistic nor possibilistic models), and optimization

is not formally addressed in that work. We strongly believe
that such work and ours could definitely benefit from each
other, towards the goal of a complete and expressive formal
architecture for planning and scheduling under uncertainty.

7 Conclusion and future work

In this paper, we presented a general framework for planning
and scheduling when the execution environment is stochas-
tic. Our model acts as a generic conceptual representation
that can integrate three general complementary families of
techniques to cope with uncertainty: proactive techniques
use information about uncertainty to make decisions; revi-
sion techniques change decisions when it is relevant during
execution; progressive techniques solve the problem piece
by piece on a gliding time horizon. We showed this model
can address diverse and complex problems, from classical
scheduling settings to concerns inspired by conditional plan-
ning: in particular, it is possible to handle mutually exclusive
subsets of activities. In addition, we described software pro-
totypes directly instantiated from our model and controlled
by several parameters. The prototypes can address a large
range of types of uncertainties modeled with probabilities.

To summarize, the main contributions of this paper are
the following:

• A three-dimension classification of the systems and tech-
niques for planning and scheduling in a stochastic envi-
ronment.

• A representation model of an extended scheduling process
interleaved with execution, integrating the three families
of techniques from our classification.

• Software prototypes and experimental results that support
our representation when problems are probabilistic.

Apart from the extension of our model to more general
planning concerns, which has been discussed in last sec-
tion, interesting future work consists in enhancing our exper-
imental system, mixing the proactive, progressive, and revi-
sion techniques and in studying the relationships between
the different parameters, indicators, and problem character-
istics. For example, we could set a proactive approach that
takes into account 60% of execution scenarios, a middle pro-
gressive time horizon, and a small number of reschedulings.
Another study could consist in setting a proactive approach
that takes into account 80% of execution scenarios, a large
progressive time horizon, and a small number of reschedul-
ings. This work paves the way to the development of a soft-
ware toolbox gathering a large set of algorithms to manage
scheduling and schedule execution in a stochastic environ-
ment. Users of that toolbox would use the general architec-
ture designed through our model but they would be able to
design their own application by selecting relevant modules

J Sched (2009) 12: 315–344 343

and correctly tuning parameters (e.g., anticipation time hori-
zon, sensitivity factor, etc.). Our future work is to implement
such a complete toolbox and perform additional experiments
to check how parameter tuning will influence stability and
robustness of the solutions that the system will generate.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck
procedure for job-shop scheduling. Management Science, 34,
391–401.

Aktürk, M. S., & Yildirim, M. B. (1999). A new dominance rule for
the total weighted tardiness problem. Production Planning and
Control, 10(2), 138–149.

Applegate, D., & Cook, W. (1991). A computational study of the job-
shop scheduling problem. ORSA Journal on Computing, 3(2),
149–156.

Baptiste, P., & Le Pape, C. (1996). Edge-finding constraint propagation
algorithms for disjunctive and cumulative scheduling. In Proceed-
ings of the fifteenth workshop of the UK planning special interest
group, Liverpool, United Kingdom.

Beck, J. C. (1999). Texture measurements as a basis for heuristic com-
mitment techniques in constraint-directed scheduling. Ph.D. dis-
sertation, University of Toronto, Toronto, Canada.

Beck, J. C., & Fox, M. S. (2000). Constraint-directed techniques
for scheduling with alternative activities. Artificial Intelligence,
121(1–2), 211–250.

Beck, J. C., & Wilson, N. (2007). Proactive algorithms for job shop
scheduling with probabilistic durations. Journal of Artificial In-
telligence Research, 28, 183–232.

Bidot, J., Laborie, P., Beck, J. C., & Vidal, T. (2003). Using simulation
for execution monitoring and on-line rescheduling with uncertain
durations. In Working notes of the ICAPS’03 workshop on plan
execution, Trento, Italy, June 2003.

Bidot, J., Laborie, P., Beck, J. C., & Vidal, T. (2006). Using constraint
programming and simulation for execution monitoring and pro-
gressive scheduling. In Proceedings of the twelfth IFAC sympo-
sium on information control problems in manufacturing (INCOM
2006) (pp. 595–600). Saint-Étienne, France, May 2006.

Bidot, J., Vidal, T., Laborie, P., & Beck, J. C. (2007). A general frame-
work for scheduling in a stochastic environment. In Proceedings
of the 20th international joint conference on artificial intelligence
(IJCAI) (pp. 56–61). Hyderabad, India, January 2007.

Billaut, J.-C., Moukrim, A., & Sanlaville, E. (Eds.) (2007). Flexibil-
ity and robustness in scheduling. Control Systems, Robotics and
Manufacturing. ISTE.

Branke, J., & Mattfeld, D. C. (2002). Anticipatory scheduling for dy-
namic job-shop problems. In G. Verfaillie (Ed.), Working notes of
the AIPS’02 workshop on on-line planning and scheduling (pp.
3–10). Toulouse, France, April 2002.

Bresina, J. L., Dearden, R., Meuleau, N., Ramakrishnan, S., Smith,
D. E., & Washington, R. (2002). Planning under continuous time
and resource uncertainty: A challenge for AI. In Proceedings of
the 18th conference on uncertainty in artificial intelligence (UAI)
(pp. 77–84). Edmonton, Alberta, Canada, August 2002.

Chien, S. A., Knight, R., Stechert, A., Sherwood, R., & Rabideau,
G. (2000). Using iterative repair to improve the responsiveness
of planning and scheduling. In S. A. Chien, S. Kambhampati, &
C. A. Knoblock (Eds.), Proceedings of the fifth international con-
ference on artificial intelligence planning and scheduling (AIPS).
Breckenridge, CO, USA, April 2000. (pp. 300–307). Menlo Park:
AAAI Press.

Davenport, A. J., Gefflot, C., & Beck, J. C. (2001). Slack-based tech-
niques for building robust schedules. In Proceedings of the sixth
European conference on planning (ECP). Toledo, Spain, Septem-
ber 2001.

Drummond, M., Bresina, J. L., & Swanson, K. (1994). Just-In-Case
scheduling. In Proceedings of the 12th national conference on ar-
tificial intelligence (AAAI) (pp. 1098–1104). Seattle, WA, USA,
July 1994.

Dubois, D., Fargier, H., & Prade, H. (1993). The use of fuzzy con-
straints in job-shop scheduling. In Working notes of the IJCAI’93
workshop on knowledge-based production planning, scheduling,
and control (pp. 101–112). Chambéry, France, August 1993.

Erschler, J. (1976). Analyse sous contraintes et aide à la décision pour
certains problèmes d’ordonnancement. Ph.D. dissertation, Uni-
versité Paul Sabatier, Toulouse, France.

Fargier, H., Lang, J., & Schiex, T. (1996). Mixed constraint satis-
faction: A framework for decision problems under incomplete
knowledge. In Proceedings of the 13th national conference on
artificial intelligence (AAAI) (pp. 175–180). Portland, OR, USA,
August 1996.

Gao, H. (1995). Building robust schedules using temporal protection—
an empirical study of constraint-based scheduling under machine
failure uncertainty. Master’s thesis, Department of Industrial En-
gineering, University of Toronto, Toronto, Canada.

Geffner, H. (1998). Modeling intelligent behaviour: The Markov deci-
sion process approach. In H. Coelho (Ed.), Lecture notes in AI:
Vol. 1484. Proceedings of iberamia 98 (pp. 1–12). New York:
Springer. Invited talk.

Hagstrom, J. N. (1988). Computational complexity of PERT problems.
Networks, 18, 139–147.

Herroelen, W. S., & Leus, R. (2005). Project scheduling under uncer-
tainty: Survey and research potentials. European Journal of Op-
erational Research, 165(2), 289–306.

Hildum, D. W. (1994). Flexibility in a knowledge-based system
for solving dynamic resource-constrained scheduling problems.
Ph.D. dissertation, Department of Computer Science, University
of Massachusetts Amherst, September 1994.

ILOG S. A. (2002). ILOG scheduler 5.3: reference manual and user’s
manual.

Kushmerick, N., Hanks, S., & Weld, D. S. (1995). An algorithm for
probabilistic planning. Artificial Intelligence, 76(1–2), 239–286.

La, H. T. (2005). Utilisation d’ordres partiels pour la caractérisation
de solutions robustes en ordonnancement. Ph.D. dissertation, In-
stitut National des Sciences Appliquées de Toulouse, Toulouse,
France, January 2005.

Lawrence, S. R. (1984). Resource-constrained project scheduling:
an experimental investigation of heuristic scheduling techniques
(supplement). Ph.D. dissertation, Graduate School of Indus-
trial Administration, Carnegie Mellon University, Pittsburgh, PA,
USA.

Lemai, S., & Ingrand, F. F. (2004). Interleaving temporal planning and
execution in robotics domains. In Proceedings of the 19th national
conference on artificial intelligence (AAAI). San Jose, CA, USA,
July 2004.

Morris, P. H., Muscettola, N., & Vidal, T. (2001). Dynamic control of
plans with temporal uncertainty. In Proceedings of the 17th in-
ternational joint conference on artificial intelligence (IJCAI) (pp.
494–502). Seattle, WA, USA, August 2001.

Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems
with applications to production systems and project management.
New York: Wiley.

Muscettola, N. (1994). HSTS: Integrating planning and scheduling. In
M. Zweben & M. S. Fox (Eds.), Intelligent scheduling (pp. 169–
212). Morgan Kaufmann: San Mateo.

Muscettola, N. (2002). Computing the envelope for stepwise-constant
resource allocations. In Proceedings of the eighth international

344 J Sched (2009) 12: 315–344

conference on principles and practice of constraint programming
(CP) (pp. 139–154). Cornell University, New York, USA, Sep-
tember 2002.

Nilsson, N. J. (1980). Principles of artificial intelligence. Morgan
Kaufmann: San Mateo.

Nuijten, W. P. M. (1994). Time- and resource-constrained scheduling.
A constraint-satisfaction approach. Ph.D. dissertation, Technis-
che Universiteit Eindhoven, Eindhoven, Netherlands.

Policella, N., Oddi, A., Smith, S. F., & Cesta, A. (2004). Generating
robust schedules through chaining. In Proceedings of the tenth
international conference on principles and practice of constraint
programming (CP) (pp. 496–511). Toronto, Canada, September
2004.

Puterman, M. L. (1994). Markov decision processes: discrete stochas-
tic dynamic programming. New York: Wiley.

Sabuncuoglu, I., & Bayiz, M. (2000). Analysis of reactive scheduling
problems in a job-shop environment. European Journal of Oper-
ational Research, 126, 567–586.

Sadeh, N. M. (1994). Micro-opportunistic scheduling: The Micro-Boss
factory scheduler. In M. Zweben & M. S. Fox (Eds.), Intelli-
gent scheduling (pp. 99–135). Morgan Kaufmann: San Mateo.
Chap. 4.

Sadeh, N. M., Otsuka, S., & Schnelbach, R. (1993). Predictive and
reactive scheduling with the Micro-Boss production scheduling
and control system. In Working notes of the IJCAI’93 workshop
on knowledge-based production planning, scheduling, and control
(pp. 293–306). Chambéry, France, August 1993.

El Sakkout, H., & Wallace, M. (2000). Probe backtrack search for mini-
mal perturbation in dynamic scheduling. Constraints, 5, 359–388.

Shafaei, R., & Brunn, P. (1999a). Workshop scheduling using practical
(inaccurate) data. Part 1: The performance of heuristic schedul-
ing rules in a dynamic job-shop environment using a rolling time
horizon approach. International Journal of Production Research,
37(17), 3913–3925.

Shafaei, R., & Brunn, P. (1999b). Workshop scheduling using practi-
cal (inaccurate) data. Part 2: An investigation of the robustness of
scheduling rules in a dynamic and stochastic environment. Inter-
national Journal of Production Research, 37(18), 4105–4117.

Smith, S. F. (1994). OPIS: A methodology and architecture for reac-
tive scheduling. In M. Zweben & M. S. Fox (Eds.), Intelligent
scheduling (pp. 29–66). Morgan Kaufmann: San Mateo.

Smith, D. E., Frank, J., & Jónsson, A. K. (2000). Bridging the gap be-
tween planning and scheduling. Knowledge Engineering Review,
15(1), 61–94.

Tsamardinos, I., Vidal, T., & Pollack, M. E. (2003). CTP: A new
constraint-based formalism for conditional, temporal planning.
Constraints, 8(4), 365–388.

Vidal, T., Ghallab, M., & Alami, R. (1996). Incremental mission al-
location to a large team of robots. In Proceedings of the IEEE
international conference on robotics and automation (ICRA’96)
(Vol. 2, pp. 1620–1625). Minneapolis, MN, USA.

Wang, X., & Chien, S. A. (1997). Replanning using hierarchical
task network and operator-based planning. In Proceedings of the
fourth European conference on planning (ECP) (pp. 427–439).
Toulouse, France, September 1997.

Wu, S. D., Byeon, E.-S., & Storer, R. H. (1999). A graph-theoretic
decomposition of the job-shop scheduling problem to achieve
scheduling robustness. Operations Research, 47, 113–123.

	A theoretic and practical framework for scheduling in a stochastic environment
	Abstract
	Introduction
	Some basic definitions
	Classification
	Our taxonomy in brief
	Proactive techniques
	Revision techniques
	Progressive techniques
	Mixed approaches
	Discussion

	Representation
	Schedule
	Generation and execution
	An illustrative example

	Experimental system
	Scheduling problem
	Tardiness cost
	Allocation cost
	Global cost

	Architecture
	Revision approach
	Experimental results
	Impact of revision criterion on makespan
	Impact of uncertainty level on makespan

	Conclusions

	Progressive approach
	When to try extending the current flexible schedule?
	Temporal condition for starting selection
	Uncertainty condition for starting selection

	How to select the subset of activities to be allocated and ordered?
	Assessment order
	Temporal and uncertainty conditions for stopping selection
	Energy-based heuristic
	Heuristic based on apparent tardiness cost rule

	How to allocate and order the subset of activities?

	Discussion
	Revision and progressive scheduling
	Integrating proactive scheduling
	Proactive scheduling with uncertain durations
	Using the framework to model and extend Beck and Wilson

	Comparison of the three families of techniques

	Adapting our framework to planning
	Conclusion and future work
	References

