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Abstract: Few studies have investigated the existence and uniqueness of solutions for fractional
differential equations on star graphs until now. The published papers on the topic are based on the
assumption of existence of one junction node and some boundary nodes as the origin on a star graph.
These structures are special cases and do not cover more general non-star graph structures. In this
paper, we state a labeling method for graph vertices, and then we prove the existence results for
solutions to a new family of fractional boundary value problems (FBVPs) on the methylpropane
graph. We design the chemical compound of the methylpropane graph with vertices specified by
0 or 1, and on every edge of the graph, we consider fractional differential equations. We prove the
existence of solutions for the proposed FBVPs by means of the Krasnoselskii’s and Scheafer’s fixed
point theorems, and further, we study the Ulam–Hyers type stability for the given multi-dimensional
system. Finally, we provide an illustrative example to examine our results.

Keywords: fractional differential equation; boundary value problem; methylpropane graph; the
Caputo fractional derivative; stability

1. Introduction

Some natural phenomena throughout the world have been studied using initial and
BVPs for many years. Due to the broad diversity of BVPs, many academics have turned
to mathematical tools and computer simulation software to explore a variety of practical
processes. It has recently been shown that fractional differential equations may be used to
describe many diverse applications in the applied sciences (see for examples, [1–10]). One
of our purposes in this work is to extend the theoretical aspects of some applied concepts in
chemistry to increase our abilities to model some processes in chemical reactions. Once that
is accomplished, computer engineers will be able to build software that allow everyone
to conduct chemical experiments without utilizing real materials. This will allow for the
most effective management of the environmental resources that are available. We may
utilize fractional calculus for this, which is useful in similar situations. It is possible to solve
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fractional differential-equation-based mathematical models, derive the solution functions,
then examine the qualitative behavior of solutions under specific boundary constraints
using certain approaches. As may be shown in several published publications, some
problems have been addressed before (see for examples, [11–23]).

Water pipes, gas transmission lines, population increase and computer network expan-
sion are only a few examples of industrial and medical areas where new applied models
have been developed to analyze the processes devised by engineers in these disciplines.
There has been some interest in studying mathematical models that are expressed on graphs
via ordinary or fractional differential equations, due to their graph representation. In fact,
on a graph, BVPs are specified on every edge as a set of differential equations, along with
particular boundary conditions at every vertex of the graph.

In 1980, Lumer’s work on differential equations defined on graphs is the preliminary
stage for this theory [24]. The local operators established on ramification spaces were used
to study generic evolution equations. Nicaise explored the propagation of nerve impulses
using a similar system [25]. With respect to a geometric graph with linear differential
equations, Zavgorodnij investigated those solutions that were coordinated on their inner
vertices in 1989 [26]. An adjoint boundary problem was formulated by him, and the
adjointness criteria were established [26]. On the basis of graph representation, Gordeziani
et al. have studied the uniqueness-existence of solutions to ODEs in 2008 [27] and solved
the given BVP using the double sweep method and provided a numerical methodology.

In the majority of the referenced studies, differential equations were evaluated on
a graph and their solutions were determined using numerical as well as computational
techniques. The existence aspects of solutions to fractional BVPs on graphs is, however,
only established in a few publications using approaches from fixed point theory [28,29].

Graef et al. were the first researchers who used fixed point theory to explore the
existing results [28]. They presented a three-vertex-star graph G = V(G) ∪ E(G), in which
V(G) = {p0, p1, p2} and E(G) = {e1 = −−→p1p0, e2 = −−→p2p0}, the vertex p0 regarded as
junction node, the edge ei =

−−→pip0 connecting the vertices pi to p0 having length li = |−−→pip0|
for i = 1, 2 (Figure 1). At every ei =

−−→pip0, by considering the origin at boundary vertices
p1 and p2, a local coordinate system is made together with the coordinate t ∈ (0, li). A
nonlinear fractional differential equation system was developed by Graef et al. on each
edge ei =

−−→pip0 as follows (i = 1, 2)

−Dα
0 yi(t) = gi(t)hi(t, yi(t)),

in which, t ∈ (0, li) via the BCs

y1(0) = y2(0) = 0, y1(l1) = y2(l2), D
β
0 y1(l1)+ D

β
0 y2(l2) = 0,

where β ∈ (0, α), α ∈ (1, 2], gi ∈ C([0, li],R) and hi ∈ C([0, li]×R,R) with gi(t) 6= 0 on
[0, li], Dα

0 and Dβ
0 regarded as RL-fractional derivatives. Their desired results are obtained

by applying Schauder’s theorem and the contraction principle.

Figure 1. Star graph G having two edges.

Mehandiratta et al. in 2019 [29] presented an extension of star graph having n
edges and n + 1 vertices. Authors made a generic star graph G that including V(G) =
{p0, p1, . . . pn} and E(G) = {e1 = −−→p1p0, e2 = −−→p2p0, . . . , en = −−→pnp0}, in which li = |−−→pip0| is
considered as the length of ei joining vertices pi to p0 (i ∈ Nn

1 ).
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The following system consists of the BVPs that Mehandiratta et al. defined them on
the edges of the above graph G as

cDα
0 yi(t) = fi(t, yi(t), cDβ

0 yi(t)), (t ∈ (0, li)),

yi(0) = 0, yi(li) = yk(lk) (i 6= k),
n

∑
i=1

y′i(li) = 0,
(1)

in which 0 < β ≤ α − 1, α ∈ (1, 2], fi ∈ C([0, li] × R2,R), and cDγ
0 is the γth-Caputo

derivative. The authors presented the transforms v = t
li
∈ [0, 1] and r(v) = y(t) = y(liv)

for t ∈ [0, li], and showed that the equality cDα
0 y(t) = l−α

i (cDα
0 r(v)) holds. Next, they

transformed the system of FBVPs on the graph (1) to the succeeding system of FBVPs over
the interval [0, 1] by performing these transformations

cDα
0 ri(v) = lα

i hi(v, ri(v), l−β
i

cDβ
0 ri(v)), (v ∈ [0, 1])

with ri(0) = 0, ri(1) = rk(1) for i 6= k and ∑n
i=1 l−1

i r′i(1) = 0, with ri(v) = ui(liv) and
hi(v, y, w) = fi(liv, y, w) for i ∈ Nn

1 .
These works have inspired us to expand their BVPs to a novel BVP on the methyl-

propane graph. In fact, it is a generalized graph compared to star graphs. In the future,
new scholars may generalize these notions to different graphs as new ideas.

2. Preliminaries

The Graph in the context of methylpropane compound is introduced in this section for
defining a new category of fractional BVPs on it. Let us first bring the attention of readers
to two crucial aspects regarding the methodologies employed in [28,29].

(1) As shown in Figures 1 and 2, the authors of both articles assume that G is a star
graph with one junction node p0, but in general, graph G may not be a star graph and may
have more than one junction node. Figure 3 shows five junction nodes, as an example.

Figure 2. Star graph G having n edges.

Figure 3. A non-star graph G with five junction nodes.
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(2) It is important to note that both articles treat the length of every edge as a variable
|ei| = li for i ∈ {1, 2, . . . , n}, where n represents how many vertices there are in the graph
G. Then, for the normalization of all edges, they use change of variable and transform
[0, li] to interval [0, 1], whereas in the beginning, one might assume that all edges are the
same length |ei| = 1 without determining boundary vertex as the origin on each edge.
A novel approach for labeling the vertices is proposed as a means of achieving this goal.
This allows us to label each vertex of the graph with either 0 or 1. To put it as another
way, each vertex has a different name (label) based on the direction of related edge. A
vertex’s label and its ending vertex’s label are treated as 0 and 1, respectively, when we
move along an edge arbitrarily. Hence some labels are 0, some are 1, some are both 0 and 1
and each origin in every edge is not fixed; it is changed with each change in direction of the
corresponding edge. It is not necessary to normalize the length of all edges utilizing the
mentioned transforms; therefore, we are permitted to select one of the two vertices of each
edge as its origin. Figure 4 shows an example of how labeling may be used in this situation.
We begin to walk along the edges of this graph in the first step from the blue vertex.

Figure 4. A general graph G with labels 0 or 1.

In this paper, on the methylpropane graph, we investigate several desirable existence
theorems for solutions of a new class of FBVPs (Figure 5).

Figure 5. A sketch of methylpropane HC(CH3)3 in the graph settings.

The chemical compound of methylpropane or isobutane has the molecular formula
HC(CH3)3, where (H) and (C) are hydrogen and carbon. Methylpropane is an isomer
of Butane, which is used as a precursor molecule in the petrochemical industry. This
compound consists of three carbon–carbon bonds and three sub-branches CH3. Inspired
by this structure, Hydrogen atoms and carbon atoms are regarded as the graph’ vertices.
Graph’s edges stand for the chemical bonds that occur between atoms. This molecular
graph is not a star graph, thus the technique applied in [28,29] which assigns the origin at
boundary nodes except the junction node p0, will not work here because there exist more
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than one junction node on this graph (four junction nodes). Consequently, we must adopt
a new approach. We may label the vertices of this graph with either 0 or 1, and we can
regard unit value lj = 1 as the length of each edge (see Figure 6).

Figure 6. The graph of HC(CH3)3 with labels 0 or 1.

The existence of solutions in relation to the multi-dimensional nonlinear multi-term
FBVPs are studied in this manuscript by defining the graph of methylpropane labeled with
0 or 1, as shown above:

cDϑ
0 zj(t) = hj(t, zj(t), z′j(t)) + k j(t, zj(t), z′j(t)), (t ∈ [0, 1])

zj(0) + cDβ
0 zj(0) + z′j(1) = 0,

∫ 1

0

[
zj(ξ) +

cDβ
0 zj(ξ) + z′j(ξ)

]
dξ = 0,

(2)

where ϑ ∈ (1, 2), β ∈ (0, 1), hj, k j ∈ C([0, 1] × R2,R) for j ∈ N13
1 := {1, 2, . . . , 13}, in

which n = 13 stands for the number of edges of methylpropane graph s.t. |ej| = 1, and
cDϑ

0 regards the ϑth-Caputo derivative. Here in the boundary conditions, we consider the
values of the unknown functions zj, and their βth-derivatives (cDβ

0 zj) and their first-order
derivatives (z′j) in the terminal points, and also we consider the integral of sum of them in
the mid-points of the time domain [0, 1].

Regarding the relationship between the above system of FBVPs and the molecular
graph of methylpropane, it should be noted that the main reason for this study is the
growing importance of chemical graph theory. This field of mathematics relates graph
theory to chemistry, and investigates the chemical changes resulting from interatomic
bonds along bond lines and their effects, and these studies are performed in the form of
various models of fractional differential equations. Instances of these new applications can
be found in bio-macromolecules and chemical kinetics. As the main idea of this work, the
results of the given fractional BVPs (2) about the existence of solutions can be interpreted
in various meanings in relation to organic chemistry. As a result, any solution zj(t) at every
edge ej might represents the bond polarity, bond strength, bond energy, etc. Moreover, the

integer and fractional order derivatives of the unknown functions zj, i.e., z′j(t) and cDβ
0 zj(t)

can interpret some chemical notions in this direction. Because cDβ
0 zj(t) has a nonlocal

nature, it can show some useful properties of the curves of solutions over a large extent of
a time interval [0, 1] during a chemical interaction, while z′j(t) has a local nature and it can
interprets the velocity of the same chemical interactions at a specific time t ∈ [0, 1]. Further,
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hj and k j are defined as functions of these quantities with respect to the time t on each edge
ej, j ∈ N13

1 .
On the other hand, as we said above, n = 13 shows the number of edges of the

methylpropane graph and this index can be changed by increasing or decreasing the
number of edges in different molecular structures. In other words, we can generalize this
number to each arbitrary value k ∈ N and this change will not affect the computational
disorder. We are sure that in the future, the theory of chemical reactions and also chemical
graph theory may benefit from some aspects of these developments. Similarly, see some
recent works in this regard [30–33].

Now, we recall some basic definitions and properties of fractional calculus. Assume
ϑ > 0. Then we define RL-fractional integral of the continuous function z : [a, b]→ R by

Iϑ
0 z(t) =

1
Γ(ϑ)

∫ t

0
(t− ξ)ϑ−1z(ξ)dξ,

such that the above integral exists [34,35].
Let r− 1 < ϑ < r. Then r = [ϑ] + 1. We define the Caputo derivative of the function

z ∈ C(r)([a, b],R) as

cDϑ
0 z(t) =

1
Γ(r− ϑ)

∫ t

0
(t− ξ)r−ϑ−1z(r)(ξ)dξ,

such that the above integral exists [34,35]. It is known that for n− 1 < ϑ < n, the solution
of cDϑ

0 z(t) = 0 is z(t) = m∗0 + m∗1t + m∗2t2 + · · ·+ m∗n−1tn−1; also, we have

Iϑ
0 (

cDϑ
0 z(t)) = z(t) +

n−1

∑
j=0

m∗j tj = z(t) + m∗0 + m∗1t + m∗2t2 + · · ·+ m∗n−1tn−1, (3)

where m∗0 , . . . , m∗n−1 ∈ R [36]. The Krasnoselskii and Scheafer fixed point theorems are
main tools which we use for our analysis.

Lemma 1. [37] We assume E 6= ∅ as bounded, convex closed set in the Banach spaceM. Consider
Υ1 and Υ2 on E so that Υ1z + Υ2w ∈ E whenever z, w ∈ E , and (a) the operator Υ1 is compact
and continuous, (b) the operator Υ2 is a contraction. Then ∃ y ∈ E with y = Υ1y + Υ2y.

Lemma 2. [37] ConsiderM as a Banach space and a completely continuous mapping Υ onM.
Then {z ∈ M : z = νΥz, ν ∈ (0, 1)} is not bounded or there exist a fixed point of Υ innM.

3. Main Theorems Regarding the Existence

The present section is assigned to the results of existence theory on the graph of
methylpropane (Figure 6). To begin it, we consider the Banach spacesMj = {zj : zj, z′j ∈
C[0, 1]} with ‖zj‖Mj = supt∈[0,1] |zj(t)|+ supt∈[0,1] |z′j(t)| for j ∈ N13

1 . Then the product
space M = (M1,M2, . . . ,M13) equipped with the norm ‖z = (z1, z2, . . . , z13)‖M =

∑13
j=1 ‖zj‖Mj is a Banach space.

Lemma 3. Let ϕj ∈ C[0, 1], j ∈ N13
1 , ϑ ∈ (1, 2) and β ∈ (0, 1). Then zj is a solution of the BVPs

cDϑ
0 zj(t) = ϕj(t),

zj(0) + cDβ
0 zj(0) + z′j(1) = 0,

∫ 1

0

[
zj(ξ) +

cDβ
0 zj(ξ) + z′j(ξ)

]
dξ = 0,

(4)
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which is given by

zj(t) =
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
ϕj(ξ)dξ +

t− ∆
∆− 1

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
ϕj(ξ)dξ

+
1− t
∆− 1

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
ϕj(m)dmdξ +

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
ϕj(m)dmdξ (5)

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
ϕj(m)dmdξ

]
,

where ∆ =
3Γ(3− β) + 2

2Γ(3− β)
6= 1 and j ∈ N13

1 .

Proof. Consider zj as the solution of the problems (4) (j ∈ N13
1 ). So by (3), there are

constants a(j)
0 , a(j)

1 ∈ R such that zj(t) = Iϑ
0 ϕj(t) + a(j)

0 + a(j)
1 t, i.e.,

zj(t) =
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
ϕj(ξ)dξ + a(j)

0 + a(j)
1 t. (6)

Thus, we obtain z′j(t) =
∫ t

0

(t− ξ)ϑ−2

Γ(ϑ− 1)
ϕj(ξ)dξ + a(j)

1 and

cDβ
0 zj(t) =

∫ t

0

(t− ξ)ϑ−β−1

Γ(ϑ− β)
ϕj(ξ)dξ + a(j)

1
t1−β

Γ(2− β)
,

and so ∫ 1

0
zj(ξ)dξ =

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
ϕj(m)dmdξ + a(j)

0 +
1
2

a(j)
1 ,

∫ 1

0
z′j(ξ)dξ =

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
ϕj(m)dmdξ + a(j)

1 ,

∫ 1

0

cDβ
0 zj(ξ)dξ =

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
ϕj(m)dmdξ + a(j)

1
1

Γ(3− β)
.

By using the first boundary condition, we obtain

a(j)
0 + a(j)

1 +
∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
ϕj(ξ)dξ = 0. (7)

Further, by the linearity of the integral in the second boundary condition, we have∫ 1

0
zj(ξ)dξ +

∫ 1

0

cDβ
0 zj(ξ)dξ +

∫ 1

0
z′j(ξ)dξ = 0,

and it gives

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
ϕj(m)dmdξ + a(j)

0 +
1
2

a(j)
1 +

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
ϕj(m)dmdξ

+ a(j)
1

1
Γ(3− β)

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
ϕj(m)dmdξ + a(j)

1 = 0. (8)
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By some simple calculations on two latter Equations (7) and (8), and by considering

the constant ∆ =
3Γ(3− β) + 2

2Γ(3− β)
6= 1, we obtain

a(j)
1 =

1
(∆− 1)

[ ∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
ϕj(ξ)dξ −

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
ϕj(m)dmdξ

−
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
ϕj(m)dmdξ −

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
ϕj(m)dmdξ

]
.

Then by substituting a(j)
1 into (7), we obtain

a(j)
0 = −

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
ϕj(ξ)dξ

− 1
(∆− 1)

[ ∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
ϕj(ξ)dξ −

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
ϕj(m)dmdξ

−
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
ϕj(m)dmdξ −

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
ϕj(m)dmdξ

]
.

Next, we substitute the values of a(j)
0 and a(j)

1 into Equation (6). In this case, we see
that zj satisfies (5). This completes the proof.

Here by considering (3), define the operator T onM by

T (z1, z2, . . . , z13)(t) :=
(
(T1z1)(t), . . . , (T13z13)(t)

)
, (9)

where (Tj :Mj →Mj),

(Tjzj)(t) =
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
[
hj(ξ, zj(ξ), z′j(ξ)) + k j(ξ, zj(ξ), z′j(ξ))

]
dξ

+
t− ∆
∆− 1

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
[
hj(ξ, zj(ξ), z′j(ξ)) + k j(ξ, zj(ξ), z′j(ξ))

]
dξ

+
1− t
∆− 1

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
[
hj(m, zj(m), z′j(m)) + k j(m, zj(m), z′j(m))

]
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
[
hj(m, zj(m), z′j(m)) + k j(m, zj(m), z′j(m))

]
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

[
hj(m, zj(m), z′j(m)) + k j(m, zj(m), z′j(m))

]
dmdξ

]
,

for all t ∈ [0, 1] and zj ∈ Mj. For convenience in writing, put

K∗0 :=
1

|∆− 1|Γ(ϑ + 2)
+

|∆− 1|+ 1
|∆− 1|Γ(ϑ + 1)

+
1 + |∆|
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ− β + 2)

,
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K∗1 :=
|∆− 1|+ 1
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
1

|∆− 1|Γ(ϑ− β + 2)
+

1
|∆− 1|Γ(ϑ + 1)

. (10)

We now analyze the fractional BVP (2) with different conditions by terms of the
existence criterion.

Theorem 1. Let h1, . . . , h13 : [0, 1]×R2 → R and k1, . . . , k13 : [0, 1]×R2 → R be continuous
functions. Suppose that there exist continuous maps δ1, . . . , δ13 : [0, 1] → R+ and µ1, . . . , µ13 :
[0, 1] → R+, and continuous non-decreasing maps, φ1, . . . , φ13 : R+ → R+ and ψ1, . . . , χ13 :
R+ → R+ s.t.

|hj(t, z1, z2)| ≤ δj(t)φj(
2

∑
i=1
|zi|), |k j(t, z1, z2)| ≤ µj(t)χj(

2

∑
i=1
|zi|).

In addition, assume that continuous maps σ1, . . . , σ13 : [0, 1]→ R exist s.t.

|k j(t, z1, z2)− k j(t, q1, q2)| ≤ σj(t)(|z1 − q1|+ |z2 − q2|),

for all t ∈ [0, 1], z1, z2, q1, q2 ∈ R and j ∈ N13
1 . If λ∗ := (K∗0 +K∗1)∑13

j=1 ‖σj‖ < 1, then the
fractional BVPs (2) has a solution, where ‖σj‖ = supt∈[0,1] |σj(t)|, and K∗0 and K∗1 are given
in (10).

Proof. Set ‖δj‖ = supt∈[0,1] |δj(t)| and ‖µj‖ = supt∈[0,1] |µj(t)|. We select the appropriate
constant ρ so that

ρ ≥
13

∑
j=1

(
φj(‖zj‖Mj)‖δj‖+ χj(‖zj‖Mj)‖µj‖

){
K∗0 +K∗1}, (11)

where K∗i ’s are given in (10). Define subsets

Bρ := {z = (z1, z2, . . . , z13) ∈ M = (M1,M2, . . . ,M13) : ‖z‖M ≤ ρ},

where ρ is given in (11). Define T1 and T2 on Bρ as

T1(z1, z2, . . . , z13)(t) :=
(
(T (1)

1 z1)(t), (T
(2)

1 z2)(t), . . . , (T (13)
1 z13)(t)

)
,

T2(z1, z2, . . . , z13)(t) :=
(
(T (1)

2 z1)(t), (T
(2)

2 z2)(t), . . . , (T (13)
2 z13)(t)

)
,

where

(T (j)
1 zj)(t) =

∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
hj(ξ, zj(ξ), z′j(ξ))dξ

+
t− ∆
∆− 1

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
hj(ξ, zj(ξ), z′j(ξ))dξ

+
1− t
∆− 1

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
hj(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
hj(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
hj(m, zj(m), z′j(m))dmdξ

]
,
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and

(T (j)
2 zj)(t) =

∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
k j(ξ, zj(ξ), z′j(ξ))dξ

+
t− ∆
∆− 1

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
k j(ξ, zj(ξ), z′j(ξ))dξ

+
1− t
∆− 1

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
k j(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
k j(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
k j(m, zj(m), z′j(m))dmdξ

]
,

for each t ∈ [0, 1] and zj ∈ Mj. Assume that φ∗j = supzj∈Mj
φj(‖zj‖Mj) and χ∗j =

supzj∈Mj
χj(‖zj‖Mj). Now for every z = (z1, . . . , z13), q = (q1, . . . , q13) ∈ Bρ, we have

∣∣(T (j)
1 zj + T

(j)
2 qj)(t)

∣∣ ≤ ∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)

[
|hj(ξ, zj(ξ), z′j(ξ))|+ |k j(ξ, qj(ξ), q′j(ξ))|

]
dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

[
|hj(ξ, zj(ξ), z′j(ξ))|+ |k j(ξ, qj(ξ), q′j(ξ))|

]
dξ

+
1− t
|∆− 1|

( ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)

[
|hj(m, zj(m), z′j(m))|+ |k j(m, qj(m), q′j(m))|

]
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

[
|hj(m, zj(m), z′j(m))|+ |k j(m, qj(m), q′j(m))|

]
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

[
|hj(m, zj(m), z′j(m))|+ |k j(m, qj(m), q′j(m))|

]
dmdξ

)

≤
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
[
δj(ξ)φj(‖zj‖Mj) + µj(ξ)χj(‖qj‖Mj)

]
dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
[
δj(ξ)φj(‖zj‖Mj) + µj(ξ)χj(‖qj‖Mj)

]
dξ

+
1− t
|∆− 1|

( ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
[
δj(m)φj(‖zj‖Mj) + µj(m)χj(‖qj‖Mj)

]
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
[
δj(m)φj(‖zj‖Mj) + µj(m)χj(‖qj‖Mj)

]
dmdξ
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+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

[
δj(m)φj(‖zj‖Mj) + µj(m)χj(‖qj‖Mj)

]
dmdξ

)

≤
(
‖δj‖φ∗j + ‖µj‖χ∗j

) [ 1
Γ(ϑ + 1)

+
1 + |∆|
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
1

|∆− 1|Γ(ϑ + 1)
+

1
|∆− 1|Γ(ϑ− β + 2)

]

=

(
‖δj‖φ∗j + ‖µj‖χ∗j

)
K∗0 ,

and

∣∣((T (j)
1 zj)

′(t) + (T (j)
2 qj)

′(t)
∣∣ ≤ ∫ t

0

(t− ξ)ϑ−2

Γ(ϑ− 1)

[
|hj(ξ, zj(ξ), z′j(ξ))|+ |k j(ξ, qj(ξ), q′j(ξ))|

]
dξ

+
1

|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

[
|hj(ξ, zj(ξ), z′j(ξ))|+ |k j(ξ, qj(ξ), q′j(ξ))|

]
dξ

+
1

|∆− 1|

( ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)

[
|hj(m, zj(m), z′j(m))|+ |k j(m, qj(m), q′j(m))|

]
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

[
|hj(m, zj(m), z′j(m))|+ |k j(m, qj(m), q′j(m))|

]
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

[
|hj(m, zj(m), z′j(m))|+ |k j(m, qj(m), q′j(m))|

]
dmdξ

)

≤
(
‖δj‖φ∗j + ‖µj‖χ∗j

) [ 1
Γ(ϑ)

+
1

|∆− 1|Γ(ϑ) +
1

|∆− 1|Γ(ϑ + 2)

+
1

|∆− 1|Γ(ϑ + 1)
+

1
|∆− 1|Γ(ϑ− β + 2)

]

=

(
‖δj‖φ∗j + ‖µj‖χ∗j

)
K∗1 .

This yields

‖T1z + T2q‖M =
13

∑
j=1
‖T (j)

1 zj + T
(j)

2 qj‖Mj ≤
13

∑
j=1

(
‖δj‖φ∗j + ‖µj‖χ∗j

)
(K∗0 +K∗1) ≤ ρ,

and so ‖T1z + T2q‖M ≤ ρ and T1z + T2q ∈ Bρ. The continuity of T1 is proved from the
continuity of the functions hj. We now prove the uniform boundedness of the operatorT1.
We have

∣∣(T (j)
1 zj)(t)

∣∣ ≤ ∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
∣∣hj(ξ, zj(ξ), z′j(ξ))

∣∣dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

∣∣hj(ξ, zj(ξ), z′j(ξ))
∣∣dξ
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+
1− t
|∆− 1|

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
∣∣hj(m, zj(m), z′j(m))

∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

]

≤ ‖δj‖φj(|zj(t)|+ |z′j(t)|)
[ 1 + |∆|
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
|∆− 1|+ 1
|∆− 1|Γ(ϑ + 1)

+
1

|∆− 1|Γ(ϑ− β + 2)

]
= ‖δj‖φj(ρ)K∗0 .

Further, note that ∣∣(T (j)
1 zj)

′(t)
∣∣ ≤ ‖δj‖φj(ρ)K∗1 ,

for all z in Bρ. Thus,

‖T1z‖M =
13

∑
j=1
‖T (j)

1 zj‖Mj ≤
13

∑
j=1
‖δj‖φj(ρ)(K∗0 +K∗1).

So T1 is uniformly bounded on Bρ. Now, we are going to show the compactness of the
operator T1 on Bρ. To do this, let 0 ≤ t1, t2 ≤ 1 with t1 < t2; therefore, we conclude

∣∣(T (j)
1 zj)(t2)− (T (j)

1 zj)(t1)
∣∣ ≤ ∫ t1

0

[
(t2 − ξ)ϑ−1 − (t1 − ξ)ϑ−1]

Γ(ϑ)
∣∣hj(ξ, zj(ξ), z′j(ξ))

∣∣dξ

+
∫ t2

t1

(t2 − ξ)ϑ−1

Γ(ϑ)
∣∣hj(ξ, zj(ξ), z′j(ξ))

∣∣dξ

+
(t2 − t1)

|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

∣∣hj(ξ, zj(ξ), z′j(ξ))
∣∣dξ

+
(t2 − t1)

|∆− 1|

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
∣∣hj(m, zj(m), z′j(m))

∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

]

≤
‖δj‖φj(ρ)

Γ(ϑ + 1)
[
− (t2 − t1)

ϑ + (t2 − t1)
ϑ + tϑ

2 − tϑ
1
]
+
‖δj‖φj(ρ)(t2 − t1)

|∆− 1|Γ(ϑ)

+
‖δj‖φj(ρ)(t2 − t1)

|∆− 1|

[ 1
Γ(ϑ + 2)

+
1

Γ(ϑ + 1)
+

1
Γ(ϑ− β + 2)

]
.
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Hence, |(T (j)
1 zj)(t2)− (T (j)

1 zj)(t1)| → 0 as t1 → t2. Similarly, one can see that

|(T (j)
1 zj)

′(t2)− (T (j)
1 zj)

′(t1)| → 0,

as t1 → t2; therefore, we obtain ‖(T1zj)(t2)− (T1zj)(t1)‖X tends to zero as t1 → t2. Thus,
T1 will be equi-continuous, and is compact on Bρ due to the Arzela–Ascoli property. Further,
take z, q ∈ Bρ. Therefore

∣∣(T (j)
2 zj)(t)− (T (j)

2 qj)(t)
∣∣ ≤ ∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
∣∣k j(ξ, zj(ξ), z′j(ξ))− k j(ξ, qj(ξ), q′j(ξ))

∣∣dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

∣∣k j(ξ, zj(ξ), z′j(ξ))− k j(ξ, qj(ξ), q′j(ξ))
∣∣dξ

+
1− t
|∆− 1|

( ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
∣∣k j(m, zj(m), z′j(m))− k j(m, qj(m), q′j(m))

∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

∣∣k j(m, zj(m), z′j(m))− k j(m, qj(m), q′j(m))
∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

∣∣k j(m, zj(m), z′j(m))− k j(m, qj(m), q′j(m))
∣∣dmdξ

)

≤
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
σj(ξ)

(
|zj(ξ)− qj(ξ)|+ |z′j(ξ)− q′j(ξ)|

)
dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
σj(ξ)

(
|zj(ξ)− qj(ξ)|+ |z′j(ξ)− q′j(ξ)|

)
dξ

+
1− t
|∆− 1|

( ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
σj(m)

(
|zj(m)− qj(m)|+ |z′j(m)− q′j(m)|

)
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
σj(m)

(
|zj(m)− qj(m)|+ |z′j(m)− q′j(m)|

)
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
σj(m)

(
|zj(m)− qj(m)|+ |z′j(m)− q′j(m)|

)
dmdξ

)

≤ ‖σj‖K∗0‖zj − qj‖Mj ,

and in the similar manner,∣∣(T (j)
2 zj)

′(t)− (T (j)
2 qj)

′(t)
∣∣ ≤ ‖σj‖K∗1‖zj − qj‖Mj .

Therefore, we have that

‖T2z− T2q‖M =
13

∑
j=1
‖T (j)

2 zj − T
(j)

2 qj‖Mj ≤ (K∗0 +K∗1)
13

∑
j=1
‖σj‖‖zj − qj‖Mj ,
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and so
‖T2z− T2q‖M ≤ λ∗‖z− q‖M.

Since λ∗ < 1, T2 is a contraction on Bρ. Utilizing Lemma 1, we deduced that a fixed
point of T exists that satisfies the fractional BVPs (2).

In order to demonstrate the validity of the aforementioned conclusion, we give an
abstract example.

Example 1. Consider the multi-term multi-dimensional DEs

cD1.38
0 z1(t) = h1(t, z1(t), z′1(t)) + k1(t, z1(t), z′1(t)),

cD1.38
0 z2(t) = h2(t, z2(t), z′2(t)) + k2(t, z2(t), z′2(t)),

cD1.38
0 z3(t) = h3(t, z3(t), z′3(t)) + k3(t, z3(t), z′3(t)),

cD1.38
0 z4(t) = h4(t, z4(t), z′4(t)) + k4(t, z4(t), z′4(t)),

(12)

under the integral BCs
zj(0) + cD0.47

0 zj(0) + z′j(1) = 0, (j = 1, 2, 3, 4)

∫ 1

0

[
zj(ξ) +

cD0.47
0 zj(ξ) + z′j(ξ)

]
dξ = 0,

(13)

where ϑ = 1.38, β = 0.47, n = 4, and cD1.38
0 and cD0.47

0 are derivatives of order γ ∈ {1.38, 0.47}
of the Caputo type. Set hj ∈ C([0, 1]×R3,R), (j = 1, . . . , 4) by

h1(t, z(t), `(t)) =
| sin z(t)|

2 + t
+
|`(t)|
t + 2

,

h2(t, z(t), `(t)) =
|z(t)|

5 + 5|z(t)| +
0.4| sin `(t)|

2 + 2| sin `(t)| ,

h3(t, z(t), `(t)) =
(t + 1)

700
| arctan z(t)|+ (t + 1)|`(t)|

700 + 700|`(t)| ,

h4(t, z(t), `(t)) =
et

8
|z(t)|+ 0.125|`(t)|et,

and also k j ∈ C([0, 1]×R3,R), (j = 1, . . . , 4) by

k1(t, z(t), `(t)) =
t

1000

( |z(t)|
|z(t)|+ 1

+ | sin `(t)|
)

,

k2(t, z(t), `(t)) =
| sin z(t)|
200 + t

+
| arctan `(t)|

200 + t
,

k3(t, z(t), `(t)) = 0.01t|z(t)|+ t
100
| arctan `(t)|,

k4(t, z(t), `(t)) =
4t

100
|z(t)|
|z(t)|+ 1

+ 0.04t
|`(t)|

1 + |`(t)| .

Define φj : R+ → R as φm(z) = z for all z ∈ R+ and j = 1, . . . , 4. Further, we know that
for each nonnegative real number z, sin z ≤ z and arctan z ≤ z; therefore, we have

∣∣h1(t, z(t), z′(t))
∣∣ ≤ 1

2 + t
(| sin z|+ |z′|)
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≤ 1
2 + t

(|z|+ |z′|) = 1
2 + t

φ1(|z|+ |z′|),

∣∣h2(t, z(t), z′(t))
∣∣ ≤ 1

5
(|z|+ | sin z′|)

≤ 1
5
(|z|+ |z′|) = 1

5
φ2(|z|+ |z′|),

∣∣h3(t, z(t), z′(t))
∣∣ ≤ t + 1

700
(| arctan z|+ |z′|)

≤ t + 1
700

(|z|+ |z′|) = t + 1
700

φ3(|z|+ |z′|),

∣∣h4(t, z(t), z′(t))
∣∣ ≤ et

8
(|z|+ |z′|)

≤ et

8
(|z|+ |z′|) = et

8
φ4(|z|+ |z′|),

in which for j = 1, . . . , 4, δj ∈ C([0, 1],R+) are given as δ1(t) =
1

2 + t
, δ2(t) =

1
5

, δ3(t) =
t + 1
700

,

and δ4(t) =
1
8

et. Further, we define nondecreasing and continuous mappings χj : R+ → R+ by

χj(z) = z for all z ∈ R+ and j = 1, . . . , 4. Then we obtain

∣∣k1(t, z(t), z′(t))
∣∣ ≤ t

1000
(|z|+ | sin z′|)

≤ t
1000

(|z|+ |z′|) = t
1000

χ1(|z|+ |z′|),

∣∣k2(t, z(t), z′(t))
∣∣ ≤ 1

200 + t
(| sin z|+ | arctan z′|)

≤ 1
200 + t

(|z|+ |z′|) = 1
200 + t

χ2(|z|+ |z′|),

∣∣k3(t, z(t), z′(t))
∣∣ ≤ t

100
(|z|+ | arctan z′|)

≤ t
100

(|z|+ |z′|) = t
100

χ3(|z|+ |z′|),

∣∣k4(t, z(t), z′(t))
∣∣ ≤ 4t

100
(|z|+ |z′|)

≤ 4t
100

(|z|+ |z′|) = 4t
100

χ4(|z|+ |z′|),

in which for j = 1, . . . , 4, µj ∈ C([0, 1],R+) are given as µ1(t) =
t

1000
, µ2(t) =

1
200 + t

,

µ3(t) =
t

100
, and µ4(t) =

4t
100

. On the other hand, by the mean value theorem, we know

that | sin a − sin b| ≤ |a − b| and | arctan a − arctan b| ≤ |a − b| for all a, b ∈ R. Thus, for
z1, z2, `1, `2 ∈ R, we estimate∣∣k1(t, z1(t), z2(t))− k1(t, `1(t), `2(t))

∣∣
≤ t

1000
(
|z1(t)− `1(t)|+ | sin z2(t)− sin `2(t)|

)
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≤ t
1000

(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
,

∣∣k2(t, z1(t), z2(t))− k2(t, `1(t), `2(t))
∣∣

≤ 1
200 + t

(
| sin z1(t)− sin `1(t)|+ | arctan z2(t)− arctan `2(t)|

)
≤ 1

200 + t
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
,

∣∣k3(t, z1(t), z2(t))− k3(t, `1(t), `2(t))
∣∣

≤ t
100

(
|z1(t)− `1(t)|+ | arctan z2(t)− arctan `2(t)|

)
≤ t

100
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
,

and ∣∣k4(t, z1(t), z2(t))− k4(t, `1(t), `2(t))
∣∣

≤ 4t
100

(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
≤ 4t

100
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
.

Hence, σ1(t) =
t

1000
, σ2(t) =

1
200 + t

, σ3(t) =
t

100
, and σ4(t) =

4t
100

, where ‖σ1‖ =

1
1000

, ‖σ2‖ =
1

200
, ‖σ3‖ =

1
100

, ‖σ4‖ =
4

100
, and so ∑4

j=1 ‖σj‖ ' 0.056. According to the
obtained values, we obtain ∆ ' 2.2364, K∗0 ' 5.1371, K∗1 ' 3.4112, and so K∗0 +K∗1 ' 8.5483.
Hence,

λ∗ := (K∗0 +K∗1)
4

∑
j=1
‖σj‖ = (K∗0 +K∗1)

(
‖σ1‖+ ‖σ2‖+ ‖σ3‖+ ‖σ4‖

)
' 0.4787048 < 1.

Application of Theorem 1 leads us to infer that the fractional BVPs (12) and (13) possesses a
solution.

In the following, we investigate a special case of the fractional BVPs (2) on the methyl-
propane graph (Figure 6). Assume that k j(t, zj(t), z′j(t)) = 0 are constant functions. Then
the fractional problems (2) are converted into the following BVPs on the methylpropane
graph under the integral BCs

cDϑ
0 zj(t) = hj(t, zj(t), z′j(t)), (j ∈ N13

1 )

zj(0) + cDβ
0 zj(0) + z′j(1) = 0,

∫ 1

0

[
zj(ξ) +

cDβ
0 zj(ξ) + z′j(ξ)

]
dξ = 0,

(14)
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where ϑ ∈ (1, 2), and hj : [0, 1] × R2 → R are continuous functions. By utilizing the
Scheafer’s theorem, we prove our next existence criterion. Before that, with adequate
regard for Lemma 3, define Υ onM as

Υ(z1, z2, . . . , z13)(t) :=
(
(Υ1z1)(t), . . . , (Υ13z13)(t)

)
, (15)

where

(Υjzj)(t) =
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
hj(ξ, zj(ξ), z′j(ξ))dξ

+
t− ∆
∆− 1

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
hj(ξ, zj(ξ), z′j(ξ))dξ

+
1− t
∆− 1

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
hj(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
hj(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
hj(m, zj(m), z′j(m))dmdξ

]
,

for all t ∈ [0, 1], zj ∈ Mj, and j ∈ N13
1 . In the following, the existence property for FBVPs

(14) are proved under the boundedness assumption for the continuous functions hj.

Theorem 2. Regard the continuous functions h1, . . . , h13 : [0, 1]×R2 → R. Assume that the
constants $j > 0 exist with |hj(t, z1, z2)| ≤ $j for all z1, z2 ∈ R, (j ∈ N13

1 ) and ∀ t ∈ [0, 1]. Then
the FBVPs (14) have solutions on each edge of the methylpropane graph.

Proof. Regarding the definition of operator Υ, clearly, the fractional BVPs (14) have solu-
tions if and only if there exist a fixed point of Υ onM =M1 × · · · ×M13. Initially, we
check that Υ is complete continuous. Continuity of h1, . . . , h13 implies that of Υ :M→M.
Assume a bounded set O inM and zj ∈ Mj. Then we have

|(Υjzj)(t)| ≤
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
∣∣hj(ξ, zj(ξ), z′j(ξ))

∣∣dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

∣∣hj(ξ, zj(ξ), z′j(ξ))
∣∣dξ

+
1− t
|∆− 1|

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
∣∣hj(m, zj(m), z′j(m))

∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

]
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≤ $j

[ 1 + |∆|
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
|∆− 1|+ 1
|∆− 1|Γ(ϑ + 1)

+
1

|∆− 1|Γ(ϑ− β + 2)

]
= $jK∗0 ,

∀ t ∈ [0, 1], and K∗0 is introduced in (10). Similarly,

|(Υjzj)
′(t)| ≤ $j

[ |∆− 1|+ 1
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 1)

+
1

|∆− 1|Γ(ϑ− β + 2)
+

1
|∆− 1|Γ(ϑ + 2)

]
= $jK∗1 ,

∀ t ∈ [0, 1], in which K∗1 is as (10). Thus ‖Υjzj(t)‖Mj ≤ $j(K∗0 + K∗1), and ‖Υz(t)‖M =

∑13
j=1 ‖Υjzj(t)‖Mj ≤ ∑13

j=1 $j(K∗0 + K∗1) < ∞. From this we deduced that Υ is uniformly
bounded. To confirm the equi-continuity of operator Υ, assume z = (z1, z2, . . . , z13) ∈ O
and 0 ≤ t1, t2 ≤ 1 with t1 < t2. Then

|(Υjzj)(t2)− (Υjzj)(t1)| ≤
∫ t1

0

[
(t2 − ξ)ϑ−1 − (t1 − ξ)ϑ−1]

Γ(ϑ)
∣∣hj(ξ, zj(ξ), z′j(ξ))

∣∣dξ

+
∫ t2

t1

(t2 − ξ)ϑ−1

Γ(ϑ)
∣∣hj(ξ, zj(ξ), z′j(ξ))

∣∣dξ

+
(t2 − t1)

|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

∣∣hj(ξ, zj(ξ), z′j(ξ))
∣∣dξ

+
(t2 − t1)

|∆− 1|

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
∣∣hj(m, zj(m), z′j(m))

∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

]

≤
$j

Γ(ϑ + 1)
[
− (t2 − t1)

ϑ + (t2 − t1)
ϑ + tϑ

2 − tϑ
1
]
+

$j(t2 − t1)

|∆− 1|Γ(ϑ)

+
$j(t2 − t1)

|∆− 1|

[ 1
Γ(ϑ + 2)

+
1

Γ(ϑ + 1)
+

1
Γ(ϑ− β + 2)

]
.

The right-side converges to zero (no depending upon z ∈ O) as t1 → t2. Similarly, we
have

|(Υjzj)
′(t2)− (Υjzj)

′(t1)| → 0,

as t1 → t2. Hence, ‖Υz(t2)−Υz(t1)‖M → 0 as t1 → t2. This gives that Υ is equi-continuous
onM. Hence Υ is completely continuous by Arzela–Ascoli theorem. Assume a subset

Ω :=
{
(z1, z2, . . . , z13) ∈ M : (z1, z2, . . . , z13) = νΥ(z1, z2, . . . , z13), ν ∈ (0, 1)

}
ofM. We prove the boundedness of Ω. Let (z1, z2, . . . , z13) ∈ Ω. Then

(z1, z2, . . . , z13) = νΥ(z1, z2, . . . , z13),
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and so zj(t) = ν(Υjzj) for all t ∈ [0, 1] and j ∈ N13
1 . Thus,

|zj(t)| ≤ ν

( ∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
∣∣hj(ξ, zj(ξ), z′j(ξ))

∣∣dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

∣∣hj(ξ, zj(ξ), z′j(ξ))
∣∣dξ

+
1− t
|∆− 1|

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
∣∣hj(m, zj(m), z′j(m))

∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

∣∣hj(m, zj(m), z′j(m))
∣∣dmdξ

])

≤ ν$j

[ 1 + |∆|
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
|∆− 1|+ 1
|∆− 1|Γ(ϑ + 1)

+
1

|∆− 1|Γ(ϑ− β + 2)

]
= ν$jK∗0 ,

and

|z′j(t)| ≤ ν$j

[ |∆− 1|+ 1
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
1

|∆− 1|Γ(ϑ− β + 2)
+

1
|∆− 1|Γ(ϑ + 1)

]
= ν$jK∗1 .

These inequalities follow that

‖z‖M =
13

∑
j=1
‖zj‖Mj ≤ ν

13

∑
j=1

$j(K∗0 +K∗1) < ∞,

therefore Ω is bounded. Utilizing Lemmas 2 and 3, we find out that inM, Υ possesses a
fixed point, which is a solution of (14).

4. Ulam–Hyers Stability

Since the concept of stability is so important in determining the solutions to many
dynamical systems, due to this importance, we here establish two Ulam–Hyers and the
generalized version of stabilities in relation to the fractional multi-dimensional BVP on the
methylpropane graph (14). For more information, see [38–43]. In consistence with [41], we
define the following notions:

Definition 1 ([41]). The fractional multi-dimensional BVP on the methylpropane graph (14) is
Ulam–Hyers stable if ∃ d∗hj

∈ R+ s.t. ∀ ε j > 0 and ∀ z∗j (t) ∈ C([0, 1],R) as a solution function
satisfying ∣∣∣ cDϑ

0 z∗j (t)− hj(t, z∗j (t), z∗
′

j (t))
∣∣∣ < ε j, (16)

∃ zj(t) ∈ C([0, 1],R) fulfilling the multi-dimensional BVP on the methylpropane graph (14) with

|z∗j (t)− zj(t)| ≤ ε jd∗hj
, t ∈ [0, 1].
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Definition 2 ([41]). The fractional multi-dimensional BVP on the methylpropane graph (14)
is generalized Ulam–Hyers stable if ∃Gj ∈ C(R+,R+) with Gj(0) = 0 s.t. ∀ ε j > 0 and
∀ z∗j (t) ∈ C([0, 1],R) fulfilling∣∣∣ cDϑ

0 z∗j (t)− hj(t, z∗j (t), z∗
′

j (t))
∣∣∣ < ε j,

∃ zj(t) ∈ C([0, 1],R) satisfying the multi-dimensional BVP on the methylpropane graph (14) with

|z∗j (t)− zj(t)| ≤ Gj(ε j), t ∈ [0, 1].

Remark 1. Definition 1⇒ Definition 2.

Remark 2. z∗j (t) ∈ C([0, 1],R) is named as a solution for (16) iff ∃Hj ∈ C([0, 1],R) depending
on z∗j s.t.

(1) |Hj(t)| < ε j, t ∈ [0, 1].
(2) cDϑ

0 z∗j (t) = hj(t, z∗j (t), z∗
′

j (t)) + Hj(t), t ∈ [0, 1].

We now study the above stabilities for the fractional multi-dimensional BVP on the
methylpropane graph (14).

Theorem 3. Assume that the assertion

|hj(t, z∗j (t), z∗
′

j (t))− hj(t, zj(t), z′j(t))| ≤ L∗j (|z∗j − zj|+ |z∗
′

j − z′j|),

for some L∗j > 0. Then the fractional multi-dimensional BVP on methylpropane graph (14) is
Ulam–Hyers stable on [0, 1] and is generalized Ulam–Hyers stable if

L∗jK∗0 < 1, j ∈ N13
1 ,

for which K∗0 is given in (10).

Proof. ∀ ε j > 0 and ∀ z∗j ∈ C([0, 1],R) fulfilling∣∣∣ cDϑ
0 z∗j (t)− hj(t, z∗j (t), z∗

′
j (t))

∣∣∣ < ε j,

one can find Hj ∈ C([0, 1],R), which satisfies

cDϑ
0 z∗j (t) = hj(t, z∗j (t), z∗

′
j (t)) + Hj(t),

with |Hj(t)| ≤ ε j. It gives

z∗j (t) =
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)

(
hj(ξ, z∗j (ξ), z∗

′
j (ξ)) + Hj(ξ)

)
dξ

+
t− ∆
∆− 1

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)

(
hj(ξ, z∗j (ξ), z∗

′
j (ξ)) + Hj(ξ)

)
dξ

+
1− t
∆− 1

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)

(
hj(m, z∗j (m), z∗

′
j (m)) + Hj(m)

)
dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)

(
hj(m, z∗j (m), z∗

′
j (m)) + Hj(m)

)
dmdξ
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+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)

(
hj(m, z∗j (m), z∗

′
j (m)) + Hj(m)

)
dmdξ

]
.

Consider zj(t) ∈ C(J,R) to be the solution of (14), which is

zj(t) =
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
hj(ξ, zj(ξ), z′j(ξ))dξ +

t− ∆
∆− 1

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
hj(ξ, zj(ξ), z′j(ξ))dξ

+
1− t
∆− 1

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
hj(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
hj(m, zj(m), z′j(m))dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
hj(m, zj(m), z′j(m))dmdξ

]
.

We estimate

|z∗j (t)− zj(t)| ≤
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
|hj(ξ, z∗j (ξ), z∗

′
j (ξ))− hj(ξ, zj(ξ), z′j(ξ))|dξ

+
t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
|hj(ξ, z∗j (ξ), z∗

′
j (ξ))− hj(ξ, zj(ξ), z′j(ξ))|dξ

+
1− t
|∆− 1|

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
|hj(m, z∗j (m), z∗

′
j (m))− hj(m, zj(m), z′j(m))|dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
|hj(m, z∗j (m), z∗

′
j (m))− hj(m, zj(m), z′j(m))|dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
|hj(m, z∗j (m), z∗

′
j (m))− hj(m, zj(m), z′j(m))|dmdξ

]

+
∫ t

0

(t− ξ)ϑ−1

Γ(ϑ)
|Hj(ξ)|dξ +

t + |∆|
|∆− 1|

∫ 1

0

(1− ξ)ϑ−2

Γ(ϑ− 1)
|Hj(ξ)|dξ

+
1− t
|∆− 1|

[ ∫ 1

0

∫ ξ

0

(ξ −m)ϑ−1

Γ(ϑ)
|Hj(m)|dmdξ +

∫ 1

0

∫ ξ

0

(ξ −m)ϑ−2

Γ(ϑ− 1)
|Hj(m)|dmdξ

+
∫ 1

0

∫ ξ

0

(ξ −m)ϑ−β−1

Γ(ϑ− β)
|Hj(m)|dmdξ

]

≤ L∗j ‖z∗j − zj‖
[ 1 + |∆|
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
|∆− 1|+ 1
|∆− 1|Γ(ϑ + 1)

+
1

|∆− 1|Γ(ϑ− β + 2)

]



Mathematics 2022, 10, 568 22 of 26

+ ε j

[ 1 + |∆|
|∆− 1|Γ(ϑ) +

1
|∆− 1|Γ(ϑ + 2)

+
|∆− 1|+ 1
|∆− 1|Γ(ϑ + 1)

+
1

|∆− 1|Γ(ϑ− β + 2)

]
= ε jK∗0 +K∗0L∗j ‖z∗j − zj‖.

Hence
‖z∗j − zj‖ ≤ ε jK∗0 +K∗0L∗j ‖z∗j − zj‖,

in which K∗0 is known in (10). From above, we obtain that

‖z∗j − zj‖ ≤
ε jK∗0

1−K∗0L∗j
,

and thus by taking d∗hj
=

K∗0
1−K∗0L∗j

, we find that the multi-dimensional methylpropane

FBVP (14) is Ulam–Hyers stable (K∗0L∗j < 1). Further, for Gj(ε j) =
ε jK∗0

1−K∗0L∗j
with Gj(0) =

0, we have the generalized Ulam–Hyers stability for the mentioned multi-dimensional
methylpropane FBVP (14).

Example 2. Consider the multi-term multi-dimensional DEs

cD1.38
0 z1(t) = h1(t, z1(t), z′1(t)),

cD1.38
0 z2(t) = h2(t, z2(t), z′2(t)),

cD1.38
0 z3(t) = h3(t, z3(t), z′3(t)),

cD1.38
0 z4(t) = h4(t, z4(t), z′4(t)),

(17)

under the integral BCs
zj(0) + cD0.47

0 zj(0) + z′j(1) = 0, (j = 1, 2, 3, 4)

∫ 1

0

[
zj(ξ) +

cD0.47
0 zj(ξ) + z′j(ξ)

]
dξ = 0,

(18)

where ϑ = 1.38, β = 0.47, n = 4, and cD1.38
0 and cD0.47

0 are derivatives of order γ ∈ {1.38, 0.47}
of the Caputo type. Set hj ∈ C([0, 1]×R3,R), (j = 1, . . . , 4) by

h1(t, z(t), `(t)) =
| sin z(t)|

8
+
|`(t)|

8
+ et,

h2(t, z(t), `(t)) =
0.1e|z(t)|

5 + 5|z(t)| +
e| sin `(t)|

50(1 + | sin `(t)|) + 2 sin(t),

h3(t, z(t), `(t)) = 2 +
1

700
| arctan z(t)|+ |`(t)|

700 + 700|`(t)| ,

h4(t, z(t), `(t)) =
e

80
|z(t)|+ 0.0125e|`(t)| − 21t.

By the mean value theorem, we know that | sin a − sin b| ≤ |a − b| and | arctan a −
arctan b| ≤ |a− b| for all a, b ∈ R. Thus, for z1, z2, `1, `2 ∈ R, we estimate∣∣h1(t, z1(t), z2(t))− h1(t, `1(t), `2(t))

∣∣
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≤ 1
8
(
| sin z1(t)− sin `1(t)|+ |z2(t)− `2(t)|

)
≤ 1

8
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
,

∣∣h2(t, z1(t), z2(t))− h2(t, `1(t), `2(t))
∣∣

≤ 0.1e
5
(
|z1(t)− `1(t)|+ | sin z2(t)− sin `2(t)|

)
≤ 0.1e

5
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
,

∣∣h3(t, z1(t), z2(t))− h3(t, `1(t), `2(t))
∣∣

≤ 1
700

(
| arctan z1(t)− arctan `1(t)|+ |z2(t)− `2(t)|

)
≤ 1

700
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
,

and ∣∣h4(t, z1(t), z2(t))− h4(t, `1(t), `2(t))
∣∣

≤ e
80
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
≤ e

80
(
|z1(t)− `1(t)|+ |z2(t)− `2(t)|

)
.

Hence, L∗1 =
1
8

, L∗2 =
0.1e

5
, L∗3 =

1
700

, and L∗4 =
e

80
. According to the obtained values, we

obtain ∆ ' 2.2364 and K∗0 ' 5.1371. Since,

L∗1K∗0 ' 0.64213 < 1, L∗2K∗0 ' 0.27843 < 1,

L∗3K∗0 ' 0.007338 < 1, L∗4K∗0 ' 0.17401 < 1.

Then by taking the constants

d∗h1
=

K∗0
1−K∗0L∗1

' 14.354653, d∗h2
=

K∗0
1−K∗0L∗2

' 7.119337,

d∗h3
=

K∗0
1−K∗0L∗3

' 5.175085, d∗h4
=

K∗0
1−K∗0L∗4

' 6.219324,

the conclusion of Theorem 3 confirms that the fractional system of BVPs (17) and (18) is Ulam–Hyers
stable. Moreover, by defining the functions

G1(ε1) =
ε1K∗0

1−K∗0L∗1
' 14.354653ε1, G2(ε2) =

ε2K∗0
1−K∗0L∗2

' 7.119337ε2,

G3(ε3) =
ε3K∗0

1−K∗0L∗3
' 5.175085ε3, G4(ε4) =

ε4K∗0
1−K∗0L∗4

' 6.219324ε4,
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so that Gj(0) = 0, (j = 1, 2, 3, 4), we see that the conclusion of Theorem 3 implies that the fractional
system of BVPs (17)–(18) is the generalized Ulam–Hyers stable.

5. Conclusions

In this study, we extended the technique applied in [28,29] to the non-star methyl-
propane graph and studied a new family of multi-term multi-dimensional FBVPs on every
edge of the graph by introducing a labeling method for vertices. We discussed the existence
of solutions for aforesaid FBVPs with the aid of Krasnoselskii and Schaefer fixed point
theorems. Moreover, the stability analysis in the sense of Ulam–Hyers and generalized
Ulam–Hyers was investigated. In addition, we prepared an abstract example to explain one
of our results. In view of the importance of differential equations in chemical graph theory,
we designed our FBVPs (2) on the molecular graph representation of methylpropane as an
example of a non-star graph. This research is of pivotal nature for fractional mathematical
modeling on different chemical compounds of molecules in the framework of complicated
non-star graphs. Our suggested FBVPs are applicable on a vast range of graph struc-
tures, especially digraphs, which are usually utilized in medical technologies in relation
to protein networks. In our future projects, we plan to study more problems on the graph
representation of different molecular structures by using analytic and numerical methods.
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