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Abstract

Recent empirical works have successfully used
unlabeled data to learn feature representations
that are broadly useful in downstream classifica-
tion tasks. Several of these methods are remi-
niscent of the well-known word2vec embedding
algorithm: leveraging availability of pairs of se-
mantically “similar” data points and “negative
samples,” the learner forces the inner product of
representations of similar pairs with each other to
be higher on average than with negative samples.
The current paper uses the term contrastive learn-
ing for such algorithms and presents a theoretical
framework for analyzing them by introducing la-
tent classes and hypothesizing that semantically
similar points are sampled from the same latent
class. This framework allows us to show provable
guarantees on the performance of the learned rep-
resentations on the average classification task that
is comprised of a subset of the same set of latent
classes. Our generalization bound also shows that
learned representations can reduce (labeled) sam-
ple complexity on downstream tasks. We conduct
controlled experiments in both the text and image
domains to support the theory.

1. Introduction

This paper concerns unsupervised representation learning:
using unlabeled data to learn a representation function f
such that replacing data point x by feature vector f(x) in
new classification tasks reduces the requirement for labeled
data. This is distinct from semi-supervised learning, where
learning can leverage unlabeled as well as labeled data.
(Section 7 surveys other prior ideas and models).
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For images, a proof of existence for broadly useful represen-
tations is the output of the penultimate layer (the one before
the softmax) of a powerful deep net trained on ImageNet.
In natural language processing (NLP), low-dimensional rep-
resentations of text — called text embeddings — have been
computed with unlabeled data (Peters et al., 2018; Devlin
et al., 2018). Often the embedding function is trained by
using the embedding of a piece of text to predict the sur-
rounding text (Kiros et al., 2015; Logeswaran & Lee, 2018;
Pagliardini et al., 2018). Similar methods that leverage simi-
larity in nearby frames in a video clip have had some success
for images as well (Wang & Gupta, 2015).

Many of these algorithms are related: they assume access to
pairs or tuples (in the form of co-occurrences) of text/images
that are more semantically similar than randomly sampled
text/images, and their objective forces representations to
respect this similarity on average. For instance, in order to
learn a representation function f for sentences, a simplified
version of what Logeswaran & Lee (2018) minimize is the
following loss function

. : @7 ()
zxt 8 ef(x)Tf($+) + ef(x)Tf(lf)

where (z, zT) are a similar pair and 2~ is presumably dis-
similar to = (often chosen to be a random point) and typi-
cally referred to as a negative sample. Though reminiscent
of past ideas — e.g. kernel learning, metric learning, co-
training (Cortes et al., 2010; Bellet et al., 2013; Blum &
Mitchell, 1998) — these algorithms lack a theoretical frame-
work quantifying when and why they work. While it seems
intuitive that minimizing such loss functions should lead
to representations that capture ‘similarity,” formally it is
unclear why the learned representations should do well on
downstream linear classification tasks — their somewhat
mysterious success is often treated as an obvious conse-
quence. To analyze this success, a framework must connect
‘similarity’ in unlabeled data with the semantic information
that is implicitly present in downstream tasks.

We propose the term Contrastive Learning for such methods
and provide a new conceptual framework with minimal
assumptions'. Our main contributions are the following:

!The alternative would be to make assumptions about genera-
tive models of data. This is difficult for images and text.
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1. We formalize the notion of semantic similarity by in-
troducing latent classes. Similar pairs are assumed to
be drawn from the same latent class. A downstream
task is comprised of a subset of these latent classes.

2. Under this formalization, we prove that a representa-
tion function f learned from a function class F by con-
trastive learning has low average linear classification
loss if F contains a function with low unsupervised
loss. Additionally, we show a generalization bound for
contrastive learning that depends on the Rademacher
complexity of F. After highlighting inherent limita-
tions of negative sampling, we show sufficient proper-
ties of F which allow us to overcome these limitations.

3. Using insights from the above framework, we provide
a novel extension of the algorithm that can leverage
larger blocks of similar points than pairs, has better
theoretical guarantees, and performs better in practice.

Ideally, one would like to show that contrastive learning al-
ways gives representations that compete with those learned
from the same function class with plentiful labeled data.
Our formal framework allows a rigorous study of such ques-
tions: we show a simple counterexample that prevents such
a blanket statement without further assumptions. However,
if the representations are well-concentrated and the mean
classifier (Definition 2.1) has good performance, we can
show a weaker version of the ideal result (Corollary 5.1.1).
Sections 2 and 3 give an overview of the framework and the
results, and subsequent sections deal with the analysis. Re-
lated work is discussed in Section 7 and Section 8 describes
experimental verification and support for our framework.

2. Framework for Contrastive Learning

We first set up notation and describe the framework for
unlabeled data and classification tasks that will be essential
for our analysis. Let X’ denote the set of all possible data
points. Contrastive learning assumes access to similar data
in the form of pairs (z,z ") that come from a distribution
Dyim as well as k i.i.d. negative samples x7 , x5, ...,z
from a distribution D,,, that are presumably unrelated to x.
Learning is done over F, a class of representation functions
f: X — R% such that || f()|| < R for some R > 0.

Latent Classes

To formalize the notion of semantically similar pairs
(z,x7), we introduce the concept of latent classes.

Let C denote the set of all latent classes. Associated with
each class c € C is a probability distribution D over X .

Roughly, D.(z) captures how relevant x is to class c¢. For
example, X could be natural images and c the class “dog”
whose associated D, assigns high probability to images

containing dogs and low/zero probabilities to other images.
Classes can overlap arbitrarily.> Finally, we assume a distri-
bution p over the classes that characterizes how these classes
naturally occur in the unlabeled data. Note that we make no
assumption about the functional form of D, or p.

Semantic Similarity

To formalize similarity, we assume similar data points x, z+
are i.i.d. draws from the same class distribution D,. for some
class ¢ picked randomly according to measure p. Negative
samples are drawn from the marginal of Dy, :

Dsim('r7$+) = E Dc(l’)Dc($+> (1)
en~p
IDneg(xi) = CINEp ,Dc(xi) (2)

Since classes are allowed to overlap and/or be fine-grained,
this is a plausible formalization of “similarity.” As the iden-
tity of the class in not revealed, we call it unlabeled data.
Currently empirical works heuristically identify such similar
pairs from co-occurring image or text data.

Supervised Tasks

We now characterize the tasks that a representation function
f will be tested on. A (k + 1)-way® supervised task 7~
consists of distinct classes {cy, ..., cx+1} C C. The labeled
dataset for the task 7 consists of m i.i.d. draws from the
following process:

A label ¢ € {cy, ..., cr41} is picked according to a distribu-
tion D. Then, a sample x is drawn from D.. Together they
form a labeled pair (x, ¢) with distribution

Dy (x,¢) = D.(z)D7(c) 3)

A key subtlety in this formulation is that the classes in
downstream tasks and their associated data distributions D,,
are the same as in the unlabeled data. This provides a path to
formalizing how capturing similarity in unlabeled data can
lead to quantitative guarantees on downstream tasks. D7 is
assumed to be uniform* for theorems in the main paper.

Evaluation Metric for Representations

The quality of the representation function f is evaluated
by its performance on a multi-class classification task 7
using linear classification. For this subsection, we fix a
task 7 = {c1, ..., ck+1}- A multi-class classifier for 7 is
a function g : X — R**! whose output coordinates are
indexed by the classes c in task 7T .

The loss incurred by g on point (z,y) € X x T is defined

% An image of a dog by a tree can appear in both Doy & Dirce.
3We use k as the number of negative samples later.
*We state and prove the general case in the Appendix.
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as {({g(x)y — g(x)y }yy), which is a function of a k-
dimensional vector of differences in the coordinates. The
two losses we will consider in this work are the standard
hinge loss ¢(v) = max{0, 1+max;{—wv;}} and the logistic
loss £(v) = log, (1 + >, exp(—v;)) for v € R¥. Then the
supervised loss of the classifier g is

Lsup(Ta g) = E [g({g(l')c - g(m)c’}c/yéc)]

(z,c)~DT

To use a representation function f with a linear classifier,
a matrix W € RF+D*4 g trained and g(z) = W f(z) is
used to evaluate classification loss on tasks. Since the best
W can be found by fixing f and training a linear classifier,
we abuse notation and define the supervised loss of f on T
to be the loss when the best I is chosen for f:

Lsup(Ta f) = lnf Lsup(Ta Wf) (4)

WE]R(’“*UX‘{

Crucial to our results and experiments will be a specific W
where the rows are the means of the representations of each
class which we define below.

Definition 2.1 (Mean Classifier). For a function f and task
T = (c1,...,Ckt1), the mean classifier is W whose cth
row is the mean L. of representations of inputs with label c:

pe = E_[f(z)]. Weuse LY, (T, f) = Loup(T,WHf)

r~Le

as shorthand for its loss.

Since contrastive learning has access to data with latent
class distribution p, it is natural to have better guarantees
for tasks involving classes that have higher probability in p.

Definition 2.2 (Average Supervised Loss). Average loss for
a function f on (k + 1)-way tasks is defined as
Lsup(f) = E [ sup({cz k+1 ) | ci # CJ}

{ea i ~phtt

The average supervised loss of its mean classifier is

qup(f) = E [ 5up({cl}k+1 ) | & 7& CJJ

k+1
{Ci}';,:+1 ""Pk+

Contrastive Learning Algorithm

We describe the training objective for contrastive learning:
the choice of loss function is dictated by the ¢ used in
the supervised evaluation, and k denotes number of neg-
ative samples used for training. Let (z,27) ~ Dgim,
(X1, .y ) ~ DF _ as defined in Equations (1) and (2).

Definition 2.3 (Unsupervised Loss). The population loss is

neg

_ k
Lun(f) =E [( (/@) (7"~ fa)}Y,) ] ®
and its empirical counterpart with M samples
(x],xj,le,. . jk)J L from Dipn, x DF is

Funl) = = 300 (017 (1)~ 7))

(6)

Note that, by the assumptions of the framework described
above, we can now express the unsupervised loss as

The algorithm to learn a representatlon function from F is
to find a function f € argmingc Lun (f) that minimizes

the empirical unsupervised loss. This function fcan be
subsequently used for supervised linear classification tasks.
In the following section we proceed to give an overview of
our results that stem from this framework.

3. Overview of Analysis and Results

What can one provably say about the performance of f?
As a first step we show that L,, is like a “surrogate” for
Lup by showing that Ly, (f) < oLy, (f),Vf € F, sug-
gesting that minimizing L., makes sense. This lets us
show a bound on the supervised performance Lsup(f) of
the representation learned by the algorithm. For instance,
when training with one negative sample, the performance on
average binary classification has the following guarantee:

Theorem 4.1 (Informal binary version).

~

Louwp(f) < aLyn(f)+nGeny +6  VfeF

where o, m, 6 are constants depending on the distribution
pand Genpyr — 0as M — oo. When p is uniform and
|C| — oo, we have that a,7 — 1, § — 0.

At first glance, this bound seems to offer a somewhat com-
plete picture: When the number of classes is large, if the
unsupervised loss can be made small by F, then the super-
vised loss of f, learned using finite samples, is small.

While encouraging, this result still leaves open the question:
Can Ly, (f) indeed be made small on reasonable datasets
using function classes F of interest, even though the similar
pair and negative sample can come from the same latent
class? We shed light on this by upper-bounding L., (f) by
two components: (a) the loss L7, (f) for the case where the
positive and negative samples are from different classes; (b)
a notion of deviation s(f), within each class.

Theorem 4.5 (Informal binary version).

Louwp(f) < LZ,(f) + Bs(f) + 1 Genny  VfeF

for constants (3,1 that depend on the distribution p. Again,
when p is uniform and |C| — oo we have § — 0,7 — 1.

This bound lets us infer the following: if the class F is rich

W (f)+Bs(f)is

enough to contain a function f for which L7,
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low, then [ has high supervised performance. Both L7.(f)
and s(f) can potentially be made small for rich enough F.

Ideally, however, one would want to show that fcan com-
pete on classification tasks with every f € F

Lsup(f) < aLsup(f) +n Genpyr (1)
Unfortunately, we show in Section 5.1 that the algorithm
can pick something far from the optimal f. However, we
extend Theorem 4.5 to a bound similar to (7) (where the
classification is done using the mean classifier) under as-
sumptions about the intraclass concentration of f and about
its mean classifier having high margin.

(Ideal Result):

Sections 6.1 and 6.2 extend our results to the more compli-
cated setting where the algorithm uses k negative samples
(5) and note an interesting behavior: increasing the num-
ber of negative samples beyond a threshold can hurt the
performance. In Section 6.3 we show a novel extension of
the algorithm that utilizes larger blocks of similar points.
Finally, we describe experiments in Section 8§ and Appendix
D to validate components of our framework and corrobo-
rate our suspicion that the mean classifier of representations
learned using labeled data has good classification perfor-
mance.

4. Guaranteed Average Binary Classification

To provide the main insights, we prove the algorithm’s guar-
antee when we use only 1 negative sample (kK = 1). For
this section, let Ly, (f) and L%, (f) be as in Definition
2.2 for binary tasks. We will refer to the two classes in the
supervised task as well as the unsupervised loss as ¢, c™.
Let S = {z;, acj', z; évil be our training set sampled from
the distribution Dy;y, X Dpey and f € arg min ez Ly (f).

4.1. Upper Bound using Unsupervised Loss

— + - 3dM
Let fls = (ft(x]), ft(fE] ), ft(fﬂ] ))jG[IW],tG[d] e R be
the restriction on S for any f € F. Then, the statistical
complexity measure relevant to the estimation of the repre-
sentations is the following Rademacher average

Rs(F) = [sup (o, fis)]
o~{£1}3dM peF

Lett = E 1{c = ¢’} bethe probability that two classes

c,c'~ P2
sampled independently from p are the same.

Theorem 4.1. With probability at least 1 — 6, forall f € F

i 1
K < _ -
Lsup(f) = (1 _7_) (Lun(f) T) + (1 _T)GenM
where
_ Rs(F) 5 [log 5
Genyy =0 | R R

Remark. The complexity measure Rs(F) is tightly related
to the labeled sample complexity of the classification tasks.
For the function class G = {w? f(")|f € F, |w| < 1}
that one would use to solve a binary task from scratch using
labeled data, it can be shown that Rs(F) < dRs(G),
where Rs(G) is the usual Rademacher complexity of G on
S (Definition 3.1 from (Mohri et al., 2018)).

We state two key lemmas needed to prove the theorem.

Lemma 4.2. With probability at least 1 — 6 over the training
setS, forall f € F

We prove Lemma 4.2 in Appendix A.3.
Lemma 4.3. Forall f € F

1

L§ (f)ﬁm

sup

(Lun(f) - T)

Proof. The key idea in the proof is the use of Jensen’s in-
equality. Unlike the unsupervised loss which uses a random
point from a class as a classifier, using the mean of the
class as the classifier should only make the loss lower. Let

e = E f(z) be the mean of the class c.
Lulf)= B [UE@TUE - )
T ~Dyeg
=@ g E  [(f@)"(f=) = f7)))]

cte” ~p? x+~DC+

w~Det =D, _

Z(b) E E [g(f(l')T(#c‘*' - /f“c_))]

oo mop? oDy

=9 (1-7) E (et e Dlet # T+ 7

ct,em~p

= (L= )L (1) + 7

where (a) follows from the definitions in (1) and (2), (b)
follows from the convexity of  and Jensen’s inequality by
taking the expectation over 21, 2~ inside the function, (c)
follows by splitting the expectation into the cases ¢ = ¢~
and ¢™ # ¢~, from symmetry in ¢ and ¢~ in sampling
and since classes in tasks are uniformly distributed (general
distributions are handled in Appendix B.1). Rearranging
terms completes the proof. [

Proof of Theorem 4.1. The result follows directly by apply-
ing Lemma 4.3 for f and finishing up with Lemma 4.2. [

One could argue that if F is rich enough such that L,,,, can
be made small, then Theorem 4.1 suffices. However, in the
next section we explain that unless 7 < 1, this may not
always be possible and we show one way to alleviate this.
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4.2. Price of Negative Sampling: Class Collision

Note first that the unsupervised loss can be decomposed as

where L7, (f) is the loss suffered when the similar pair and

the negative sample come from different classes.

L7 (f)

and L7, (f) is when they come from the same class. Let v
be a distribution over C with v(c) o p?(c), then

Ln= E (U@ () - 1)
a:,w+,a:_~D§
> E [Uf(@)" (g — pe))] =1

c~v,e~De

by Jensen’s inequality again, which implies L, (f) > 7. In
general, without any further assumptions on f, L., (f) can
be far from 7, rendering the bound in Theorem 4.1 useless.
However, as we will show, the magnitude of L7, (f) can
be controlled by the intraclass deviation of f. Let X(f,c)
the covariance matrix of f(z) when z ~ D.. We define a
notion of intraclass deviation as follows:

()= & |[VEGIR E If@I]  ©
Lemma 4.4. Forall f € F,

Lin(f) =1 < s(f)
where ¢ is a positive constant.

We prove Lemma 4.4 in Appendix A.1. Theorem 4.1 com-
bined with Equation (8) and Lemma 4.4 gives the following
result.

Theorem 4.5. With probability at least 1 — §,Vf € F

~ ~

1

1= and ' is a constant.

where B = c' 17—, 1 =
The above bound highlights two sufficient properties of the
function class for unsupervised learning to work: when the
function class F is rich enough to contain some f with low
Bs(f) as well as low L7, (f) then £, the empirical mini-
mizer of the unsupervised loss — learned using sufficiently
large number of samples — will have good performance on
supervised tasks (low Lsup(f)).

5. Towards Competitive Guarantees

We provide intuition and counter-examples for why con-
trastive learning does not always pick the best supervised
representation f € F and show how our bound captures
these. Under additional assumptions, we show a competitive
bound where classification is done using the mean classifier.

5.1. Limitations of contrastive learning

The bound provided in Theorem 4.5 might not appear as the
most natural guarantee for the algorithm. Ideally one would
like to show a bound like the following: for all f € F,

o~

(Ideal 1):  Lgyup(f) < aLsup(f) +n Genn (10)

for constants «, 7 and generalization error Genys. This
guarantees that fis competitive against the best f on the
average binary classification task. However, the bound we
prove has the following form: for all f € F,

L2 (F) < aLZ (f) + Bs(f) +n Genar

To show that this discrepancy is not an artifact of our anal-
ysis but rather stems from limitations of the algorithm, we
present two examples in Figure 1. Our bound appropriately
captures these two issues individually owing to the large
values of L7, (f) or s(f) in each case, for the optimal f.

In Figure 1a, we see that there is a direction on which f;
can be projected to perfectly separate the classes. Since the
algorithm takes inner products between the representations,
it inevitably considers the spurious components along the
orthogonal directions. This issue manifests in our bound as
the term L7, (f1) being high even when s(f;) = 0. Hence,
contrastive learning will not always work when the only
guarantee we have is that / can make L, small.

This should not be too surprising, since we show a relatively

strong guarantee —a bound on L%, , for the mean classifier

of f This suggests a natural stronger assumption that F
can make L, , small (which is observed experimentally in
Appendix D for function classes of interest) and raises the
question of showing a bound that looks like the following:
forall f € F,

~

(Ideal 2): LY, (f) < alk,,(f) +nGeny (11)

without accounting for any intraclass deviation — recall that
s(f) captures a notion of this deviation in our bound. How-
ever this is not true: high intraclass deviation may not imply
high L%, (f), but can make L, (f) (and thus L, (f))
high, resulting in the failure of the algorithm. Consequently,
the term s( f) also increases while L7,, does not necessarily
have to. This issue, apparent in Figure 1b, shows that a guar-

antee like (11) cannot be shown without further assumptions.
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(—1,2r) r
1
Lry
-1
—r
(a) Mean is bad (b) High intraclass variance

Figure 1. In both examples we have uniform distribution over
classes C = {c1,c2}, blue and red points are in c1 and cz re-
spectively and D, is uniform over the points of c;. In the first
figure we have one point per class, while in the second we have
two points per class. Let F = { fo, f1} where fo maps all points
to (0,0) and fi is defined in the figure. In both cases, using the
hinge loss, Lsup(fi1) =0, Lsup(fo) = 1 and in the second case
L%, (f1) = 0. However, in both examples the algorithm will pick
fo since Lun(fo) = 1 but Lun(f1) = Q(rz).

5.2. Competitive Bound via Intraclass Concentration

We saw that L*

Sup( f) being small does not imply low
LE,,(f), if f is not concentrated within the classes. In
this section we show that when there is an f that has intra-
class concentration in a strong sense (sub-Gaussianity) and
can separate classes with high margin (on average) with the

mean classifier, then L¥ _(f) will be low.

sup
Let £y(x) = (1 — £)+ be the hinge loss with margin ~ and
LE ., (f) be LE, (f) with the loss function .,.

Lemma 5.1. For f € F, if the random variable f(X),
where X ~ D., is o?-sub-Gaussian in every direction for

every class c and has maximum norm R = maz e x || f(x)
then for all € > 0,

5

# 7
Lun(f) < ’yLl 7sup(f) +e
where v = 1+ ¢/ Roy/log % and ¢’ is some constant,

The proof of Lemma 5.1 is provided in the Appendix A.2.
Using Lemma 5.1 and Theorem 4.5, we get the following:

Corollary 5.1.1. For all ¢ > 0, with probability at least
1—06, forall f € F,

L2y (F) S ALE ) () + BS(f) + nGenns + €
where «y(f) is as defined in Lemma 5.1, B = 1,
n = 1= and c is a constant.

6. Utilizing Multiple Negative Samples and

Block Similarity

In this section we explore two extensions to our analysis.
First, in Section 6.1, inspired by empirical works like Lo-

geswaran & Lee (2018) that often use more than one nega-
tive sample for every similar pair, we show provable guar-
antees for this case by careful handling of class collision.
Additionally, in Section 6.2 we show simple examples where
increasing negative samples beyond a certain threshold can
hurt contrastive learning. Second, in Section 6.3, we ex-
plore a modified algorithm that leverages access to blocks
of similar data, rather than just pairs and show that it has
stronger guarantees as well as performs better in practice.

6.1. Guarantees for k. Negative Samples

Here the algorithm utilizes k negative samples x| , ..., T,
drawn i.i.d. from D,,., for every positive sample pair z, 2"
drawn from Dg;,, elnd minimizes (6). As in Section 4, we
prove a bound for f of the following form:

Theorem 6.1. (Informal version) For all f € F

o~ ~

Louwp(f) < LY, () < aLl, (f) + Bs(f) +n Geny

where L7, (f) and Gen are extensions of the correspond-
ing terms from Section 4 and s(f) remains unchanged. The
formal statement of the theorem and its proof appears in
Appendix B.1. The key differences from Theorem 4.5 are 3
and the distribution of tasks in L., that we describe below.
The coefficient B of s(f) increases with k, e.g. when p is
uniform and k < |C|, 8 ~ %

The average supervised loss that we bound is
L‘;up(f) = TI~ED [Lsup(Tv f)}

where D is a distribution over tasks, defined as follows:
sample k + 1 classes ¢™, ¢y, ..., cp ~ Pkt conditioned
on the event that ¢ does not also appear as a negative
sample. Then, set 7 to be the set of distinct classes in

{et,er, e ). L8, (f) is defined by using L2, (T, f).

Remark. Bounding L., (f) directly gives a bound for

~

average (k + 1)-wise classification loss L, (f) from Def-

o~

inition 2.2, since Lsup(f) < Lsup(f)/p, where p is the
probability that the k + 1 sampled classes are distinct. For
k < |C| and p == uniform, these metrics are almost equal.

We also extend our competitive bound from Section 5.2 for
the above f in Appendix B.2.

6.2. Effect of Excessive Negative Sampling

The standard belief is that increasing the number of negative
samples always helps, at the cost of increased computational
costs. In fact for Noise Contrastive Estimation (NCE) (Gut-
mann & Hyvirinen, 2010), which is invoked to explain the
success of negative sampling, increasing negative samples
has shown to provably improve the asymptotic variance of
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the learned parameters. However, we find that such a phe-
nomenon does not always hold for contrastive learning —
larger k can hurt performance for the same inherent reasons
highlighted in Section 5.1, as we illustrate next.

When p is close to uniform and the number of negative
samples is k = Q(|C|), frequent class collisions can prevent
the unsupervised algorithm from learning the representation
f € F that is optimal for the supervised problem. In this
case, owing to the contribution of s(f) being high, a large
number of negative samples could hurt. This problem, in
fact, can arise even when the number of negative samples
is much smaller than the number of classes. For instance,
if the best representation function f € F groups classes
into ¢ “clusters”,’ such that f cannot contrast well between
classes from the same cluster, then L7, will contribute to
the unsupervised loss being high even when k = Q(t).
We illustrate, by examples, how these issues can lead to
picking suboptimal fin Appendix C. Experimental results
in Figures D.1a and D.1b also suggest that larger negative
samples hurt performance beyond a threshold, confirming
our suspicions.

6.3. Blocks of Similar Points

Often a dataset consists of blocks of similar data instead
of just pairs: a block consists of g, x1, . .. zp that are i.i.d.
draws from a class distribution D, for a class ¢ ~ p. In
text, for instance, paragraphs can be thought of as a block
of sentences sampled from the same latent class. How can
an algorithm leverage this additional structure?

We propose an algorithm that uses two blocks: one for
positive samples z, 2, ..., z; that are i.i.d. samples from
¢t ~ p and another one of negative samples z , ...z, that
are i.i.d. samples from ¢~ ~ p. Our proposed algorithm
then minimizes the following loss:

Lblock (f) —

un

E {e (f(x)T (Ei fb(wm By fb<x;>m (12)

This is reminiscent of the average of embeddings used in
word2vec, where blocks correspond to windows of consec-
utive words. To understand why this loss function make
sense, recall that the connection between Lf;up and L,,, was
made in Lemma 4.3 by applying Jensen’s inequality. Thus,
the algorithm that uses the average of the positive and nega-
tive samples in blocks as a proxy for the classifier instead of
just one point each should have a strictly better bound owing
to the Jensen’s inequality getting tighter. We formalize this

intuition below. Let 7 be as defined in Section 4.

>This can happen when F is not rich enough.

Proposition 6.2. Vf € F

Lau(f) € —— (LH9%(f) - 7) <

—1l-7

1

1—71

(Lun(f) —7)

This bound tells us that Lzl,‘;c’“ is a better surrogate for Ly,
making it a more attractive choice than L,,, when larger
blocks are available®. The algorithm can be extended, anal-
ogously to Equation (5), to handle more than one negative
block. Experimentally we find that minimizing L2/¢* in-
stead of L,,,, can lead to better performance and our results
are summarized in Section 8.1. We defer the proof of Propo-

sition 6.2 to Appendix A.4.

7. Related Work

The contrastive learning framework is inspired by several
empirical works, some of which were mentioned in the
introduction. The use of co-occurring words as semanti-
cally similar points and negative sampling for learning word
embeddings was introduced in Mikolov et al. (2013). Sub-
sequently, similar ideas have been used by Logeswaran &
Lee (2018) and Pagliardini et al. (2018) for sentences rep-
resentations and by Wang & Gupta (2015) and Jean et al.
(2018) for images. Notably the sentence representations
learned by the quick thoughts (QT) method in Logeswaran
& Lee (2018) that we analyze has state-of-the-art results on
many text classification tasks. Previous attempts to explain
negative sampling (Dyer, 2014) use the idea of Noise Con-
trastive Estimation (NCE) (Gutmann & Hyvérinen, 2010)
by relying on the assumption that data distribution belongs
to some known parametric family and enables them to con-
sider a broader class of distributions for negative sampling.
Ranking-based NCE is similar to our loss function and is
analyzed in Ma & Collins (2018) using similar assumptions
to NCE. The mean classifier that appears in our guarantees
is of significance in meta-learning and is a core component
of ProtoNets (Snell et al., 2017). The N-pair loss in Sohn
(2016) is the same as our contrastive loss with multiple
negative samples.

Our data model for similarity is reminiscent of the one in
co-training (Blum & Mitchell, 1998). They assume access
to pairs of “views” with the same label that are conditionally
independent given the label. Our unlabeled data model can
be seen as a special case of theirs, where the two views have
the same conditional distributions. However, they addition-
ally assume access to some labeled data (semi-supervised),
while we learn representations using only unlabeled data,
which can be subsequently used for classification when la-
beled data is presented. Two-stage kernel learning (Cortes
et al., 2010; Kumar et al., 2012) is similar in this sense: in
the first stage, a positive linear combination of some base

SRigorous comparison of the generalization errors is left for
future work.
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kernels is learned and is then used for classification in the
second stage; they assume access to labels in both stages.
Similarity/metric learning (Bellet et al., 2012; 2013) learns
a linear feature map that gives low distance to similar points
and high to dissimilar. While they identify dissimilar pairs
using labels, due to lack of labels we resort to negative sam-
pling and pay the price of class collision. While these works
analyze linear function classes, we can handle arbitrarily
powerful representations. Learning of representations that
are broadly useful on a distribution of tasks is done in mul-
titask learning, specifically in the learning-to-learn model
(Maurer et al., 2016) but using labeled data.

s

Recently Hazan & Ma (2016) proposed “assumption-free’
methods for representation learning via MDL/compression
arguments, but do not obtain any guarantees comparable
to ours on downstream classification tasks. As noted by
Arora & Risteski (2017), this compression approach has to
preserve all input information (e.g. preserve every pixel of
the image) which seems suboptimal.

8. Experimental Results

We report experiments in text and vision domains support-
ing our theory. Since contrastive learning has already shown
to obtain state-of-the-art results on text classification by
quick thoughts (QT) in Logeswaran & Lee (2018), most of
our experiments are conducted to corroborate our theoret-
ical analysis. The controlled experiments are described in
Appendix D. We also show that our extension to similarity
blocks in Section 6.3 can improve QT on a real-world task.

Datasets: Two datasets were used in the controlled exper-
iments. (1) The CIFAR-100 dataset (Krizhevsky, 2009)
consisting of 32x32 images categorized into 100 classes
with a 50000/10000 train/test split. (2) Lacking an appropri-
ate NLP dataset with large number of classes, we create the
Wiki-3029 dataset, consisting of 3029 Wikipedia articles
as the classes and 200 sentences from each article as sam-
ples. The train/dev/test split is 70%/10%/20%. To test our
method on a more standard task, we also use the unsuper-
vised part of the IMDb review corpus (Maas et al., 2011),
which consists of 560K sentences from 50K movie reviews.
Representations trained using this corpus are evaluated on
the supervised IMDDb binary classification task, consisting of
training and testing set with 25K reviews each. For CIFAR-
100 and Wiki-3029, we simulate the data generation process
described in Section 2. Details are provided in Appendix D.

8.1. Effect of Block Size

As suggested in Section 6.3, a natural extension to the model
would be access to blocks of similar points. We refer to our
method of minimizing the loss in (12) as CURL for Con-
trastive Unsupervised Representation Learning and perform

Table 1. Effect of larger block size on representations. For CIFAR-
100 and WIKI-3029 we measure the average binary classification
accuracy. IMDB representations are tested on IMDB supervised
task. CURL is our large block size contrastive method, QT is the
algorithm from (Logeswaran & Lee, 2018). For larger block sizes,
QT uses all pairs within a block as similar pairs. We use the same
GRU architecture for both CURL and QT for a fair comparison.

DATASET | METHOD | b=2 b=5 b=10
CIFAR-100 CURL 88.1 89.6 89.7
WIKI-3029 CURL 96.6 97.5 97.7
IMDB ‘ CURL ‘ 89.2 89.6 89.7

QT 86.5 87.7 86.7

experiments on CIFAR-100, Wiki-3029, and IMDb. In Ta-
ble 1 we see that for CIFAR-100 and Wiki-3029, increasing
block size yields an improvement in classification accuracy.
For IMDb, as is evident in Table 1, using larger blocks
provides a clear benefit and the method does better than
QT, which has state-of-the-art performance on many tasks.
A thorough evaluation of CURL and its variants on other
unlabeled datasets is left for future work.

9. Conclusion

Contrastive learning methods have been empirically success-
ful at learning useful feature representations. We provide a
new conceptual framework for thinking about this form of
learning, which also allows us to formally treat issues such
as guarantees on the quality of the learned representations.
The framework gives fresh insights into what guarantees
are possible and impossible, and shapes the search for new
assumptions to add to the framework that allow tighter guar-
antees. The framework currently ignores issues of efficient
minimization of various loss functions, and instead studies
the interrelationships of their minimizers as well as sample
complexity requirements for training to generalize, while
clarifying what generalization means in this setting. Our
approach should be viewed as a first cut; possible exten-
sions include allowing tree structure — more generally met-
ric structure — among the latent classes. Connections to
meta-learning and transfer learning may arise.

We use experiments primarily to illustrate and support the
new framework. But one experiment on sentence embed-
dings already illustrates how fresh insights derived from our
framework can lead to improvements upon state-of-the-art
models in this active area. We hope that further progress
will follow, and that our theoretical insights will begin to
influence practice, including design of new heuristics to
identify semantically similar/dissimilar pairs.
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