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A Theoretial and Computational Framework for IsometryInvariant Reognition of Point Cloud DataFaundo M�emoli� Guillermo SapiroyAbstratPoint louds are one of the most primitive and fundamental manifold representations. Apopular soure of point louds are three dimensional shape aquisition devies suh as laser rangesanners. Another important �eld where point louds are found is in the representation of high-dimensional manifolds by samples. With the inreasing popularity and very broad appliationsof this soure of data, it is natural and important to work diretly with this representation,without having to go through the intermediate and sometimes impossible and distorting steps ofsurfae reonstrution. A geometri framework for omparing manifolds given by point loudsis presented in this paper. The underlying theory is based on Gromov-Hausdor� distanes,leading to isometry invariant and ompletely geometri omparisons. This theory is embeddedin a probabilisti setting as derived from random sampling of manifolds, and then ombined withresults on matries of pairwise geodesi distanes leading to a omputational implementationof the framework. The theoretial and omputational results here presented are omplementedwith experiments for real three dimensional shapes.
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1 IntrodutionPoint louds are one of the most primitive and fundamental manifold representations. One of themost popular soures of point louds are 3D shape1 aquisition devies, suh as laser range sanners,with appliations in geosiene, art (e.g., arhival), mediine (e.g., prohestetis), manufaturing(from ars to lothes), and seurity (e.g., fae reognition), among other disiplines. These sannersin general provide raw data in the form of (maybe noisy) unorganized point louds representingsurfae samples. With the inreasing popularity and very broad appliations of this soure of data,it is natural and important to work diretly with this representation, without having to go tothe intermediate step of �tting a surfae to it (step that an add omputational omplexity andintrodue errors). See for example [5, 14, 17, 20, 26, 36, 37, 44, 45℄ for a few of the reent workswith this type of data. Point louds an also be used as primitives for visualization, e.g., [6, 26, 48℄,as well as for editing [52℄.Another important �eld where point louds are found is in the representation of high-dimensionalmanifolds by samples (see for example [2, 30, 35, 49℄). This type of high-dimensional and generalo-dimension data appears in almost all disiplines, from omputational biology to image analysisto �nanial data. Due to the extremely high dimensionality in this ase, it is impossible to performmanifold reonstrution, and the tasks need to be performed diretly on the raw data, meaning thepoint loud.The importane of this type of shape representation is leading to an inrease in the fundamentalstudy of point louds, from its basi geometri harateristis suh as urvature [40℄ and intrinsidistanes and geodesis [39℄, to intrinsi dimensionality and topologial struture [2, 12, 15, 16, 21,49℄, and also inluding the detetion of partiular strutures [1℄ (see also the papers mentioned inthe �rst paragraph and referenes therein). The goal of this work, inspired in part by [18℄ and thetools developed in [39, 49℄, is to develop a theoretial and omputational framework to ompareshapes represented as point louds. We are then going to assume the existene of an underlyingstruture, whih belongs to a ertain lass of objets, from whih our point loud data are sampled.As we have mentioned, a variety of objets an be represented as point louds in IRd. Oneis often presented with the problem of deiding whether two of those point louds, and/or theirorresponding underlying objets or manifolds, represent the same geometri struture or not (objetreognition and lassi�ation). We are then onerned with questions about the underlying unknownstrutures (objets), whih need to be answered based on disrete measures taken between theirrespetive point louds. In greater generality, we may wonder what is the strutural informationwe an gather about the objet itself by exploring a point loud whih represents it.2Multidimensional saling (MDS), for example, has been used to partly approah this generalproblem of objet analysis/reognition, by means of heking whether the underlying spae (objet)is at or not, and also providing information about the objet's dimensionality (as a subset of IRd)and its projetion into a redued spae. Proedures based on MDS require that one �rst omputesthe interpoint distane matrix for all the members of the point loud (or for a representative seletedsub-set of them). If one is interested in omparing two di�erent objets, the problem is reduedto a omparison between the orresponding interpoint distane matries of their point louds. Ifthe distane we use is the Eulidean one, these matries only provide information about their rigidsimilarity, and (assuming the matries are of the same size) if they are equal (up to permutations1We will loosely use the terms shape/objet/surfae in this introdution to refer to either surfaes in spae orRiemannian manifolds in more generality. A more preise notion will be given later on.2A related important question is what onditions must a point verify in order to faithfully represent an objet,not to mention that one must de�ne faithfully. 2



of the indies of all elements),3 we an only onlude that there exists a rigid isometry (rotation,reetion, translation) from one point loud to the other. Under assumptions of ompatness wean also say something about the true underlying objets. Let's be more preise. Let the pointlouds Pi � Si be �i-overings of the ompat surfaes Si in IR3, for i = 1; 2 (this will be formallyde�ned below). Then assuming there exists a rigid isometry � : IR3 ! IR3 suh that �(P1) = P2,we an bound the Hausdor� distane (whih we will also formally de�ne below) between �(S1) andS2 as follows: dH(�(S1); S2) � dH(�(S1); �(P1)) + dH(�(P1);P2) + dH(P2; S2) (1)= dH(S1;P1) + dH(�(P1);P2) + dH(P2; S2)� �1 + 0 + �2And of ourse the same kind of bound holds for the Hausdor� distane between the point loudsone we assume the underlying ontinuous objets are rigidly isometri, see x2.1 below.One possible modi�ation would be onsidering, still for ompat surfaes, the intrinsi distaneinstead the Eulidean (extrinsi) one for the onstrution of the aforementioned interpoint distanematries. A omparison of these new distane matries would then allow for more freedom indeiding when two objets are similar sine now bends are allowed.If S1 and S2 happen to be isometri (here also allowing for bends and not only rigid transfor-mations) we wonder whether we will be able to detet this by looking at (�nite) point louds Pisampled from eah Si. This problem is harder to takle. We approah it through a probabilistimodel, sine in priniple there might exist even for the same objet, two di�erent samplings thatlook quite dissimilar (under disrete measures we an ope with omputationally), for arbitrarily�ne sales (see below).With the help of the theory here presented we reast these onsiderations in a rigorous frameworkand address the ase where the distanes onsidered to haraterize eah point loud (objet) aremore general. We onentrate on the ase when there exists an intrinsi notion of distane for eahobjet we sample. For the appliations of isometry invariant shape (surfaes) reognition, one musttherefore onsider the distane as measured by paths onstrained to travel on the surfae of theobjets, better referred to as geodesi distane. These ideas of using geodesi distanes have beenintrodued and used in [8, 18℄ for bending invariant reognition in 3D, e.g., artiulated objets (thetheoretial foundations here introdued provide a justi�ation of suh approah), and in [21, 49℄ todetet intrinsi surfae dimensionality.In this paper we introdue both a theoretial and omputational framework for the so alledisometry invariant shape reognition problem. The theory we use and build our framework uponis that pioneered by Gromov [24℄, in whih a metri is introdued in the spae of all (ompat)metri spaes. For the sake of generality we present most of the framework for metri spaes, butthe reader, at any moment, is invited to think of surfaes for simpliity. We will abuse terminologyin the following sense: Sine we are dealing both with metri spaes and �nite sets of samples fromthem, we are going to speak of ontinuous and disrete metri spaes. For instane, given a metrispae (X; d) we onsider a �nite subset of it, Xm � X whih we endow with the metri of X toonform a disrete metri spae, then X will be alled ontinuous. This is in analogy with thesampling of signals.3Boutin and Kemper, [7℄, have approahed the reognition problem for (disrete objets) by looking only atthe histogram of interpoint squared Eulidean distanes. Interestingly, they have onluded that while there areounterexamples for the reognition problem with this kind of representation, they onstitute a very small frationof all the possible point on�gurations. 3



The fundamental approah used for isometry invariant reognition in this paper is derived thenfrom the Gromov-Hausdor� distane, whih we now proeed to present. Suppose X and Y are two(objets) ompat subsets of a ommon bigger metri spae (Z; d), and we want to ompare X toY in order to deide whether they are/represent the same objet or not. Then, an idea that onemight ome up with very early on is that of omputing the Hausdor� distane between them (seefor example [13, 28℄ for an extensive use of this for shape statistis and image omparison):dZH(X;Y ) := max(supx2X d(x; Y ); supy2Y d(y;X))But, what happens if we want to allow for ertain deformations to our and still deide thatthe objets are the same? More preisely, we are interested in being able to �nd a distane betweenmetri spaes that is intrinsi to the objet and blind to isometri transformations (\bends"). Thiswill permit a truly geometri omparison between the manifolds, independently of their embeddingand bending position. Following [24℄, we introdue the Gromov-Hausdor� distane between MetriSpaes: dGH(X;Y ) := infZ;f;g dZH(X;Y )where f : X ! Z and g : Y ! Z are isometri embeddings (distane preserving) into the metrispae Z. It turns out that this measure of metri proximity between metri spaes is well suited forour problem at hand and will allow us to give a formal framework to address the isometri shapereognition problem (for point loud data). However, this notion of distane between metri spaesenodes the \metri" disparity between them, at �rst glane, in a omputationally impratial way.We derive below new results that onnet this notion of disparity with other more omputationallyappealing expressions.We have in mind spei� appliations and senarios suh as those desribed above, and inpartiular surfaes and submanifolds of some Eulidean spae IRd. We assume that we are givenas input points densely sampled from the metri spaes (surfaes, manifolds). This will manifestitself in many plaes in the theory desribed below. We will present a way of omputing a disreteapproximation (or bound) to dGH(; ) based on the metri information provided by these pointlouds.The problem of isometry invariant shape reognition at hand an be split in two parts. Firstly,suppose the metri spaes under onsideration happen to be isometri. We then have to guaranteethat we an disover this by looking at a omputable disrete measure of metri similarity basedjust on our observed data, that is, the point louds. Seondly, if that measure of (disrete) metrisimilarity is \small," what an we say about that metri similarity between the underlying metrispaes? Both parts are addressed in our work. One annot perform objet reognition withouteither of them.The rest of this paper is organized as follows: The basi theoretial foundations are given inSetion x2, Setion x3 presents the omputational foundations, Setion x4 on�rms the theory withreal examples, and �nally Setion x5 onludes the paper and desribes urrent e�orts and futurediretions.2 Theoretial FoundationsThis setion overs the fundamental theory behind the bending invariant reognition frameworkwe develop. We �rst introdue some basi notation, de�nitions, and lassial results. We use basi4



onepts of metri spaes, see for example [31℄ for a simple exposition of this.De�nition 1 (Metri Spae) A set M is a metri spae if for every pair of points x; y 2 Mthere is a well de�ned funtion dM (x; y) whose values are non-negative real numbers, suh that (a)dM (x; y) = 0 , x = y, and (b) dM (x; y) � dM (y; z) + dM (z; x) for any x; y and z 2 M . We alldM : M �M ! IR the metri or distane. For larity we will speify a metri spae as the pair(M;dM ).De�nition 2 (Covering) For a point x in the metri spae (X; dX ) and r > 0, we will denoteby BX(x; r) the set fz 2 Xj dX (x; z) < rg. For a subset A of X, we use the notation BX(A; r) =[a2ABX(a; r). We say that a set C � X is an R-overing of X if BX(C;R) = X. We will alsofrequently say that the set A is a n-overing of X if A onstitutes, for some r > 0, a overing of Xby n-balls with enters in points of A.De�nition 3 (Isometry) We say the metri spaes (X; dX ) and (Y; dY ) are isometri when thereexists a bijetive mapping � : X ! Y suh that dX(x1; x2) = dY (�(x1); �(x2)) for all x1; x2 2 X.Suh a � is an isometry between (X; dX ) and (Y; dY ).Next, we state some well known properties of the Gromov-Hausdor� distane dGH(; ) whih willbe useful for our presentation.Proposition 1 1. Let (X; dX ), (Y; dY ) and (Z; dZ) be metri spaes thendGH(X;Y ) � dGH(X;Z) + dGH(Z; Y ):2. If dGH(X;Y ) = 0 and (X; dX ), (Y; dY ) are ompat metri spaes, then (X; dX ) and (Y; dY )are isometri.3. Let fx1; : : : ; xng � X be a R-overing of the ompat metri spae (X; dX ).Then dGH(X; fx1; : : : ; xng) � R.4. For ompat metri spaes (X; dX ) and (Y; dY ):12 jrad (X)� rad (Y )j � dGH(X;Y ) � 12 max (diam (X) ;diam (Y ))where rad (X) := minx2X maxx02X dX(x; x0) and diam (X) := maxx;x02X dX(x; x0) stand forthe irumradius and diameter of the metri spae (X; dX ), respetively.5. For bounded metri spaes (X; dX ) and (Y; dY ),dGH(X;Y ) = inf� : X ! Y : Y ! X supx2X;y2Y 12 jdX(x;  (y)) � dY (y; �(x))jThe proofs of properties 1 to 4 an be gleaned from [9, 24, 27, 46℄, and property 5 an be found in[32℄. Also of great informative value is [47℄.Remark 1 Sine for ompat X, rad (X) 2 [diam(X)2 ;diam (X)℄, from property 4 it follows thattwo metri spaes whose diameters di�er a lot must be at a positive dGH(; ) distane, as intuitionrequires. 5



From these properties, we an also easily obtain the following important result:Corollary 1 Let X and Y be ompat metri spaes. Let moreover Xm be a r-overing of X(onsisting of m points) and Ym0 be a r0-overing of Y (onsisting of m0 points). ThenjdGH(X;Y )� dGH(Xm ;Ym0 )j � r + r0We an then say that if we ould ompute dGH(; ) for disrete metri spaes whih are denseenough samplings of the \ontinuous" underlying ones, that number would be a good approxi-mation to what happens between the ontinuous spaes. Currently, there is no omputationallyeÆient way to diretly ompute dGH(; ) between disrete metri spaes in general. This fores usto develop a roundabout path, see x2.2 ahead. Before going into the general ase, we disuss nextthe appliation of the ideas of our framework to a simpler but important ase.2.1 Intermezzo: The Case of Rigid IsometriesWhen we try to ompare two (ompat) subsets X and Y of a larger metri spae Z, the situationis a bit simpler. The measure of similarity boils down to a somewhat simpler Hausdor� distanebetween the sets (whih of ourse must take into aount self-isometries of Z). In more detail, onemust ompute dZ;rigidH (X;Y ) := inf� dZH(X;�(Y ))where � : Z ! Z ranges over all self-isometries of Z. If we knew an eÆient way of omputinginf� dZH(X;�(Y )), then this restrited shape reognition problem would be well posed for Z, inview of an adapted version of Proposition 1 and Corollary 1, as soon as we an give guarantees ofoverage. For the sake of ompleteness we state suh a result.Proposition 2 dZ;rigidH (�; �) satis�es the triangle inequality and in partiular, the following relationholds: ���dZ;rigidH (X;Y )� dZ;rigidH (Xm;Ym0 )��� � r + r0for ompat X;Y � Z suh that X � BZ(Xm ; r) and Y � BZ(Ym0 ; r0).Coverage an be guaranteed, in the ase of submanifolds of IRd, by imposing a probabilistimodel on the samplings Xm of the manifolds, and a bound on the urvatures of the family ofmanifolds one wishes to work with. In more detail, we an show thatP�dIRdH (X;Xm) > Æm� ' 1lnm as m " 1for Æm ? � lnmm �1=k, where k is the dimension of X, see Setion x3.3.In the ase of surfaes in Z = IR3, � sweeps all rigid isometries, and there exist good algorithmswhih an atually solve the problem approximately. For example, in [22℄ the authors report analgorithm whih for any given 0 < � < 1 an �nd a rigid transformation b�� suh thatdIR3H (Xm ; b��(Ym0 )) � (8 + �) inf� dIR3H (Xm;�(Ym0 ))6



with omplexity O(s4 log s) where s = max(m;m0). This omputational result, together with simpleonsiderations, makes the problem of surfae reognition (under rigid motions) well posed and welljusti�ed. In fat, using Proposition 2 we obtain a bound between the distane we want to estimatedIR3;rigidH (X;Y ) and the observable (omputable) value dIR3H (Xm; b��(Ym0 )):dIR3;rigidH (X;Y )� (r + r0) � dIR3H (Xm; b��(Ym0 )) � 10 � dIR3;rigidH (X;Y ) + (r + r0)� (2)Equation (2) gives a formal justi�ation to the proedure outlined for this surfae reognitionproblem. To the best of our knowledge, this is the �rst time suh formality is presented for this veryimportant problem, both in the partiular ase just shown and for the general one addressed next.In any ase, if dS is the measure of similarity between the ontinuous objets we are onsidering,and bdS is the omputable approximate measure of similarity between the disrete samples, the kindof relation we seek to establish isA(dS(X;Y )� �) � bdS(Xm;Ym0 ) � B(dS(X;Y ) + �) (3)for some onstants A;B and numbers � and � whih an be made small by re�ning the samplings.Moreover, it may happen that relation (3) holds with a ertain probability. This is exatly therelationship found above for the rigid ase and now extended for general isometries.2.2 The General CaseThe theory introdued by Gromov addresses the onept of metri approximation between metrispaes. When dealing with disrete metri spaes, as those arising from samplings or overings ofontinuous ones, it is onvenient to introdue another distane between them whih ultimately isthe one we ompute for point louds, see x3.6 ahead. For disrete metri spaes (both of ardinalityn) (X = fx1; : : : ; xng; dX) and (Y = fy1; : : : ; yng; dY) we de�ne the distane: 4dI(X;Y) := min�2Pn max1�i;j�n 12 jdX(xi; xj)� dY(y�i ; y�j )j (4)where Pn stands for the set of all n� n permutations of f1; : : : ; ng. A permutation � provides theorrespondene between the points in the sets, and jdX(xi; xj) � dY(y�i ; y�j )j gives the pointwisedistane/disparity one this orrespondene has been assumed.It is evident that one has, by virtue of property 5 from Proposition 1dGH(X;Y) � dI(X;Y) (5)Moreover, we easily derive the following, whose usefulness will be made evident in x3.Corollary 2 Let (X; dX ) and (Y; dY ) be ompat metri spaes. Let X = fx1; : : : ; xng � X andY = fy1; : : : ; yng � Y , suh that BX(X; RX ) = X and BY (Y; RY ) = Y (the point louds provideRX and RY overings respetively). ThendGH(X;Y ) � RX +RY + dI(X;Y) (6)with the understanding that dX = dX jX�X and dY = dY jY�Y.4One an easily hek that this is really a distane. 7



Remark 2 This result tells us that if we manage to �nd overings of X and Y for whih the distanedI is small, then if the radius radii those overings are also small, the underlying manifolds X andY sampled by these point louds must be lose in a metri sense. Another way of interpreting thisis that we will never see a small value of dI(X;Y) whenever dGH(X;Y ) is big, a simple statementwith pratial value, sine we will only be able to look at values of dI, whih depend on the pointlouds. This is beause, in ontrast with dGH(; ), the distane dI is (approximately) omputable fromthe point louds, see x3.6. We also need to bound dGH(X;Y ) with dI from below, as done next.We now introdue some additional notation regarding overings of metri spaes. Given a metrispae (X; dX ), the disrete subset N (R;s)X;n denotes a set of points fx1; : : : ; xng � X suh that (1)BX(N (R;s)X;n ; R) = X, and (2) dX(xi; xj) � s whenever i 6= j. In other words, the set onstitutes aR-overing and the points in the set are not too lose to eah other.Remark 3 For eah r > 0, denote by N(r;X) the minimum number of losed balls of radii rneeded to over X. Then, ([46℄, Chapter 10), we an atually show that the lass (M; dGH) of allompat metri spaes X whose overing number N(r;X) are bounded for all (small) positive r bya funtion N : (0; C1) ! (0;1) is totally bounded. This means that given � > 0, there exist a�nite positive integer k(�) and ompat metri spaes X1; : : : ;Xk(�) 2M suh that for any X 2Mone an �nd i 2 f1; : : : ; k(�)g suh that dGH(X;Xi) � �. This is very interesting from the pointof view of appliations sine it gives formal justi�ation to lassi�ation problem of metri spaes.For example, in a system of storage/retrieval of faes/information manifolds, this onept permitsthe design of a lustering proedure for the shapes.The following Proposition will also be fundamental for our omputational framework in x3.Proposition 3 ([24℄) Let (X; dX ) and (Y; dY ) be any pair of given ompat metri spaes and let� = dGH(X;Y ). Also, let N (R;s)X;n = fx1; : : : ; xng be given. Then, given � > 0 there exist pointsfy�1 ; : : : ; y�ng � Y suh that1. dI(N (R;s)X;n ; fy�1 ; : : : ; y�ng) � (� + �)2. BY (fy�1 ; : : : ; y�ng; R+ 2(� + �)) = Y3. dY (y�i ; y�j ) � s� 2(� + �) for i 6= j.Remark 4 This proposition tells us that if the metri spaes happen to be suÆiently lose ina metri sense, then given a s-separated overing on one of them, one an �nd a (s0-separated)overing in the other metri spae suh that dI between those overings (point louds) is also small.This, in onjuntion with Remark 2, proves that in fat our goal of trying to determine the metrisimilarity of metri spaes based on disrete observations of them is, so far, a (theoretially) wellposed problem.Sine by Tyhono�'s Theorem the n-fold produt spae Y � : : :�Y is ompat, if s�2� �  > 0for some positive onstant , by passing to the limit along the subsequenes of fy�1 ; : : : ; y�ngf�>0g (ifneeded) above one an assume the existene of a set of di�erent points f�y1; : : : ; �yng � Y suh thatdI(f�y1; : : : ; �yng; N (R;s)X;n ) � �, mini6=j dY (�yi; �yj) � s� 2� > 0, and BY (f�y1; : : : ; �yng; R+ 2�) = Y .
8



Sine we are only given �nite sets of points sampled from eah metri spae, the existene off�y1; : : : ; �yng guaranteed by Proposition 3 and Remark 4 doesn't seem to make our life a lot easiersine those points ould very well not be ontained in our given �nite datasets. The simple ideaof using a triangle inequality (with metri dI) to deal with this does not work in priniple, sineone an �nd, for the same underlying spae, two overing nets whose dI distane is not small, see[10, 38℄. Let us explain this in more detail. Assume that as input we are given two �nite sets ofpoints Xm and Ym on two metri spaes, X and Y respetively, whih we assume to be isometri.Then the results above ensure that for any given N (R;s)X;n � Xm there exists a N (R;s)Y;n � Y suhthat dI(N (R;s)X;n ; N (R;s)Y;n ) = 0. However, it is lear that this N (R;s)Y;n has no reason to be ontainedin the given point loud Ym. The obvious idea would be try to rely on some kind of property ofindependene on the sample representing a given metri spae, namely that for any two di�erentovering nets N1 and N2 (of the same ardinality and with small overing radii) of X the distanedI(N1; N2) is also small. If this were granted, we ould proeed as follows:dI(N (R;s)X;n ; N (R̂;ŝ)Y;n ) � dI(N (R;s)X;n ; N (R;s)Y;n ) + dI(N (R̂;ŝ)Y;n ; N (R;s)Y;n ) (7)= 0 + small(R; R̂)where small(R; R̂) is small number depending only on R and R̂. The property we fany to relyupon was onjetured by Gromov in [25℄ (see also [50℄) and disproved by Burago & Kleiner in[10℄ and M.Mullen in [38℄, see also [43℄ for ertain positive results. Their ounterexamples are forseparated overing nets in ZZ2. It is not known whether one an onstrut ounterexamples forompat metri spaes, or if there exists a haraterization of a family of n-points separated overingnets of a given ompat metri spae suh that any two of them are at a small dI-distane whih anbe somehow ontrolled with n. A �rst step towards this is the density ondition introdued in [11℄.If ounterexamples didn't exist for ompat metri spaes, then the above inequality wouldbe suÆient. Without assuming this, we give below an argument whih takles the problem in aprobabilisti way. In other words, we use a probabilisti approah to bound dI for two di�erentsamples from a given metri spae. For this, we pay the prie of assuming the existene of a measurewhih omes with our metri spae.5 On the other hand, probabilisti frameworks are natural for(maybe noisy) random samples of manifolds as obtained in real appliations.62.3 A Probabilisti Setting for Submanifolds of IRdWe now limit ourself to smooth submanifolds of IRd, although the work an be extended to moregeneral metri spaes, see further omments in x5. In what follows, for an event E, P (E) will denoteits probability and for a random variable X, E (X) will denote its expeted value.Let Z be a smooth and ompat submanifold of IRd with intrinsi (geodesi) distane funtiondZ(�; �). We an now speak more freely about points fzigmi=1 sampled uniformly fromX: We say thatthe random point bz is uniformly distributed on Z if for any measurable C � Z, P (bz 2 C) = a(C)a(Z) ,where a (B) denotes the area of the measurable set B � Z. This uniform probability measure5In the present report we therefore deal only with the ase of sub-manifolds of IRd.6In more generality, data are aquired by sensors or arrays of sensors whih return a value in IRd for somed � 1. The aquisition proess or the sensors themselves might be subjet to some perturbations (misalibrationsof mehanial parts of a 3D-sanner, eletri noise in eletrodes, et). Under the assumption of existene of anunderlying struture from whih the data are sampled, it therefore seems sensible to introdue a probability measurewhih models the aquisition proess. 9



an be replaed by other probability measures whih for example adapt to the geometry of theunderlying surfae, and the framework here developed an be extended to those as well.Let Z= fz1; : : : ; zng and Z0 = fz01; : : : ; z0ng be two disrete subsets of Z (two point louds). Forany permutation � 2 Pn and i; j 2 f1; : : : ; ng,jdZ(zi; zj)� dZ(z0�i ; z0�j )j � dZ(zi; z0�i) + dZ(zj ; z0�j )and therefore we have dZB(Z;Z0) := min�2Pnmaxk dZ(zk; z0�k) � dI(Z;Z0) (8)This is known as the Bottlenek Distane between Z and Z0, both being subsets of Z. This is onepossible way of measuring distane between two di�erent samples of the same metri spae.7Instead of dealing with (7) deterministially, after imposing onditions on the underlying metrispaes X and Y , we derive probabilisti bounds for the left hand side. We also make evident thatby suitable hoies of the relations among the di�erent parameters (suh as overage radius andseparation), this probability an be hosen at will. This result is then used to bound the distanedI between two point loud samples of a given metri spae, thereby leading to the type of boundexpressed in Equation (7) and from this, the bounds on the original Gromov-Hausdor� distanebetween the underlying objets.We introdue the Voronoi diagram V(Z) on Z, determined by the points in Z (see for example[34℄). The i-th Voronoi ell of the Voronoi diagram de�ned by fz1; : : : ; zng � Z is given byAi := fz 2 Zj dZ(zi; z) < minj 6=i dZ(zj ; z)g (9)We then have Z = Fnk=1Ak.Lemma 1 1. If the points fz1; : : : ; zng are s-separated, then for any 1 � i � n, BZ(zi; s2) � Ai.2. If the points fz1; : : : ; zng onstitute a R-overing of Z, then Ai � BZ(zi; R) for all i = 1; : : : ; n.Proof:To prove 1: �rst note that for any z 2 Z and i 6= j, dZ(z; zi) + dZ(z; zj) � s by the triangle inequality.Assume in partiular that z 2 BZ(zi; s2 ), then dZ(z; zi) < s2 and dZ(z; zj) > s2 for all j 6= i, then z 2 Ai. Toprove 2: assume z 2 Ai but z =2 BZ(zi; R), that is dZ(z; zi) � R. But sine fz1; : : : ; zng is a R-overing ofZ, z must belong to a ertain BZ(xk ; R) for some k 6= i, that is dZ(z; zk) < R. But then z is loser to zkthan to zi, whih ontradits z 2 Ai. �We onsider Z to be �xed, and we assume Z0 = fz01; : : : ; z0ng to be hosen from a set Zm � Zonsisting of m� n i.i.d. points sampled uniformly from Z.We �rst want to �nd, amongst points in Zm, n di�erent points fzi1 ; : : : ; zing suh that eahof them belongs to one Voronoi ell, fzik 2 Ak for k = 1; : : : ; ng. We provide lower bounds forP (# (Ak \ Zm) � 1; 1 � k � n), the probability of this happening.We an see the event as if we olleted points inside all the Voronoi ells, a ase of the CouponColleting Problem, see [19℄. We buy merhandise at a oupons-giving store until we have olletedall possible types of oupons. The next Lemma presents the basi results we need about thisonept. These results are due to Von Shilling ([51℄) and Borwein and Hijab ([4℄).7In [43℄, this distane is used to establish the equivalene (aording to this notion) of separated nets in ertainHyperboli metri spaes. 10



Lemma 2 (Coupon Colleting) If there are n di�erent oupons one wishes to ollet, suh thatthe probability of seeing the k-th oupon is pk 2 (0; 1), (let ~p = (p1; : : : ; pn)), and one obtainssamples of all of them in an independent way then:1. ([51℄) The probability P~p(n;m) of having olleted all n oupons after m trials is given byP~p(n;m) = 1� Sn0� nXj=2(�1)j 0� nXk=j pk1Am1A (10)where the symbol Sn means that we onsider all possible ombinations of the n indies in theexpression being evaluated.82. ([4℄) The expeted value of the number of trials needed to ollet all the oupons is given byE~p(n) = E�max1�i�n Xipi � (11)where Xi are independent positive random variables satisfying P (Xi > t) = e�t for t � 0 and1 � i � n.For n 2 N let hn :=Pni=1 i�1.Corollary 3 P~p(n;m) � 1� hnm�mink pk .Proof:By Markov's inequality, 1�P~p(n;m) � E~p(n)m . Now, note that E~p(n) is dereasing in eah pk for pk � 0, thenit is lear that E~p(n) � E~1(n)mink pk . On the other hand, it is easy to ompute by diret probabilisti alulationthat E~1n (n) = nhn. We onlude by noting that, by (11), E~p(n) = E~p(n) for any  > 0. �We now diretly use these results to bound the bottlenek distane.Theorem 1 Let (Z; dZ) be a smooth ompat submanifold of IRd. Given a overing N (R;s)Z;n of Zwith separation s > 0 and a number p 2 (0; 1), there exists a positive integer m = mn(p) suh thatif Zm = fzkgmk=1 is a sequene of i:i:d: points sampled uniformly from Z, with probability p one an�nd a set of n di�erent indies fi1; : : : ; ing � f1; : : : ;mg withdZB(N (R;s)Z;n ; fzi1 ; : : : ; zing) � R and Z = n[k=1BZ(zik ; 2R):Moreover, mn(p) � � hnminz a(BZ(z; s2 )) a(Z)1�p �+ 1.9This result an also be seen the other way around: For a given m, the probability of �nding theaforementioned subset in Zm is P~pZ (n;m) as given by (10), for suitably de�ned ~pZ . The preiseform of ~pZ an be understood from the proof.Proof:Let N (R;s)Z;n = fbz1; : : : ; bzng. We onsider the oupon olleting problem in whih the k-th oupon has been8For example S3((p1 + p2)k) = (p1 + p2)k + (p1 + p3)k + (p2 + p3)k.9For real x, [x℄ stands for the largest integer not greater that x.11



aquired at least one if #fZm\Akg � 1, where Ak is the k-th ell of the Voronoi partition orresponding tothe overing net N (R;s)Z;n . The omponents of the probability vetor ~p are given by pk = a(Ak)a(Z) for k = 1; : : : ; n.Using the fat that (10) is inreasing in the number of trials m,10 we see that given p we an �nd a positiveinteger M suh that for m �M P n\k=1 f#fZm\ Akg � 1g! � pDisarding points when more than one has been found inside the same Ak, we an obtain with probability atleast p, exatly one point inside eah Ak. Let i1; : : : ; in be indies suh that zik 2 Ak for k = 1; : : : ; n. ThendZB(fzi1 ; : : : ; zing; N (R;s)Z;n ) � maxz2 �Ak dZ(z; bzk), sine by Lemma 1, Ak � BZ(bzk; R), and this onludes theproof of the �rst laim. Also, by the very same steps plus the triangle inequality we prove that fzi1 ; : : : ; zingonstitutes a 2R-overing of Z. Finally, note that by Corollary 3, P~p(n;m) � p for m � hn(1�p)mink pk . Sineagain by Lemma 1, a (Ak) � minz2Z a �BZ(z; s2 )�, the last laim follows. �Corollary 4 Let X and Y ompat submanifolds of IRd. Let N (R;s)X;n be a overing of X withseparation s suh that for some positive onstant , s� 2dGH(X;Y ) > . Then, given any numberp 2 (0; 1), there exists a positive integer m = mn(p) suh that if Ym = fykgmk=1 is a sequene ofi:i:d: points sampled uniformly from Y , we an �nd, with probability at least p, a set of n di�erentindies fi1; : : : ; ing � f1; : : : ;mg suh thatdI(N (R;s)X;n ; fyi1 ; : : : ; ying) � 3 dGH(X;Y ) +R and Y = n[k=1BY (yik ; 2(R + 2dGH(X;Y ))):Moreover, mn(p) � � hnminy a(BY (y; 2 )) a(Y )1�p �+ 1.Proof:Let � = dGH(X;Y ). Following Remark 4, we an �nd a (R + 2�; s� 2�) n-overing of Y , whih we denoteby N ( ~R;~s)Y;n , suh that dI(N (R;s)X;n ; N ( ~R;~s)Y;n ) � �. Let, as in Theorem 1, m = mn(p) be suh that for any i:i:d: setof points Ym = fy1; : : : ; ymg uniformly sampled from Y one hasP�9 fyi1 ; : : : ; ying � Ym : dYB �N ( ~R;~s)Y;n ; fyi1 ; : : : ; ying� � ~R� � pwhere i1; : : : ; in are di�erent indies. Let NY;n � Y be a set of n di�erent points. Then, using the triangleinequality dI(N (R;s)X;n ; NY;n) � dI(N (R;s)X;n ; N ( ~R;~s)Y;n ) + dI(NY;n; N ( ~R;~s)Y;n )� � + dYB(NY;n; N ( ~R;~s)Y;n )Hene we obtain, by Theorem 1,P�9NY;n � Ym : dI �N ( ~R;~s)X;n ; NY;n� � � + ~R� � p:The other laims follow just like in the proof of Theorem 1. �10Something obvious for whih in, priniple, we do not need to know the exat expression (10).12



Remark 5 The probability P~pY (n;m) itself (or mn(p)) depends on dGH(X;Y ) through the onstant, see an example of the appliation of this ideas in x3.2 ahead.One an write down the following useful boundP~pY (n;m) � 1� hnm �miny2Y BY (y; 2 )a (Y )whih was impliitly used in the proof of Theorem 1. It is sensible to assume one is interested inperforming the reognition/lassi�ation task for a number of objets whih satisfy ertain ondi-tions, that is, tune the framework to a partiular lass of objets. In partiular, suppose the lassis haraterized, among other onditions, by an upper bound on the setional urvatures. For smallr > 0 this allows, via Bishop-G�unther's Theorem, to obtain a lower bound on minz a (BZ(z; r))valid for all objets Z in the lass. This in turn an be used to alibrate the system to provide anypre-spei�ed probability p as in Corollary 4 for any two objets within the lass, see x3.2 for a moredetailed presentation of these ideas via an example.A rougher estimate of the value of mn(p) alluded to in Corollary 4 an be obtained using thevalue of E~p(n) when all the oupons are equally likely: m ' E~1n (n) = n � hn ' n lnn.This onludes the main theoretial foundation of our proposed framework. Now, we mustdevise a omputational proedure whih allows us to atually �nd the subset NY;n inside the givenpoint loud Ym when it exists, or at least �nd it with a large probability. Note that in pratisewe an only aess metri information, that is, interpoint distanes. A stronger result in the samespirit of Theorem 1 should take into aount possible self-isometries of X (Y ), whih would inreasethe probability of �nding a net whih ahieves small dI distane to the �xed one. We present suha omputational framework next.3 Computational FoundationsThere are a number of issues that must be dealt with in order to develop an algorithmi proedurefrom the theoretial results previously presented. These are now addressed.3.1 Initial ConsiderationsIn pratise our input onsists of two statistially independent point louds Xm and Ym0 eah ofthem omposed of i.i.d. points sampled uniformly from X and Y , respetively. For a positiveinteger n � min(m;m0) we onstrut good overings N (R;s)X;n of X and N (R0;s0)Y;n of Y , respetively.Atually, R; s;R0 and s0 all depend on n, and we should hoose n suh that R and R0 are smallenough to make our bounds useful, see the additional omputations below. Details on how weonstrut these overings are provided in Setion x3.4. We will assume, without loss of generality,that this overings are statistially independent of Xm and Ym0 .It is onvenient to introdue the following additional notation: For a set of points Zq = fzkgqk=1and for a set of indies Iu = fi1; : : : ; iug � f1; : : : ; qg, let Zq[Iu℄ denote the subset fzi1 ; : : : ; ziug ofZq. Corollary 4 suggests that in pratise we ompute the following symmetri expressiondF(Xm ;Ym0 ) := max� minJn�f1;:::;mg dI(N (R;s)X;n ;Ym0 [Jn℄); minIn�f1;:::;mg dI(N (R0;s0)Y;n ;Xm [In℄)� (12)13



whih depends not only on Xm and Ym0 but also on pre-spei�ed overing nets N (R;s)X;n and N (R0 ;s0)Y;n .However we prefer to omit this dependene in the list of arguments in order to keep the notationsimpler.Then, dF(Xm ;Ym0 ) upper bounds dGH(Xm ;Ym0 ), something we need to require. In fat, for anyIn � f1; : : : ;mgdGH(Xm ;Ym0 ) � dGH(Xm ;Xm[In℄) + dGH(Xm [In℄;Ym0 )� dGH(Xm ;Xm[In℄) + dGH(Xm [In℄; N (R0;s0)Y;n ) + dGH(N (R0 ;s0)Y;n ;Ym0 )� dXH(Xm ;Xm [In℄) + dI(Xm [In℄; N (R0 ;s0)Y;n ) +R0Now, onsidering In suh that dI(Xm[In℄; N (R0 ;s0)Y;n ) = minIn�f1;:::;mg dI(N (R;s)Y;n ;Xm [In℄), we �nddGH(Xm ;Ym0 ) � dXH(Xm ;Xm [In℄) + dF(Xm ;Ym0 ) +R0Symmetrially, we also obtain for Jn suh that dI(Ym[Jn℄; N (R;s)X;n ) = minJn�f1;:::;m0g dI(N (R;s)X;n ;Ym0 [Jn℄)dGH(Xm ;Ym0 ) � dYH(Ym0 ;Ym0 [Jn℄) + dF(Xm ;Ym0 ) +RHene, ombining the last two expressionsdGH(Xm ;Ym0 ) � dF(Xm ;Ym0 ) (13)+ min (dXH(Xm ;Xm [In℄); dYH(Ym0 ;Ym0 [Jn℄))+ max(R;R0)what implies (Corollary 1) a similar upper bound for dGH(X;Y ). In fat, let rm := dXH(X;Xm) andrm0 := dYH(Y;Ym0 ), thendGH(X;Y ) � dF(Xm ;Ym0 ) (14)+ min (dXH(Xm ;Xm[In℄); dYH(Ym0 ;Ym0 [Jn℄))+ max(R;R0) + rm + rm0Let �X := dXH(Xm;Xm [In℄) and �Y := dYH(Ym0 ;Ym0 [Jn℄). We now deal with the opposite kindof inequality. By Corollary 4 we know that with probability at least P~pX (n;m) � P~pY (n;m0) wewill have both:11 dF(Xm ;Ym0 ) � 3 dGH(X;Y ) + max(R;R0) (15)and �X � R0 + 2dGH(X;Y ) and �Y � R+ 2dGH(X;Y ) (16)and from this it follows in partiular that min(�X ;�Y ) � max(R;R0)+2dGH(X;Y ) with the sameprobability.Summing up, we have thus obtained:11Beause we assumed Xm to be independent from Ym0.14



dGH(X;Y )� �(R;R0;m;m0) � L(Xm ;Ym0 ) prob� 5(dGH(X;Y ) + �(R;R0)) (17)where the symbol prob� means that the inequality holds with probability P~pX (n;m) � P~pY (n;m0),�(R;R0;m;m0) := max(R;R0) + (rm + rm0), �(R;R0) := 35 max(R;R0) andL(Xm;Ym0 ) := dF(Xm;Ym0 ) + min(�X ;�Y ):Remark 6 Note that �, � and the probability an be ontrolled by suitably hoosing all the un-derlying parameters. We have therefore obtained an expression like the one antiipated in Setionx2.1, equation (3). The main di�erene is that we have yet not proved that L(Xm ;Ym0 ) an be om-puted exatly or approximately in pratise. In x3.6 we present a simple algorithm for approximatelyomputing this quantity. We do not provide bounds on the �delity of the algorithm in this paper.Results in this diretion are subjet of urrent e�orts.Remark 7 By a modi�ation of the ideas here presented it may be possible to provide a frameworkfor the reognition of partial objets: One might want to hek whether one objet is a part ofanother one. Clearly, in that ase, one shouldn't but ompute one half of dF. The overing netN (R0;s0)Y;n should represent the objet whih we want to �nd inside the one represented by Xm.Next, we present a simpli�ed example of the basi ideas disussed so far.3.2 An Idealized ExampleAssume that we are trying to detet, amongst a �nite number of objets fXigLi=1 belonging to aertain family A, when two objets are isometri. We will assume for simpliity of exposition thatwe have only two possible ases or hypotheses: (H1) dGH(Xi;Xj) = 0, and (H2) dGH(Xi;Xj) � Dfor some D > 0 for all 1 � i; j � L.We haraterize the family A as those smooth ompat surfaes of IR3 suh that their Gaussianurvature is bounded from above by some positive onstant K, and whose total area is boundedfrom above by some �nite onstant A. Then, for any suÆiently small  > 0,minx2S a (BS(x; )) � 2�K (1� os(pK)) =: fK()for all S 2 A, by the Bishop-G�unther Theorem, see [23℄. Note in partiular that fK() > 0 for0 <  < �pK .For 1 � i � L we will denote by Ximi the point loud orresponding to the objet Xi and ri willdenote numbers suh that X � B(Ximi ; ri).12Let Xi and Xj be any two suh objets. We will deide, in this example, that Xi and Xj areisometri whenever L(Ximi ;Xjmj ) is smaller than a ertain threshold, see equation (17).Let us �x " > 0. For all Xi , we hoose overings N (Ri;si)Xi;ni suh that max1�i�LRi � ", then ni willbe �xed by the proedure one uses to onstrut those overings, see x3.4 ahead. Let n := maxi niand R := miniRi � ". By adding new points to eah of the overing if neessary, we onstrut newoverings all with n points, overing radius " and resulting separation si. Let s := mini si.12In this example we will neglet the fat that this overing relation will hold with a ertain probability.15



We are now going to estimate the number of sample points (ardinality of the point louds)needed for eah (all) of the objets in order to be able to detet (H1) with high probability.Aording to (17), for any 1 � i; j � L we know that:� Under (H1), with a probability Qij := P~pXi (n;mi)� P~pXj (n;mj) we haveL(Xmi ;Xmj ) � 3":� Also, under (H2), assuming " � rk for 1 � k � L,13L(Xmi ;Xmj ) � D � 3"This tells us how to design " in relation to D in order to be able to tell both hypotheses apartby omputing L(Xmi ;Xmj ). Thus, let "� D6 .14Now, one wants to impose Qij to be high, that is Qij � (1 � q)2 for some small pre-spei�edq. Then, using the omments in Remark 5, we see that we an for example �x  := s and estimatethe required number of samples for eah Xi as mi � hnAq�fK( s2 ) . In onlusion, one an require thatall the point louds onsist of at least hnAq�fK( s2 ) points (uniformly sampled) from eah of the objets.3.3 Working with Point CloudsAll we have are �nite sets of points (point louds) sampled from eah metri spae, and all our om-putations must be based on these observations only. Sine we made the assumption of randomnessin the sampling (and it also makes sense in general to make a random model of the problem, giventhat the shapes are aquired by a sanner for example), we must relate the number of aquireddata points to the overage properties we wish to have. In other words, and following our theoryabove, we would like to say that given a desired probability p and a radius r, there exists a �nitem suh that the probability of overing all the metri spae with m balls (intrinsi or not) of radiusr entered at those m random points is at least p. This kind of haraterizations are easy todeal with in the ase of submanifolds of IRd, where the tuning omes from the urvature boundsavailable. For this we follow [39℄. Let Z be a smooth and ompat submanifold of IRd of dimensionk. Let Zm � Z onsist of m i.i.d. points uniformly sampled from Z. Let K be an upper bound forthe setional urvatures of Z. Then we an prove that for a sequene rm ! 0 suh that rm ? lnmmfor large m P�dIRdH (Z;Zm) > rm� ' 1lnmThen, sine we an also prove, [39℄, that for any z 2 Z, Æ > 0 small, B(z; Æ) \Z � BZ(z; CKÆ),for some onstant CK > 1 depending only on metri properties of Z (urvatures and diameter), wealso �nd P �dZH(Z;Zm) > rm� ' 1lnmThis relation gives us some guidane about the number points we must sample in order tohave a ertain overing radius, or to estimate the overing radius in terms of m. More preiseestimates an be found in the referene mentioned above. An important point to remark is thatthis kind of relations should hold for the family of shapes we want to work with (in a way similar13This is reasonable sine Ximi are supposed to be �ner samplings than N (Ri;si)Xi;n .14What means that all Ri � D6 . 16



to the one exposed in x3.2). Therefore, one given bounds on the urvatures and diameters whihharaterize the family, one an determine a preise probabilisti overing relation for it. We leavethe exploitation of this idea for future work.Given the natural number n � m (or eventually s > 0), we use the orale desribed in x3.4below to �nd n-points from Zm whih onstitute a overing of Zm of the given ardinality n (or ofthe given separation s) and of a resulting radius R. We denote this set by N (R;s)Zm;n � Zm.3.4 Finding CoveringsIn order to �nd the overings N (R;s)Z;n , we use the well known Farthest Point Sampling (FPS)strategy, whih we desribe next. Suppose we have a dense sampling Zm of the smooth andompat submanifold (Z; dZ ) of IRd as interpreted by the disussion above. We want to simplifyour sampling and obtain a well separated overing net of the spae. We also want to estimate theovering radius and separation of our overing net. It is important to obtain subsets whih retainas best as possible the metri information ontained in the initial point loud in order to makeomputational tasks more treatable without sari�ing preision.We �rst show a proedure to sample the whole of Z. Fix n the number of points we want to havein our simpli�ed point loud Pn. We build Pn reursively. Given Pn�1, we selet p 2 Z suh thatdZ(p;Pn) = maxz2Z dZ(z;Pn�1) (here we onsider of ourse, geodesi distanes). There might existmore than one point whih ahieves the maximum, we either onsider all of them or randomly seletone and add it to Pn�1. This subsampling proedure has been studied and eÆiently implementedin [41℄ for the ase of surfaes represented as point louds. The FPS proedure satis�es severaluseful properties as desribed below.Let M(Pn�1) � Z denote the set of points z for whih dZ(Pn�1; z) is maximal. We denote bysn and Rn the separation and overing radius of Pn � Z, respetively.Lemma 3 Let Pn be the set obtained for eah n � n0 aording to the FPS strategy starting fromPn0 , and let pn+1 denote any point in M(Pn). Then, for n � n01. dZH(Z;Pn+1) � dZH(Z;Pn), that is Rn+1 � Rn.2. dZ(pn+2;Pn+1) � dZ(pn+1;Pn).3. sn := min1�i<j�n dZ(pi; pj) � min1�i<j�n+1 dZ(pi; pj) = sn+1.4. sn = dZ(pn;Pn�1).5. dZH(Z;Pn) = dZ(pn+1;Pn).6. n � a(Z)infz2Z a(BZ(z; sn2 )) where a is the area measure on Z.15These properties make it easy to ompute sn and rn on the y inside the algorithm, somethinguseful when the objetive is to to obtain either a pre-spei�ed overing radius or a pre-spei�edseparation.Let us now assume that the disrete metri spae (Zm; dZ) is a good random sampling of theunderlying (Z; dZ) in the sense that dH(Z;Zm) � r with a ertain probability pr;m, as disussed inSetion x3.3. We then want to simplify Zm in order to obtain a set Pn with n points whih is both a15Note that with urvature bounds one an obtain a more expliit relationship between sn and n.17



good subsampling and a well separated overing net of X.16 We want to use our n sampled pointsin the best possible way. We are then led to using the onstrution disussed above. For example,hoose randomly one point p1 2 Zm and onsider P1 = fp1g. Run the proedure FPS until n� 1other points have been added to the set of points.17 Compute now rn := maxq2Xm d(q;Pn). Then,also with probability pr;m, Pn is a (r + rn)-overing net of X with separation sn as expressed inLemma 3. Following this, we now use the notation N ((r+rn);sn)Z;n .3.5 Computing Geodesi DistanesIn our experiments we have always worked with submanifolds of IRd. We have used a graph baseddistane omputation following [29℄, or the exat distane, whih an be omputed only for ertainexamples (spheres, planes). We ould also use the tehniques developed for triangular surfaes in[33℄, or, being this the optimal andidate, the work on geodesis on (maybe noisy) point loudsdeveloped in [39℄.The geodesi omputation leads to additional soures of (ontrollable) errors. We an notompute dX(xi; xj) and dY (yi; yj) exatly, but rather approximate values dhX(xi; xj) and dh0Y (yi; yj)for whih error bounds are often available [39℄. For some suitable funtion f(�; �; �; �)���dX(xi; xj)� dhX(xi; xj)��� � f(h; r; s; n) (18)and ���dY (yi; yj)� dh0Y (yi; yj)��� � f(h0; r0; s0; n) (19)where h and h0 ontrol the degrees of approximation. These kind of bounds an be omputed for allthe approximations we have worked with (see [3℄, [33℄), and also for methods like the one proposedin [39℄. We omit in this report the inlusion of this soure of errors in our onsiderations, resultsin that diretion will reported elsewhere.3.6 Additional Implementation DetailsIn this setion we onlude the details on the implementation of the framework here proposed.The �rst step of the implementation is the omputation of dF and subsequently L, whih from thetheory we desribed before, bounds the Gromov-Hausdor� distane.We have implemented a simple algorithm.18 Considering the matrix of pairwise geodesi dis-tanes between points of Xm, we need to determine whether there exists a submatrix of the wholedistane matrix orresponding to Xm whih has a small dI distane to the orresponding interpointdistane matrix of a given N (R0;s0)Y;n . We selet this latter overing net as the result of applyingthe FPS proedure to obtain a subsample onsisting of n points, where the �rst two points areseleted to be at maximal distane from eah other. To �x notation, let Xm = fx1; : : : ; xmg andN (R0;s0)Y;n = fyj1 ; : : : ; yjng. We then use the following algorithm.(k = 1; 2) Choose xi1 and xi2 suh that jdX(xi1 ; xi2)� dY (yj1 ; yj2)j is minimized.16One more reason for wanting the subsampling to be well separated, besides the one given by Corollary 4, is thatintuitively, the more separated the overing net, the more eÆient the use of the points to over the metri spae.17As we mentioned before, the goal an be di�erent: Keep adding points while the separation of the resultingsubsampling is big enough as measured by some pre-spei�ed onstant s > 0.18This simpler algorithm in turn an be modi�ed to be exhaustive and therefore rigorous, details will providedelsewhere. 18



(k > 2) Let xik+1 2 Xm be suh that ek+1(xik+1) = min1�il�m ek+1(xil) whereek+1(xil) = max1�r�k jdX(xil ; xir)� dY (yjk+1 ; yjr)jWe stop when n points, fxi1 ; xi2 ; : : : ; xing have been seleted, and therefore a distane submatrix((dX(xiu ; xiv)))nu;v=1, is obtained.Sine we an writedI �fxi1 ; : : : ; xing; N (R0;s0)Y;n � � 12 max1�k�n max1�t�k�1 jdX(xik ; xit)� dY (yjk ; yjt)j = 12 max1�k�n ek(xik)we then see that with our algorithm we are dereasing the error row-wise.Of ourse, we now use the same algorithm to ompute the other half of dF. We are urrentlystudying omputational improvements along with error bounds for the results provided by thealgorithm.4 ExamplesWe now present experiments that on�rm the validity of the theoretial and omputational frame-work introdued in previous setions. In the future, we plan to make these experiments morerigorous, inluding onepts of hypothesis testing. As a simpli�ation, for our experiments we haveonly omputed dF negleting the other term in L(see x3.1), whih provides an estimate of theGromov-Hausdor� proximity between the shapes.We omplemented the more omplex data (as presented below) with simple shapes:[Plane℄ P� = [� �p8 ; �p8 ℄2 and Xm are points sampled uniformly from the square. Note thatdiam (X) = �.[Sphere℄ S = fx 2 IRd : kxk = 1g and Xm is a set of points uniformly distributed on the sphere.We generated the sample points using the method of Muller, see [42℄.4.1 Positive DetetionWe �rst test our framework when X and Y are isometri. We onsider X = Y and see whether wemake the right deision based on the disrete measurements. Let Xm and Ym be two independentsets omposed of m independent, uniformly distributed random points on X. We onsider X tobe either the plane P� or the sphere S as de�ned above. Given n, using the FPS proedure, weonstrut NXm;n and NYm;n from Xm and Ym, respetively (we omit the supraindies sine we won'tuse the values of overing radius and separation), and look for a metri math inside Xm and Ym,respetively, following the algorithm desribed in x3.6 for the omputation of dF(Xm ;Ym).19 Foreah dataset we tested for values ofm 2M = f500; 600; : : : ; 2000g and n 2 N = f5; 10; 15; : : : ; 100g,and obtained the results reported below. In Tables 1 and 2 we show the values of dF for seletedvalues of m and n. As expeted, the values of dF are small (see next setion for the orrespondingvalues when omparing non-isometri shapes). In Figure 1 we show a pseudoolor representationof the results for dF. In Figure 2 we plot the values of dF for the two di�erent random samplingsof the sphere (reported in Table 2) against m 2M , see the aption for more details.19Keep in mind that atually dF(Xm;Ym) depends on n, see its de�nition (12)19



nnm 500 700 900 1100 1300 1500 1700 19005 0:036793 0:013088 0:015786 0:012885 0:036110 0:018160 0:016485 0:007402715 0:043457 0:040605 0:043771 0:027194 0:028810 0:027367 0:032519 0:01424725 0:041845 0:044206 0:050095 0:036036 0:027655 0:026821 0:023060 0:03101935 0:061570 0:049158 0:031380 0:037598 0:030816 0:028623 0:033991 0:02076445 0:081975 0:056267 0:042198 0:055948 0:035188 0:038990 0:024451 0:03637655 0:087237 0:045492 0:063081 0:043192 0:045165 0:036363 0:033156 0:03459265 0:068935 0:049395 0:052482 0:046853 0:037285 0:035718 0:035569 0:03151275 0:070109 0:075802 0:051246 0:053371 0:045849 0:037692 0:044748 0:04505985 0:077863 0:053011 0:038660 0:046119 0:045688 0:036009 0:039273 0:03689495 0:077007 0:069984 0:059779 0:036691 0:035976 0:032634 0:035390 0:034774Table 1: Table with values of dF for X = P� (a plane).nnm 500 700 900 1100 1300 1500 1700 19005 0:013282 0:025620 0:013855 0:024352 0:017305 0:010935 0:015408 0:01355815 0:057752 0:045298 0:049417 0:048648 0:034589 0:036678 0:028731 0:03631325 0:082785 0:062767 0:043617 0:045718 0:036738 0:033095 0:040189 0:03359235 0:077173 0:066819 0:059948 0:052525 0:035929 0:051900 0:049051 0:03742845 0:074482 0:069326 0:067096 0:054424 0:051452 0:057161 0:040566 0:04072755 0:089103 0:070744 0:066340 0:055915 0:061401 0:057970 0:055716 0:04589965 0:079456 0:087671 0:076762 0:067578 0:051363 0:049503 0:063492 0:04340575 0:082986 0:083790 0:069210 0:056734 0:060989 0:061746 0:048117 0:04536285 0:083577 0:075528 0:083344 0:067288 0:069203 0:058094 0:051962 0:05414495 0:10688 0:081448 0:071951 0:064473 0:060619 0:052794 0:053800 0:050700Table 2: Table with values of dF for X = S (a sphere).4.2 Positive RejetionWe now proeed to ompare shapes that are not isometri, starting with X = P� (a plane) andY = S (a sphere). In this ase we expet to be able to detet, based on the �nite point louds, thatdF is large.Table 3 and Figure 3 show the results of a simulation in whih we ompared the sphere Sand the plane P�, while varying the overing net sizes and the total number of points uniformlysampled from them (n 2 N and m 2M as before). The experiments have been repeated 100 timesto produe Table 3, and the reported values onsist of the mean of these 100 tests. As expeted,the values are larger than when omparing plane against plane or sphere against sphere.4.3 3D-Shape Reognition of Artiulated ObjetsWe onlude the experiments with real (more omplex) data. We have 4 sets of shapes,20 theroodile, the gira�e, the hand and the body, eah one with their orresponding bends. We ran thealgorithm N = 6 times with n = 70, m = 2000, using the 4 nearest neighbors graph to omputegeodesi distanes via isomap's engine. The data desription and results are reported in Table20The datasets were kindly provided to us by Prof. Kimmel and his group at the Tehnion.20



Figure 1: Graphi visualization of the results for the plane P� (on the left), and the sphere S (on the right).Red orresponds to low values of dF and blue larger values. On the horizontal axis, from left to right wehave inreasing values of m, while on the vertial axis, n inreases going upwards. Observe how the distaneinreases for �xed m as n inreases in aordane with the fat that we have less freedom to hoose the npoints from the given m. (This is a olor �gure.)nnm 500 1000 1500 200010 1:839 � 10�1 1:902 � 10�1 1:931 � 10�1 1:942 � 10�125 1:834 � 10�1 1:908 � 10�1 1:920 � 10�1 1:944 � 10�150 1:818 � 10�1 1:899 � 10�1 1:925 � 10�1 1:933 � 10�175 1:873 � 10�1 1:882 � 10�1 1:936 � 10�1 1:939 � 10�1100 1:846 � 10�1 1:913 � 10�1 1:924 � 10�1 1:936 � 10�1Table 3: Values of dF for a omparison between P� and S for seleted values of n 2 N and m 2M .4. We note that not only is the tehnique able to disriminate between di�erent objets but, asexpeted, it doesn't get onfused by bends: The distanes between a given objet and the possiblebends of another one are very similar, as it should be the ase for isometry invariant reognition.5 ConlusionsA theoretial and omputational framework for omparing (smooth, onneted and ompat) sub-manifolds of IRd given as point louds was introdued in this paper. The theoretial omponent isbased on the Gromov-Hausdor� distane, whih has been embedded in a probabilisti frameworkto deal with point louds and omputable disrete distanes. Examples supporting this theory wereprovided.The extension to more general metri spaes an be done, in priniple, one one agrees uponsome de�nition of uniform probability measure, something that ould be done using the Hausdor�measure, whih is de�ned from the metri.Another related possible extension is that of admitting the points to be sampled from themanifolds with probability measures other than uniform. Atually, in the ase of surfaes in IR3aquired by a 3D-Sanner, the probability measure models the aquisition proess itself. In thisase, the framework here presented an be extended for a wide family a probability measures,namely those whih admit a density funtion whih vanishes at most in sets of 0-uniform measure,i.e. there are no holes in the aquisition proess. In other situations it might simply make more21
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Figure 2: Plot of maxn2NdF(Xm;Ym) against m for two di�erent samplings of the sphere. It is based onthe data reported in Table 2.sense to onsider the reognition problem for triplets (X; d; �), where (X; d) is a metri spae and� is a (probability) measure de�ned on sets of X.An interesting extension whih might make the omputational analysis easier would be workingwith other de�nitions of Hausdor� distane. For example, remembering that the Hausdor� distanebetween X;Y � Z, ((Z; d; �) a metri spae with probability measure �) is de�ned asdZH(X;Y ) := max(supx2X d(x; Y ); supy2Y d(y;X)):Then, one an onsider substituting eah of the supremum inside the max(; ) by an Lp-approximation(for p � 1), for example: supx2X d(x; Y )$ �R dp(x; Y )�(dx)�1=p, and similarly for the other supre-mum to obtain, also allowing for a Lq-approximation of the max (q � 1):dZHp;q(X;Y ) :=  �Z dp(x; Y )�(dx)�q=p + �Z dp(y;X)�(dy)�q=p!1=qThe orresponding notion of (p; q)-Gromov-Hausdor� distane is then de�ned. In partiular, itwould be interesting to derive the (p; q) version of Property 5 of Proposition 1.We are urrently working on proving the orretness of the algorithm desribed in x3.6, im-proving its omputational eÆieny, performing additional experiments adding hypotheses testingtehniques, and in partiular, omparing high dimensional point louds with data from image si-enes and neurosiene. These further results and extensions will be reported elsewhere.AknowledgmentsWe thank Prof. Omar Gil, Prof. Ron Kimmel and Prof. Ofer Zeitouni for stimulating onversationson the subjet of this paper. A. Elad and R. Kimmel provided valuable data for the experiments.22



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4
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