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A Theoretical  and  Experimental  Investigation of the 
Modes of Optical  Resonators with Phase-Conjugate 

M i rrors 

Abstract-We present  an analysis of resonator  properties  for a  cavity 
bounded  by a phase  conjugate  mirror,  which is generated by a  degen- 
erate four-wave nonlinear  optical  interaction. Using a ray  matrix 
formalism to describe the conjugate mirror,  resonator  stability  condi- 
tions are derived. Longitudinal and transverse mode characteristics  are 
discussed. Results are compared with an experiment where  laser oscil- 
lation was observed at 6943 A using carbon disulfide as  the  nonlinear 
interacting medium  comprising the phase  conjugate mirror. 

R 
I. INTRODUCTION 

ECENT theoretical and experimental  reports deal with 
various aspects of optical wave phase conjugation includ- 

ing time-reversal in  the bulk [ 11 -[16] and in waveguides 
[17]  -[21], real-time holography [22] -[28], optical filtering 
[29],  [30], amplified reflection [8] -[lo],  channel dispersion 
compensation [31], and photon echoes [32]  -[35] . In  this 
paper, we consider the case  of  laser oscillation in a resonator 
in which one of the mirrors is replaced by a phase conjugate 
reflector which utilizes four-wave mixing. There are several 
characteristics that make this resonator configuration especially 
attractive. The well-known “time-reversal” feature of the  con- 
jugator serves not only to compensate for various potential  in- 
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tracavity phase aberrating elements (e.g., gain medium phase 
and/or polarization distortion,  poor  quality optical compo- 
nents, etc.), but also gives  rise to differences in  the resonator 
stability criterion as compared to conventional Fabry-Perot 
laser resonators. Furthermore,  the frequency filtering nature 
of the conjugator yields a  type  of “frequency locking” of the 
resonator output frequency to the frequency of  the  pump 
laser (which excited the conjugate mirror). It also renders the 
transverse modes present in the resonator to be degenerate in 
frequency,  thus giving  rise to a “transverse mode-locking” con- 
dition, whereby the resultant mode volume in  the resonator 
can “fit” into an aperture (subject to  the  limitations imposed 
on  the angular acceptance range of the conjugate mirror). If 
the effective aperture within the resonator is chosen to be the 
transverse gain profile, for  example,  then  the use of  a phase 
conjugate mirror can essentially “milk” the gain medium 
optimally for  its stored energy. Finally, by temporally pump- 
ing the conjugate mirror, one can Q-switch this “phase conju- 
gate resonator.” In Section 11, we present an analysis for this 
type of resonator which, using a ray matrix formalism and a 
Gaussian beam description, considers resonator stability  con- 
ditions, longitudinal and transverse mode spectra, and the  fre- 
quency dependence of the phase conjugate mirror. Section I11 
deals with an  experiment we performed using a  ruby laser  as 
the  pump source, and carbon disulfide as the conjugator’s non- 
linear medium. Laser oscillation was  observed in  a resonator 
configuration which was unstable in the conventional sense. 
Furthermore, we observe a laser output energy that is com- 
parable with  that of a similar, conventional Fabry-Perot laser. 
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Fig. 1. The  phase  conjugate  resonator (PCR). This general  resonator is 
formed by surrounding some arbitrary optical components, denoted 
by  an equivalent A’B’C‘D’ ray matrix, by a ‘‘real”  mirror (of radius 
R) on one  end, and by a phase  conjugate mirror (PCM) on the other 
end. For  degenerate modes, 6 = 0. 

Finally, several additional observed aspects regarding the reso- 
nator will be discussed, including frequency locking of the os- 
cillator output  to the  pump beams, and Q-switching properties 
due to the pulsed nature of the conjugate mirror. 

11. THEORY 
In this section, we present an analysis leading to resonator 

stability  criteria and mode spectra  for  a laser resonator in which 
one of the  mirrors is replaced by  a phase conjugate mirror 
“PCM.” The geometry of  this phase conjugate resonator 
“ P C R  is shown in Fig. 1 .  The PCM is assumed to be formed 
via a degenerate four-wave nonlinear optical  interaction. The 
conjugate wave (of field E[)   E ,  is generated as a result of the 
simultaneous incidence of  two  counter-propagating plane 
waves A l  and A2 with Et onto a medium possessing a  third- 
order nonlinear optical susceptibility, ~ $ 1  all located within 
the PCM (as shown in Fig. 1). In the analysis that follows, we 
neglect the  depletion of the  pump waves Al  and A? as a result 
of the nonlinear interaction. We also neglect diffraction losses 
within the PCR; and self-focusing within  the PCM. We further 
assume that the nonlinear medium is nondispersive, and is also 
capable of  instantaneous response. 

A. Matrix of  the PCM (Degenerate Case) 

We first discuss a  matrix formalism that describes the  opera- 
tion of the PCM for  the case where all the  interacting fields are 
of the same radian frequency w. The stability criterion is then 
derived for  both one and  two  roundtrip self-consistent 
situations. 

Consider a Gaussian field Ei propagating along the z-axis, to 
be incident  upon  the PCM. We thus have [36] 

where &(?) is  the complex amplitude  of Ej, and p and w are 
the radius of curvature and  the  spot size of the  incident field, 
respectively. This field can also be written as 

The complex radius of curvature qi is defined as 

1 1 ih _ -  
qj p 7rw2 * 

- 

The effect  of  the PCM is to  “reflect”  such  an  incident field as 
to  yield its conjugate replica [ 3 7 ] ,  leaving the wavefront and 
the  spot size unchanged. The reflected field is 

t kz + E )  2 P  - $1 
which can  also be expressed as 

(4) 

The reflected field complex radius of curvature subject to  (3)  
and (4) is given by 

An observer traveling with  the reflected beam will find the 
spot size unchanged, but having  an opposite sign for  the curva- 
ture  of  the wavefront. 

If  we introduce  the ray matrix formalism [ 3 6 ] ,   [ 3 8 ] ,  the 
effect of the PCM can thus be represented by  the  matrix 

with the output and input  q-parameters related by 

Aqf  t B 
C q f t D  4 ,  = 

Note the conjugation operation  upon qi, as opposed to the 
conventional formalism [36] where the  input field is not con- 
jugated. We note  that this matrix also describes the reflection 
of rays from  the conjugate mirror. That  this  matrix (7) and 
the  condition given by (8) satisfy the  constraint (6)  can be 
easily  verified by substitution. 

It follows directly that  the ordinary ABCD formalism for 
treating the propagation of  Gaussian beams through  a sequence 
of lens-like media [38] can  be applied also in the case when 
one of the elements is a PCM. The  matrix representing the 
PCM is given by (7) .  The “q” parameter at any plane followhg 
the PCM is related to the  input “q” by 

ATqf  ’ BT 

CTq? + DT 
qout = (9)  

where the subscript “T” implies that the  matrix elements cor- 
respond to  that of  the  resultant  matrix  for  the given sequence 
of optical elements, including that of  the PCM. Since all the 
matrices are assumed to  be real, the conjugation operation  im- 
posed by (9) can  be performed at any plane. We note  that 
care must be taken when treating propagation through media 
described by matrices having complex elements. In this case, 
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one must first evaluate the complex q-parameter  just prior to 
the PCM (using the conventional formalism), apply the opera- 
tions given by (7) and (8) to describe the  effect of the PCM, 
then finally, evaluate the  resultant  q-parameter  at  the desired 
plane “after”  the PCM. 

B. Stability Condition for One Roundtrip.(Degenerate  Case) 
Consider the  situation sketched in Fig. 1. The resonator is 

bounded on one  end  by  a mirror having a radius of curvature 
R ,  containing  arbitrary intracavity optical components  de- 
scribed collectively by an A’B’C’D’ matrix M‘ for optical prop- 
agation from  left to  right and again by an A”B”C”D” matrix 
M” for propagation from right to  left. The resonator is 
bounded  on  the  other end by  a PCM. In  order to investigate 
the  stability criterion for such a  cavity, we apply the  standard 
self-consistent formalism and thus demand that the complex 
radius of curvature of  the beam reproduce itself after one 
roundtrip. Choosing a plane to the immediate right of  the real 
mirror, we trace a beam that propagates to the right and get, 
after one roundtrip,  the following matrix  product: 

where we have used the relation 

M”M = M(M’)-’ ( 1 OC) 

which can be shown straightforwardly, using the reciprocity 
property  of  the  group  of optical elements represented by M‘ 
(or M”), where M is  given by (7). 

The above result [see (lob)] is merely a reaffirmation of 
the  fact  that an  arbitrary sequence of passive and lossless opti- 
cal elements followed by  a PCM is equivalent to the PCM alone. 
This is due to  the time reversal occurring at  the PCM and  the 
reciprocity  of  the passive components. 

Now we impose self-consistency; that is, we demand that  the 
field be reproduced at  the aforementioned plane after  one 
round  trip. Using (8), this  condition is 

The result of this  constraint yields the following two condi- 
tions: 

A1 t D 1  = O  (1 2 4  

and 

p=-R  
( a )  

( b )  

Fig. 2. Sketch of a  typical allowed PCR Gaussian mode  for  the degen- 
erate case and demanding self-consistent field solutions  for (a) one 
roundtrip  and (b) two  roundtrips. 

Upon substitution of the resultant matrix Ml into (12), we 
Lzet 

p = - R .  (1 3) 

Hence, the radius of curvature of the Gaussian  beam is equal 
to that of  the real  mirror at the real  mirror’s plane. This con- 
clusion is also independent  of  the sign of the mirror’s curva- 
ture. Also, there is no dependence of the  stability conditions 
upon  the cavity length or any other  optical  components within 
the cavity. In  addition, there is no  constraint  on  the  spot size 
(w)  of the resultant mode (subject to  the angular acceptance 
limitations of the PCM). This freedom of spot size in  con- 
junction  with  the  frequency degeneracy of the transverse 
modes at  the  pump  frequency  (to be  discussed later), makes 
possible the  notion of “spatial mode locking” of transverse 
modes.  In Fig. 2(a), we sketch  a typical Gaussian mode that 
is self-consistent for the  one-roundtrip degenerate frequency 
case. 

C Stability Condition for Two Roundtrips  (Degenerate  Case) 
In conventional resonators, all  allowed eigenmodes are ob- 

tained by demanding a single-round trip self-consistent solu- 
tion. However, for  the case  of a PCR, it is possible to  have 
allowed modes which will reproduce themselves after  two 
round trips. Furthermore, by simple ray tracing, it can  be 
shown that, due to the time-reversing nature of the PCM, these 
rays will reproduce themselves after two  roundtrips.  Thus, 
for t : ,~o roundtrips, we can  use the  matrix from the preceding 
section, forming the resultant matrix as 

M2 = (Ml IZ 
= I  (1 4) 

where I is the  identity  matrix. We note  that, since for  a  two 
roundtrip  situation, we have encountered  the PCM twice, 
the  q-parameters have been conjugated two times and thus 
remain unchanged. Hence, in  contrast to the single roundtrip 
constraints,  any complex radius of curvature, (i.e., both p and 
w )  at the initial  plane (at  the real mirror) will yield a sew- 
consistent solution. We therefore conclude (as  was the case 
for  the  one-roundtrip constraint) that the PCR  is stable for 
any real mirror, regardless of its radius of curvature or sign, 
and is stable regardless of the cavity length or the intracavity 
optical components. 
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We thus see that there exists  a large  range of Gaussian beam 
parameters that satisfy the self-consistency criterion for both 
the one- and  two-roundtrip cases. This multitude  of acceptable 
solutions follows from  the very nature of the PCM. Since we 
have specified only one constraint within  the resonator (in this 
case the radius of curvature of the real mirror), and realizing 
that  the  action of the PCM is to replicate any field incident 
upon  its surface, there exists no unique set of p and w within 
the  resonator. This is in contrast to  conventional resonators, 
where, in general, the curvature is specified at two planes in 
space (which, therefore for stable resonators, establishes the 
value of the  complex curvature throughout space). 

We have not taken into account any additional  constraints 
within the PCR, which can be due to several sources; one can, 
for  example, place an  aperture within the  resonator.  In  addi- 
tion,  the PCM itself can  possess  an effective aperture  due to, 
for  example,  the spatial extent of the  pump beams. Another 
possibility can  be the “effective aperture”  introduced by the 
gain medium (i.e., the transverse gain profile). We note  that 
in this case, the  action of the PCM is to form  a mode volume 
within the resonator that interacts  with as much of the gain 
medium as possible, while still beingiabove thieshold. Hence, 
in this configuration,  the PCR cai  be capable bf most  effi- 
ciently extracting  the  stored laser energy within a given  gain 
medium. 

In Fig. 2(b), we sketch  an allowed Gaussian mode that satis- 
fies the  two-roundtrip degenerate frequency case. 

D. Ray Matrix for  the PCM (Nondegenerate  Case) 
We now treat  the self-consistency requirement for one and 

two  roundtrips  within  the PCR for  the case of nondegenerate 
fields.  Knowledge of  the  stability  condition  for nondegenerate 
fields is relevant to analyzing PCR “modes” that are not  at the 
pump  frequency (to be considered later). We consider the case 
where the  pump waves exciting the PCM are both  at radian fre- 
quency 0, while the PCR field incident  upon  the PCM is at 
radian frequency w t 6, where 6 can be greater than or less 
than 0. Due to the  frequency flipping nature  [29]  of  the PCM, 
the conjugate field is at frequency w - 6 .  The phase-matching 
constraint requires that each plane wave component of a given 
signal field incident  upon ,the PCM to give rise to a “conjugate 
replica” whose k-vector is antiparallel to that of the  input 
plane wave component considered. This applies to  both the 
degenerate [8] and the nondegenerate [29] cases. Thus,  the 
ray matrix given by (7) can also be used to describe the  effect 
of the PCM for each plane wave component (or ray) for  the 
nondegenerate case. However, for  the nondegenerate case  of 
an  arbitrary  incident wavefront, the “reflected” field no longer 
exactly retraces the  path of the  input wave, due to their dif- 
ference in frequency. 

This problem can be treated formally by decomposing the 
input field into  its plane wave components, using (7) for  the 
effect of the PCM for each of these components, changing 
w t 6 to w - 6 ,  then finally forming the resultant super- 
position. 

In what follows, we show that  for  the special case of Gaussian 
beams, one can form a  frequency-dependent ABCD “ray” 
matrix that properly describes the  effects of the PCM. Con- 

sider an  incident Gaussian beam of  the form 

where k = wn/c. 

given by 
The “reflected” field from  the PCM (located  at z = 0) is 

This can be  rewritten as 

E, a 8*( ?) exp { i [(l - i) ut t (1 - :)kz 

This reflected field is thus recognized as being a Gaussian 
beam at frequency w[l - (6/0)] and having a complex radius 
of curvature q, which can be related to  qi by 

The “rayyy  matrix  that relates qi to  qr which satisfies (1 5)-( 18) 
can  be represented by 

/ l - L  0 \ 

where the  operation given in (8) is to be used. We note  that 
as 6 -+ b, (19) reduces to the degenerate-case matrix given by 
(7). It can be shown that the  effect of the PCM is to change 
the radius of curvature (at  the output boundary of the PCM) 
while  leaving the  spot size unchanged (this follows from  the 
frequency-flipping effect of the PCM). As discussed above, we 
remark that (19) applies to Gaussian beams and not to rays. 

E. Stability  Condition for One Roundtrip (Nondegenerate 
Case) 

Following the discussion  given for  the degenerate case, we 
cari now solve for  the self-consistericy constraint  for  the  non- 
degenerate situation. Demanding replication after one round- 
trip, we now consider an explicit resonator configuration.  For 
the ease of calculation, we set the M’ andM“ matrices of Sec- 
tion II-B to represent cavity spacing of  length 1. That is, 

For  this choice of the cavity matrix,  the  total single roundtrip 
matrix evaluated at  the real mirror plane is given by 
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The self-consistency criterion (1 1) yields the same conditions 
[see (12a)  and (12b)l as for  the degenerate case.  Using the re- 
sultant  matrix (2 1) in first condition [see (1 2a)l gives the  con- 
straint I = R/2. Substitution of this result into the second 
condition [see (12b)l does yield a range of ( p ,  w) pairs which 
satisfy the  equation. However, due to the frequency-flipping 
nature of the PCM, any ( p ,  w) pair at frequency w + 6 will not 
replicate itself after  a second roundtrip,  i.e.,  at frequency 
w - 6.  That is, there is no  common ( p ,  w) pair that satisfies 
the self-consistency requirement for  both 26 frequency com- 
ponents. 

We thus conclude that  no stable mode exists  for  the  one- 
round-trip nondegenerate case. 

F. Stability Condition for Two Roundtrips (Nondegenerate 
Gzse) 

In considering the nondegenerate two-roundtrip stability 
condition, we cannot simply take  the square of  the single- 
roundtrip  matrix, (21) (as  was done in the degenerate fre- 
quency case). This  is due to the frequency-flipping nature of 
the PCM. That is, upon each “reflection” off the PCM, the 
field  changes frequency. Hence, the  total  two-roundtrip 
matrix, using (20) to describe the intracavity propagation, 
becomes 

where the second matrix has 6 + -6 ,  consistent with the above 
remark. 

We note  that since we have encountered  the PCM twice, the 
conjugation operation is effectively cancelled. Thus, the appli- 
cable self-consistency criterion corresponds to that of conven- 
tional resonators [38], and is  given by 

Substituting  the  resultant  matrix [see (22)] into the self- 
consistency condition (23) yields p = -R; i.e., the Gaussian 
beam curvature at  the mirror is equal that of the real mirror 

k=q3 --- - _ _ _ _ _ _  

___--- 

p z - R  

Fig. 3. Sketch of  a  typical allowed PCR Gaussian mode  for  the non- 
degenerate case. The solid and dashed  lines  correspond to  a positive 
(6 > 0) and negative (6 < 0) frequency  offset, respectively. Note 
that  at  the  real  mirror  end, p ( 6  > 0) = p (6 < 0); while at  the PCM, 
w (6 > 0 )  = w(6 < 0), consistent with  a two-roundtrip self-consistent 
solution. Recall that  for  the nondegenerate case, there  does not exist 
a solution which satisfies the single-roundtrip  constraint. 

radius of  the curvature at each roundtrip, and is independent 
of the frequency offset 6 .  However, the  spot size (at  the real 
mirror) does depend on  the frequency offset and can be shown 
to be 

(24) 
From  (24) we get the following condition  for stable modes to 
exist 

l>R;  for  R > O  

alll; for  R < O .  (2 5) 

We thus conclude that  for nondegenerate fields, the PCR  is 
stable only over limited ranges  of  cavity length (for a given posi- 
tive mirror radius). Furthermore,  the radius of curvature of the 
mode always matches that of the real mirror; however, the 
spot size alternates between two values for each roundtrip 
[by using +6 in  (24)] . 

In Fig. 3 we sketch a. typical stable Gaussian mode for  the 
nondegenerate, two-roundtrip self-consistent condition. 

We note  that when 6 = 0, (24) is no longer valid  since the 
matrix element B2 = 0 [see (23)] . In this limit,  the discussion 
presented in Section 11-C applies. 

G. Longitudinal and Transverse  PCR Mode Spectra 
In  this  section, we derive the PCR longitudinal and trans- 

verse mode spectra for Gaussian beams. Due to the  frequency- 
flipping nature of the PCM, a given frequency component (eg., 
at w + 6 )  requires two  roundtrips to return to its initial fre- 
quency. Alternatively, if we assume two fields to coexist (i.e., 
at w f 6 )  we can then superpose these fields and thus require 
that this superposition repeat only after one roundtrip.  Refer- 
ring to Fig. 1, we assume that  the PCR  is of length and linear 
index, E and n,, respectively; the PCM is of length and linear 
index,  L and n, respectively, We represent the total field at 
the real mirror as 

i0+ i ( w  + 6) t i0- i(w - 6) t E ,  = A + e  exp + A-e  exp (26) 

where A+ and e+ correspond to the magnitude (of the ampli- 
tude) and phase of the +6 component of the field,  respectively. 
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We note  that A and 8 contain  the transverse mode order ( p ,  4 )  
of the Gaussian field [36],  [38]. 

This total Gaussian field is now propagated to the right by  a 
distance 1 and is incident  upon  the PCM. 

The effect  of  the PCM (in addition to the previously men- 
tioned properties) is to multiply  the field by a complex 
frequency-dependent reflectivity [29], R+ei’+ - given by 

and 

where 

and 77 is the phase of x&A1A2 tan (PI,). In (27) the (f) sub- 
script implies that  the field incident  upon  the PCM is  of radian 
frequency w f 6,  while the “reflected” field is of radian fre- 
quency w T 6, where w is the  pump frequency (of fields A 1, z). 

The self-consistency requirement yields the following condi- 
tion on the mode spectra 

4nn, 1 Av, 
+ ( p + q t l ) t a n - l  

where Av, = 6/2n and ( p ,  4)  corresponds to the transverse- 
mode indexes of  the Gaussian beam  [36] , [38], and m is an 
integer. 

The resultant set of PCR modes [corresponding to a mode 
set (m,  p ,  q)] of frequency w/2n t AV,,~,~ is thus given by 
the  solutions to  (28). We first see that  for m = 0 (i.e., Av, 
= 0) all the transverse modes ( p ,  4 )  are at  the same frequency 
(i.e., equal to the  pump  frequency a). Thus,  in  contrast to 
conventional resonators, where for  a given longitudinal mode 
each transverse mode has a  different  frequency,  the PCR 
transverse modes (for m = 0) are degenerate in frequency. 
This  gives  rise to the possibility of a spatial transverse mode 
locking condition. If a number of transverse modes (Le., 
modes with  different values of p ,  4) exist all with m = 0, 
then  the resulting spatial field distribution due to the super- 
position of these modes will be stationary. This possibility of 
an oscillation field made up of a superposition of degenerate 
transverse modes with  arbitrary waists and waist locations  af- 
fords  a great deal of flexibility for  the mode to assume spatial 

A v  (MHz) 

Fig. 4. PCR axial mode  structure,  indicated  by  arrows,  and phase- 
conjugating mirror (PCM) power  reflectivity lr,I2 (after [29]) 
versus Au, for a value of I K IL = n/4. Au = 0 corresponds to the 
pump  frequency of the PCM. Values in parentheses indicate  the 
frequency  offset relative to the  pump  frequency (in MHz) of several 
PCR modes [roots of (28)l. The transverse mode  spectra (which 
is degenerate for rn = 0 and  nondegenerate  for rn # 0) is unresolvable, 
and  hence is not shown. 

distributions which will optimally milk a given  gain medium or 
avoid  an obstruction, even under  dynamic  conditions. 

Another  property resulting from  (28) is that  the transverse 
modes ( p ,  4 pairs) belonging to higher order PCR longitudinal 
modes (Le., m # 0) are no longer degenerate in frequency. 
Thus, the “mode-locking’’ property  of  the PCR holds only 
for m = 0. This follows from the nonvanishing phases that 
are accumulated as a result of the frequency shift  property of 
the PCM for  different p and 4 (except, of course,  for  the “acci- 
dental degeneracy” of p ,  q pairs where p t 4 = constant). 

We further  note  that  due to the  filter  character of the PCM 
(i.e., the phase-matching requirement), higher order  longitu- 
dinal modes will experience a smaller nonlinear reflection co- 
efficient, thus decreasing the cavity Q for these nondegenerate 
modes. Thus, even  if 1 >R,  which would allow higher order 
modes to exist [see (25)], the  filter character will discriminate 
against its presence. The result is that these higher order modes 
(rn f 0) are  less likely to oscillate. Hence, one  expects essen- 
tially single-frequency operation of the PCR  (i.e., m = 0) given 
monochromatic  pump waves. In Fig. 4, we plot  the allowed 
longitudinal modes [i.e., the  roots of (28)] , along with the 
nonlinear reflection coefficient of the PCM for typical PCR 
conditions (IKI - n/4L, L = 40 cm, 1 = 25  cm, n, = 1 .O, and 
n = 1.62). These quantities, which correspond t o  our mea- 
sured experimental parameters (to be discussed below), yield 
a (degenerate frequency) nonlinear reflection coefficient of 
-100 percent. There exist  two longitudinal modes that satisfy 
(28)  for each nonzero value of m. We also note  that the modes 
are not uniformly spaced, and that the higher order longitudi- 
nal modes have reflectivities down  by almost two  orders of 
magnitude relative to that of the m = 0 mode. Finally, we 
note  that the higher order transverse modes (i.e., p ,  4 pairs 
for m # 0), which are not degenerate in frequency,  cannot 
be  resolved in the figure due to  their close spacing (of order 

units), while the higher order transverse modes ( p ,  4 
pairs) corresponding to m = 0 are aZZ degenerate. 



1186 IEEE  JOURNAL OF QUANTUM ELECTRONICS,  VOL. QE-15, NO. 10, OCTOBER 1979 

lVPCM 
PCR 

OUTPUT + 
,=- 1 

PI 
It11 / - 

p2 t A‘Y’ lPu_MP) 

[ E l l ]  

Fig. 5. Schematic diagram of the  experimental PCR setup.  The  coun- 
terpropagating  pump  beams A 1 and A can in principle  be  along any 
arbitrary  direction  relative  to  the PCR optic  axis;  in  the  experiment, 
a  collinear  geometry was chosen to maximize the  interaction  length. 

111. EXPERIMENT 
A. Description 

A  sketch of the  experiment designed to check some of the 
theoretical results is shown in Fig. 5. It consists of a “resona- 
tor” (of length 2 = 25 cm) containing a  ruby gain medium (of 
length 1’ = 5.08 cm), bounded on one end by a “real” mirror 
MR and on  the  other end by a “phase conjugate mirror” PCM, 
(of length L = 40 cm) employing CS,  as the nonlinear medium. 
Three different real mirror configurations were  used in order 
to examine various aspects of the PCR, which will be discussed 
below. In order to obtain  the largest PCM nonlinear reflection 
coefficient,  the PCM interaction length ( L )  was maximized 
using a collinear pump-signal scheme (131 with polarization 
discrimination used to  separate the PCR fields from the  pump 
waves. The pump waves ( A l , ,  in Fig. 5 )  were  derived from a 
separate, @switched  ruby laser  (-18 mJ in 15 ns) operating in 
both a single transverse (TEMoo)  and longitudinal mode. An 
optical delay path of -10  m separated the  pump laser from 
the  experimental  apparatus,  thus avoiding the retroreflected 
pump wave ( A , )  from interfering with  the  pump laser during 
the  experimental measurements. The PCM was bounded  by 
glan  laser prisms to confine the PCR fields (s-polarized) within 
the CS2 , while  passing the  pump waves (n-polarized). The 
rear glan  prism (P3)  coupled out s-polarized (PCR) fields which 
then passed through  the  ‘ruby gain medium and reflected off 
MR.  The  ruby gain medium within the PCR  was  aligned such 
that  its c-axis was orthogonal to the s-polarized fields (thus 
maximizing the  ruby gain coefficient for this polarization). 
The  PCR output was monitored  either  from  the PCM  via the 
front glan  prism (PI) or from  a partially transmitting mirror 
M R .  This output field then passed through  a  third glan prism, 
which was used to eliminate any stray-reflected n-polarized 
fields. The total polarization rejection ratio  for  the PCR out- 
put calcite glan laser prisms (which were AR coated and 
wedged), P I  and P2, was measured to be , thus ruling 
out detection of stray n-polarized fields (i.e., pump waves). 
When the flash-lamp pumping the gain medium within the 
PCR  was properly synchronized with  the PCM pump fields, an 
intense s-polarized pulse  was detected.  No  output was observed 
when either 1) the  counterpropagating pump beam, A 2  was 

blocked (or misaligned); or 2) the rear mirror MR was blocked 
(or misaligned).  The latter  test ruled out spurious effects such 
as self-oscillation within the PCM and regenerative amplification 
of depolarized or fluorescent fields; the  former test ruled out 
ellipse rotation effects, and residual birefringence of both the 
optics and the CS, cell windows. 

B. Resonator  Stability 
In  the first experiment,  the real mirror MR (having a 2 m 

radius of curvature and being totally reflecting) was inverted, 
thus forming an unstable resonator in the conventional sense. 
In this configuration we observed oscillation of the PCR (with 
the PCRoutput coupled out from the PCM,  as discussed above). 
The nonlinear reflection coefficient of the PCM  was measured 
[ 131 to be - 100 percent for  this  experiment. The PCR out- 
put energy was measured to be -0.72 mJ. This  value  is quite 
reasonable, as  will be discussed below. This lends’support to  
the  theoretical result that  due to  the “time-reversing” nature 
of the PCM, the PCR should be stable regardless  of the param- 
eters of the real mirror or of the cavity length (at the degener- 
ate frequency). 

C. PCR  Energy Output 
In  another experiment we compared the PCR output energy 

with that of  an “equivalent” conventional Fabry-Perot laser. 
For  this measurement the real mirror of the PCR  was oriented 
to be concave with respect to the PCR fields, with the PCR 
output coupled out from  the PCM end of the resonator. The 
nonlinear reflectivity of the PCM was  again measured to be 
-100  percent. Under these conditions,  the output energy 
was measured to  be 1.62  mJ. This  value correlates well with  a 
measured value  of 2 mJ obtained from  the same  gain medium 
when operated in a conyentional laser resonator configuration, 
with  the same (2 m radius) real mirror as  used above, output 
etalon (60 percent reflectivity), 1 .O mm intracavity Mendenhall 
aperture, and passive @switch (cryptocyanine in methanol). 
The effective aperture of the PCR results from the (transverse) 
spatial overlap of the (TEMoo) pump beams within the PCM, 
which had an intensity  spot size measured to be 2.2 mm in 
diameter. In  fact, when the  pump laser oscillated in a higher 
order transverse mode,  the PCR output was  observed to  have 
a similar transverse character. We finally note that the greater 
output of  the PCR  using a concave, as opposed to a convex 
real mirror (i.e., 1.62 mJ versus 0.72 mJ) is attributed to the 
fact that the former geometry sampled a greater mode volume 
within the  ruby gain medium (as a result of the effective aper- 
ture of the PCM). 

D.  PCR  Frequency  Spectra 
We mentioned  in  Section I1 that, for 1 < R and R > 0 (which 

corresponds to the above experimental parameters) higher order 
longitudinal modes do  not exist. Hence, the PCR output should 
be frequency locked to the  pump wave’s frequency. (Recall 
that, even if 1 > R,  the filter character of the PCM should also 
yield this frequency-locking property.)  In order to verify this 
conjecture,  the frequency spectrum of the PCR output was mea- 
sured with a Fabry-Perot and compared with  the pump-wave 
spectrum. Within the resolution of our Fabry-Perot (-150 
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Fig. 6. Temporal  evolution of the PCR output (right pulse in each  trace) 
for a PCM power  reflectivity of (a) -25 percent  and (b) -100 per- 
cent. Note  for a  large  reflectivity (b), the PCR output is on  for a 
longer timeinterval,  and also exhibits a relaxation oscillation  behavior. 
The left pulse in each trace is that  of  the  pump laser output. 

MHz), both signals  were degenerate in frequency,  thus experi- 
mentally confirming the above claim.  The  PCR Fabry-Perot 
spectrum also yielded no additional spectral structure. There- 
fore,  other nonlinear processes, such as stimulated Brillouin or 
Raman scattering were not present. 

E. PCR Temporal Structure 
We now investigate the  temporal output of the PCR.  Since 

the  pump laser is. operated  on  a pulsed basis  (Le., @switched), 
the conjugate mirror is only “on” during the temporal overlap 
of the  pump waves. Hence, the PCM effectively @switches 
the PCR. The temporal output of the PCR is given in Fig. 
6(a). The left pulse is that  of the  pump laser, while the right 
pulse, delayed due to  the 10 m delay path discussed earlier, is 
that of  the PCR output (the  amplitude of each of these pulses 
has been attenuated  differently  for visual purposes). For this 
measurement, the PCM reflection coefficient was measured to 
be -25 percent. Increasing the PCM reflectivity to -100 per- 
cent yields the results shown in Fig. 6(b). We note  that  the 
output pulse  is on for a  time longer than that corresponding 
to the  former case. This follows from  the  fact  that  the  tem- 
poral overlap of the  pump beams within  the PCM, which 
yields a  time-dependent PCM reflectivity, will satisfy the PCR 
oscillation condition  for  a longer time period than  that of a 
PCR with  a smaller nonlinear gain. 

We further note  that the large PCM reflectivity case yields 
a temporal structure  upon  the output [see  Fig. 6(b)] which is 
not present in the  former case  [see Fig. 6(a)]. We thus specu- 
late that the  temporal  structure of the PCR output is attribut- 
able probably not to mode beating, but to a form of relaxation 
oscillation. (We note  that the  effect could also be due to  a self- 
focusing phenomenon.) Recall that  theory does not predict 
higher order modes for  our  experimental parameters (which 
occur for larger PCM reflection coefficients). Pump  depletion 
within the PCM due to interaction  with  the PCR circulating 
intensity, in conjunction  with  the  temporal  population  density 
variation with the PCR’s ruby gain medium,  apparently gives 
rise to such oscillations. To verify this conjecture experimen- 
tally, the  temporal evolution of the  pump beam ( A , )  was 
monitored  after passage through  the CS2, and was seen to  also 
exhibit  temporal  fluctuations which were not present when 
the  counterpropagating  pump beam of the PCM ( A , )  was  mis- 
aligned, thus preventing the PCR from oscillating. 

IV. CONCLUSION 
In conclusion, we have analyzed the  stability  criterion, longi- 

tudinal and transverse mode structure, and have demonstrated 
stable laser action  in  a novel resonator  bounded  by  a nonlinear 
phase conjugating “reflective” element. The notion  of  fre- 
quency and spatial mode-locking of  the transverse modes was 
discussed, which, among other  features, should enable one to 
fully extract  the  stored energy within  a gain medium or equiv- 
alently “fit”  a mode volume through an arbitrary intracavity 
aperture. Several interesting  properties of this device, such as 
the spatial, temporal, and spectral output, were shown to be 
consistent with  that  expected  from such an  interaction. An 
unstable resonator configuration in  the usual sense  was seen 
to exhibit  stability and a  substantial output energy. Also, time- 
dependent  saturation  effects  of  the PCM have been observed. 
Finally, the PCR output energy was measured and shown to be 
comparable with that of a conventional resonator. 

The use of a phase conjugate mirror, in addition to the above- 
mentioned aspects, has  the  property of correcting for both 
static and dynamic phase and polarization distortions  or aber- 
rations within the  resonator. Hence by coupling the PCR out- 
put from  the real mirror end of  the cavity, or  by using a two- 
PCM resonator, one can  thus increase the efficiency of  and 
therefore decrease the  stringent requirements for  the  optical 
components comprising the cavity. 

ACKNOWLEDGMENT 
D. M. Pepper and D. Fekete are thankful to the Hughes Air- 

craft Company and the Weizmann Institute  for  their  support. 

REFERENCES 
B. I. Stepanov, E. V. Ivakin, and A. S .  Rubanov, “Recording two- 
dimensional and three-dimensional dynamic holograms in trans- 
parent substances,” Doklady  Akademii  Nauk  SSSR, vol. 196, pp. 
567-569,  1971; also in Sou. Phys.-Doklady, vol. 16, pp. 46-48, 
1971. 
J. P. Woerdman, “Formation  of a transient free  carrier  hologram 
in Si,” Opt. Commun., vol. 2, pp. 212-214,1970. 
B.  Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S .  
Faisullov, “Connection  between  the wavefronts  of the  reflected 
and exciting  light in  stimulated Mandel’stam-Brillouin scattering,” 
Pisma Zh. Eksp. Teor. Fiz., vol. 15, pp. 160-164,  1972; also in 
JETPLett., vol. 15,pp. 109-113, 1972. 
0. Y. Nosach, V. I. Popovichev, V.  V. Ragul’skii, and F. S .  
Faisullov, “Cancellation of phase distortion  in  an amplifying 
medium  with a ‘Brillouin mirror,’ ” Pisma Zh. Eksp. Teor.  Fiz., 
vol. 16, pp. 617-621,  1972; also in JETP Lett.,  vol. 16, pp. 
435-439.1972. 
V. Wang .and C. R. Giuliano,  “Correction  of  phase aberration via 
stimulated Brillouin scattering,” Opt. Lett.,  vol. 2, pp. 4-6,  1978. 
Yu. A. Anan’ev, “Possibility of dynamic  correction of wave 
fronts,” Kvant.  Elektron., vol. 1, pp. 1669-1672, 1974; also in 
Sou. J. Quantum  Electron., vol. 4,pp. 929-931, 1975. 
A. Yariv, “Three-dimensional pictoral transmission in  optical 
fibers,”Appl. Phys.  Lett., vol. 28, pp. 88-89,  1976. - , “Compensation of atmospheric  degradation of optical beam 
transmission by  nonlinear  optical mixing,” Opt. Commun., vol. 

P.  V. Avizonis, F. A. Hopf, W. D. Bamberger, S .  F. Jacobs, A. 
Tomita,  and K. H. Womack, “Optical  phase  conjugation in a lith- 
ium  formate crystal,”  Appl. Phys. Lett.,  vol. 31, pp. 435-437, 
1977. 
V. K. Orlov, Y. Z. Virnik, S .  P. Vorotilin, V. E. Gerasinov, Y. A. 
Kalinin, and A. Y. Sagalovich, “Retroreflecting  mirror  for  dy- 
namic compensation of optical  inhomogeneities,” Kvant.  Elek- 
tron. (Moscow), vol. 5, pp. 1389-1391,  1978; also in Sov. J. 

21, pp. 49-50,  1977. 



1188 IEEE  JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-15, NO. 10, OCTOBER 1979 

Quantum  Electron., vol. 8, pp. 799-800,1978. 
H.  H. Barrett  and S. F. Jacobs,  “Retroreflective  arrays as ap- 
proximate phase  conjugators,”  Opt.  Lett., vol. 4,  pp.  190-192, 
1979. 

[7] R. W. Hellwarth,  “Generation of time-reversed  wavefronts  by 
nonlinear  refraction,”  J.  Opt. SOC. Amer., vol. 67, pp.  1-3, 1977. 

[8] A. Yariv and D. M. Pepper,  “Amplified  reflection,  phase- 
conjugation,  and oscillation in  degenerate four-wave  mixing,” 
Opt. Lett., vol. 1, pp.  16-18,1977. 

[9] D. M. Bloom and G. C.  Bjorklund,  “Conjugate  wave-front  genera- 
tion  and image reconstruction  by four-wave  mixing,”  Appl.  Phys. 
Lett.,vol. 31,pp. 592-594,1977. 

[ l o ]  R. L.  Abrams  and R. C.  Lind,  “Degenerate  four-wave  mixing in 
absorbing  media,”  Opt.  Lett.,  vol.  2,  pp.  94-96,1978  and vol. 3, 
p. 205,1978. 
A. Elci and D. Rogovin,  “Phase  conjugation in  nonlinear molec- 
ular  gases,”  Chem.  Phys.  Lett., vol. 61,  pp.  407-409,1979. 

[ l l ]  P. F. Liao and D. M. Bloom,  “Continuous-wave  backward-wave 
generation  by  degenerate  four-wave  mixing  in  ruby,”  Opt.  Lett., 
vol.  3, pp.  4-6,  1978  and  references  therein. 

[12] S. M. Jensen  and  R. W. Hellwarth,  “Observation  of the  time- 
reversed  replica  of  a monochromatic  optical wave,”  Appl.  Phys. 
Lett., vol. 32, pp.  166-168,  1978. 

[13] D. M. Pepper, D. Fekete,  and A. Yariv,  “Observation  of  ampli- 
fied  phase-conjugate  reflection and  optical  parametric  oscillation 
by  degenerate  four-wave  mixing  in  a  transparent  medium,”  Appl. 
Phys.  Lett., vol. 33, pp. 41-44,1978. 

[14] E. E. Bergmann, I. J. Bigio, B. J .  Feldman,  and R.  A. Fisher, 
“High-efficiency  pulsed  10.6 pm  phase-conjugate  reflection via 
degenerate  four-wave  mixing,”  Opt.  Lett.,  vol.  3,  pp.  82-84, 
1978. 
R.  C. Lind, D.  G. Steel, M. B. Klein, R. C. Abrams, C.  R. Giuliano, 
and R. K.  Jain,  “Phase  conjugation at 10.6 pm  by  resonantly  en- 
hanced  degenerate  four-wave  mixing,”  Appl.  Phys.  Lett., vol. 34, 

A. Tomita, “Phase  conjugation  using  gain  saturation of a Nd: 
YAG laser,”Appl.  Phys.  Lett., vol. 34, pp. 463-464,  1979. 

[ 151 D. Grischkowsky, N. S. Shiren,  and R. J. Bennett,  “Generation of 
time-reversed  wave fronts using  a  resonantly  enhanced  electronic 
nonlinearity,”Appl.  Phys.  Lett., vol. 33,  pp.  805-807,  1978. 

[16] J .  P. Huignard, J. P. Herriau, P. Aubourg,  and E. Spitz, “Phase- 
conjugate  wavefront  generation via real-time  holography  in 
BilzSiO20  crystals,”  Opt.  Lett., vol. 4, pp. 21-23,1979. 

[17] A. Yariv, J. AuYeung, D. Fekete,  and D. M. Pepper,  “Image 
phase  compensation  and  real-time  holography  by  four-wave 
mixing in  optical  fibers,”Appl.  Phys.  Lett., vol. 32, pp. 635-637, 
1978. 

[ 181 S. M. Jensen  and R. W. Hellwarth,  “Generation  of  time-reversed 
waves by nonlinear  refraction  in  a  waveguide,”  Appl.  Phys.  Lett., 

[19] J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, and R. K. Jain, 
“Continuous  backward-wave  generation  by  degenerate  four-wave 
mixing in  optical fibers,”  Opt. Lett., vol. 4, pp. 42-44,1979. 

[20] R. W. Hellwarth,  “Theory  of  phase  conjugation  by  stimulated 
scattering  in  a waveguide,” J. Opt. SOC. Amer., vol. 68, pp. 1050- 
1056,1978. 

[21] R. W. Hellwarth,  ‘Theory of  phase-conjugation  by  four-wave 
mixing in a  waveguide,” IEEE J.  Quantum  Electron., vol. QE-15, 

pp. 457-459,1979. 

V O ~ .  33, pp. 404-405,  1978. 

pp.  101-109,  Feb.  1979. 
[22] H. J. Gerritsen,  “Nonlinear  effects in image formation,” Appl. 

Phys. Lett., vol. 10,pp.  239-241,1967. 
[23] D. L. Staebler  and J .  J. Amodei,  “Coupled-wave  analysis  of  holo- 

graphic  storage in  LiNb03,” J. Appl.  Phys., vol. 43, pp.  1042- 
1049,1972. 

[24] Y. I. Ostrovskii, V. G. Sidorovich, D. I. Stasel’ko,  and L. V. Tanin, 
“Dynamic  holograms  in  sodium  vapor,” Pima Zh. Tekh. Fiz., 
vol. 1, pp.  1030-1033, 1975; also  in Sov. Tech. Phys.  Lett., vol. 

I251 J. P. Huignard and F. Micheron,  “High-sensitivity  read-write 
volume  holographic  storage  in  BiI2Si020  and  Bil2GeOzo  crys- 
tals,”Appl.  Phys.  Lett., vol. 29,  pp.  591-593,1976. 

[ 261 A. Yariv,  “Four-wave  nonlinear  optical  mixing  as  real time holog- 
raphy,’’  Opt.  Commun., vol. 25,  pp.  23-25,1978. 

[27] E. V. Ivakin, I. P. Petrovich,  and A. S. Rubanov,  “Self-diffraction 
of radiation  by  light-induced  phase  gratings,”  Kvant.  Elektron., 
vol. 1, pp.  96-102, 1973; also in Sov. J.  Quantum  Electron., vol. 

E. V. Ivakin, I. P. Petrovich, A. S. Rubanov,  and B. I. Stepanov, 
“Dynamic  holograms  in  amplifying  medium,” Kvant. Elektron. 
(Moscow), vol. 2,  pp. 1556-1558,  1975; also in Sov. J. Quantum 
Electron., vol. 5,  pp. 840-841,1975. 

[28] D. M. Pepper, J. AuYeung,  D. Fekete,  and A. Yariv,  “Spatial con- 
volution  and  correlation  of  optical  fields via degenerate four- 
wave mixing,”  Opt.  Lett., vol. 3,  pp. 7-9, 1978. 

[29] D. M. Pepper  and  R. L. Abrams,  “Narrow optical  bandpass  filter 
via nearly  degenerate  four-wave  mixing,”  Opt.  Lett.,  vol.  3,  pp. 

[30] J. Nilsen and A.  Yariv,  “Nearly  degenerate  four-wave  mixing  ap- 
plied to  optical  filters,”Appl.  Opt., vol. 18,pp.  143-145,1979. 

[31] A. Yariv, D. Fekete,  and D. M. Pepper,  “Compensation  for  chan- 
nel  dispersion  by  nonlinear  optical  phase  conjugation,”  Opt. 
Lett., vol. 4, pp. 52-54,  1979. 

[32] C. V. Heer  and P. F.  McManamon,  “Wavefront  correction  with 
photon echoes,”  Opt. Commun., vol. 23,  pp.  49-50,  1977. 

[33] N. S. Shiren,  “Generation  of  time-reversed  optical wave fronts 
by  backward-wave photon echoes,”  Appl.  Phys. Lett., vol. 33, 

1, pp.  442-443,1975. 

3,  pp.  52-55,1973. 

212-214,1978. 

pp.  299-300,1978. 
[34] N. C. Griffen  and C. V. Heer,  “Focusing and phase  conjugation 

of photon echoes  in Na vapor,”  Appl.  Phys.  Lett., vol. 33,  pp. 
865-866,1978. 
M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka,  “Back- 
ward  echo  in  two-level  systems,”  Phys. Rev. Lett., vol. 42,  pp. 

[35] A.  Yariv and J. AuYeung,  “Transient  four-wave  mixing  and  real- 
time  holography  in  atomic  systems,” IEEE J. Quantum  Electron., 
vol. QE-15,  pp.  224-228,  Apr. 1979. 

[36] See,  for  example, A. Yariv, Quantum  Electronics, 2nd ed. New 
York: Wiley, 1975, chs.  6 and 7. 

[37] A. Yariv,  “Phase  conjugate optics  and real-time  holography,” 
IEEE J.  Quantum  Electron., vol. QE-14,  pp.  650-660,  Oct.  1978. 
B. Y. Zel’dovich, N. F. Pilipelskii, V. V. Ragul’skii, and V.  V. 
Shkunov,  “Wavefront  reversal  by  nonlinear  optics  methods,” 
Kvant.  Elektron.  (Moscow), vol. 5,  pp.  1800-1803, 1978; also 
in Sov. J. Quantum  Electron., vol. 8, pp. 1021-1022,1978. 

[38] See,  for  example, A. Yariv, Introduction  to  Optical  Electronics, 
2nd ed.  New  York:  Holt,  Rinehart,  and  Winston, 1976. 

974-977,1979. 


