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Many previous studies have addressed the problem of theoretically approximating the shock standoff

distance; however, limitations to these methods fail to produce excellent results across the entire

range of Mach numbers. This paper proposes an alternative approach for approximating the shock

standoff distance for supersonic flows around a circular cylinder. It follows the philosophy that the

“modified Newtonian impact theory” can be used to calculate the size of the sonic zone bounded

between the bow shock and the fore part of the body and that the variation of the said zone is related

to the standoff distance as a function of the upstream Mach number. Consequently, a reduction rate

parameter for the after-shock subsonic region and a reduction rate parameter for the shock standoff

distance are introduced to formulate such a relation, yielding a new expression for the shock standoff

distance given in Equation (32). It is directly determined by the upstream Mach number and the

location of the sonic point at the body surface. The shock standoff distance found by this relation

is compared with the numerical solutions obtained by solving the two-dimensional inviscid Euler

equations, and with previous experimental results for Mach numbers from 1.35 to 6, and excellent

and consistent agreement is achieved across this range of Mach numbers. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4975983]

I. INTRODUCTION

The study of the flows, in particular at supersonic and

hypersonic speeds, around blunt bodies has been continuously

attracting attention world-wide due to its theoretical difficul-

ties and broad application background. It also remains as one

of the most difficult areas to simulate numerically due to the

complexities of the associated phenomena, e.g., shock waves,

transition from subsonic to supersonic regions, viscous effect,

and shock-boundary layer flow interaction. Among seven rep-

resentative problems highlighted by Moretti1 in his review

of “computation of flows with shocks,” the shock problems

associated with the flow around circular obstacles were men-

tioned twice and were also among the most complicated. For

example, even slight variation in the shock location may affect

the drag coefficients, and the aircraft designer thus wants a

stronger assurance of reliability. Therefore, the determination

of the location and strength of the shocks remains as a criti-

cal task. One important parameter in this field of study is the

shock standoff distance or detachment distance, i.e., the dis-

tance between the detached shock wave and the surface of the

cylinder at the stagnation point, hereafter denoted as δ.

Many factors can be said to influence δ, e.g., Mach num-

ber, body profile, and gas properties. Due to the lack of a

purely theoretical method to predict standoff distances, it is

still necessary to produce even more accurate and widely

applicable approximations for this parameter. Over the years,

numerous studies have attacked the problem of formulating

a)Electronic mail: x.cui@shu.ac.uk. ORCID: 0000-0003-0581-3468.

theoretical approximations for δ in gas dynamics. In an attempt

to simplify this problem, different assumptions have been used,

e.g., Moeckel’s2 hyperbolic shock shape, Hida’s3 rotational

incompressible flow, and Lighthill’s4 assumption of a constant

density behind the shock. A good review of these very early

attempts is provided by Alperin5 and Van Dyke.6

Experimental methods are still, to this day, the most accu-

rate method of measuring δ; however, for high velocity flow

these tests become costly, time consuming, and complex. Tra-

ditionally the use of wind tunnels or shock tubes coupled

with Schlieren photography made it possible to experimentally

determine δ. Alperin5 carried out experimental investigation of

the detached shock wave phenomena for the flow around a cir-

cular cylinder for Mach numbers from 1.35 to 2, but the shock

standoff distance showed large disagreement with the theoret-

ical results based on the stream function or potential theories.

The experimental studies carried out by Kim7 covered a broad

range of Mach numbers from 1.35 to 6.0 but still showed no

close agreement with some of the theoretical approximations,

for example, of Hida’s.3 Similar experiments were also carried

out by Moeckel8 for studying the flow around axial symmetric

bodies, by Heberle et al.9 around cones and spheres, and by

Bryson10 around circular arc sections.

The flow with a detached shock wave becomes analyti-

cally difficult to solve since the location and the shape of a

shock wave cannot be predicted in advance and the flow field

in the shock region is highly vortical. Such vorticity effect

was investigated by Hida3 in his analytical approximation

for the shock standoff distance for flows around a circular

cylinder and a sphere, and he11 later extended his work to

hypersonic flows by assuming a perfect gas with a constant

1070-6631/2017/29(2)/026102/13/$30.00 29, 026102-1 Published by AIP Publishing.
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specific heat ratio. Kaattari12 achieved a good agreement with

experiment for Mach numbers from 2 to 6 by adopting an

inverted method where the body shape was used to deter-

mine the shock shape and location. Osborne and Crane13 and

Kaattari14 showed that the modified Newtonian law can be

applied to determine the location of the sonic points, provid-

ing a fairly well correlation with experimental studies for a

variety of blunt bodies. Nagaraia15 used the Newtonian cen-

trifugal equation for pressure behind the shock to predict δ for

blunt bodies in hypersonic flows.

Meanwhile, numerical analysis of the flow over circu-

lar cylinders has attracted wide attention too. For example,

Beletoserkovski16 and Hamaker17 included non-isentropic

conditions of the curved shock and vorticity for an inviscid

perfect gas. Thoman and Szewczyk18 produced time depen-

dent results for viscous flow and Yang et al.19 analysed shock

wave diffraction using inviscid compressible Euler equations.

Also, to improve the real world accuracy of the analysis of

high velocity flows, non-equilibrium gases must be evalu-

ated. Hornung20 and Wen and Hornung21 both introduced

a reaction parameter in their theoretical approximations to

account such effects. These studies provide better agreement

with experimental data as the Mach number tends to infinity

as these effects become more dominant. Further experimen-

tal and viscous numerical investigations include Trivandrum22

and Mizukaki23 who adopted a ballistic range and direction-

indicating color Schlieren method for measuring the standoff

distance for steel projectiles. With the application for Martian

re-entry, Sharma et al.24 conducted a CO2 based experiment

and numerical study. With the focus on re-entry vehicles,

Zander et al.25 coupled their hypervelocity numerical anal-

ysis with the experimental results obtained from expansion

tunnel tests for spheres. Moreover, the power of modern com-

puters makes it possible to apply direct numerical simula-

tion to such complex problems, for example, Nagata et al.26

carried out analysis for the flow properties around a sphere

by numerically solving the three-dimensional compressible

Navier-Stokes equations for the Mach number from 0.3 to 2.0

and Reynolds number from 50 to 300. This study highlights

that the Reynolds number and thus the boundary layer are

important factors influencing the size and shape of the shock,

where the shock standoff distance increases as the Reynolds

number decreases.

An interesting area that shares great commonalities and

analogies in particular for the study of shock waves has

emerged recently when the phenomena associated with the

gravity-driven granular flow or shallow-water type flow are

investigated. “Hydraulic bore” is an equivalent term of the

shock wave for water flows, but “granular shock” becomes

more acceptable for granular flows including natural haz-

ardous and geophysical flows. A comprehensive study of

the granular shock phenomena was carried out by Gray

et al.,27 where they generalized the hydraulic theory for snow

avalanches to model granular flows over obstacles. In their

study of the flow around a rearward facing pyramid, they cap-

tured the formation of the detached bow shock waves and

showed good agreement between their numerical simulation

and experiment. Another systematic study of the granular

shocks was made by Gray and Cui28 where they established an

approach to the granular oblique shock theory that is analogous

to gas dynamics. In particular they showed also the generation

of the strong oblique shocks in their numerical and experimen-

tal study, confirming the prediction by the shock theory. Indeed

many experimental and numerical studies have been carried

out in this field in recent years, e.g., Refs. 29–35. A recent

work by Cui and Gray36 has been focused on the granular flow

around a circular cylinder, where the bow shock wave was

investigated for its development and formation and the relation

of the standoff distance with the upstream Froude number.

Above all, these examples show that the study of the super-

sonic flow around circular cylinders and the determination of

the standoff distance δ continue to be an important and even

broader field of study. This paper aims to investigate an alter-

native theoretical approximation for δ for the flow around a

circular cylinder. To provide a form of validation, quantita-

tive data obtained by numerically solving the two-dimensional

time-dependent Euler equations shall be utilized, addressed in

Sec. II.

II. A DESCRIPTION OF THE COMPUTATION
TECHNIQUES

Until Abbett and Moretti’s breakthrough,37 solving the

blunt body problem numerically was not possible, due to ellip-

tic and hyperbolic equations which were needed for subsonic

and supersonic flows separately. Since then various compu-

tational techniques for evaluating shock inclusive flow fields

have been developed. Among these, the TVD (total variation

diminishing) schemes based on Harten38 and the NOC (non-

oscillatory central) schemes based on Nessyahu and Tadmor39

are two popular methods in modern shock capturing tech-

niques. In our simulation, an approximate Riemann solver

developed by Roe40 shall be used. It is a standard upwind flux

difference splitting technique, based on the shock capturing

numerical method by Godunov.41

A. Governing equations

For this numerical study, the governing conversational

time-dependent inviscid Euler equations are given as two-

dimensional, in the following Cartesian (x,y) form:

∂u

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0, (1)

∂(ρu)

∂t
+

∂(ρu2)

∂x
+

∂(ρuv)

∂y
= −∂p

∂x
, (2)

∂(ρv)

∂t
+

∂(ρuv)

∂x
+

∂(ρv2)

∂y
= −∂p

∂y
, (3)

∂ρet

∂t
+

∂(ρet + p)u

∂x
+

∂(ρet + p)v

∂y
= 0, (4)

where u and v are the velocity components, respectively, ρ is

the density, and p the pressure. The heat transfer is neglected

here, and the total specific energy is

et =
1

γ − 1

p

ρ
+

1

2
(u2
+ v2). (5)

Defining these in the differential vector form gives

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0, (6)
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where

U =



ρ

ρu

ρv

ρet


, F =



ρu

ρu2
+ p

ρuv

ρuh


, G =



ρv

ρvu

ρv2 + p

ρvh


, (7)

and the specific enthalpy is given by

h = et +
p

ρ
. (8)

The above governing equations are then numerically

solved using a finite volume method under appropriate bound-

ary conditions. For simplicity we here leave such numeri-

cal details in Appendix A, and we shall now address the

use of the mesh adaption technique, which is shown to

be highly effective for resolving shock waves with high

accuracy.

B. Mesh adaption

The formation of shock waves in the flow field leads to

certain accuracy difficulties for numerical schemes due to the

extremely or infinitely large gradients across the shock. A very

effective tool to further improve the numerical accuracy in

these regions is to adopt a solution-adaptive grid refinement,

for example, a solution-adaptive gradient refinement in our

case.

The grid is adapted by multiplying the Euclidean norm of

the gradient ∇f for the selected variable f by the length scale

(e.g., the work of Daunenhofer and Baron42). In this case, it

corresponds to the density and the square of the cell volume,

with the error indicator ei1 being computed by

|ei1 | = (Acell)
r
2 |∇f |, (9)

where Acell denotes a cell area weighted by a gradient volume

factor r. In the computation, after the solution was obtained

FIG. 1. Examples of the mesh adap-

tation technique applied for varying

Mach numbers. The left hand side mesh

is for M∞ = 1.7, and the right hand

mesh for M∞ = 3, where the adapted

region moves accordingly with the

shock region.
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using a normal mesh, a gradient adaption with a refined thresh-

old of 10% of the maximum density value was applied. This

continued until no additional iterations were required to con-

verge the solution between each relative grid. Fig. 1 shows an

example of such a method for two free stream Mach numbers

of 1.7 and 3. Clearly, the adapted regions vary accordingly with

the change of the location of the shock waves. It is also noticed

that some refinements were performed in regions close to the

body surface, in particular to the top and bottom areas of the

cylinder, indicating a rapid density change in these regions too.

Further results are given in Appendix B, see Figs. 12 and 13,

and all these clearly indicate that excellent shock resolution

was achieved using this approach.

The Mach number contours in Fig. 1 (and the velocity

contours in Fig. 10 of Appendix B) also show the formation

of recirculation zones after the flow detaches at the rear of the

circular cylinder, and it is observed that these zones become

stable for all Mach numbers in the tested range, i.e., M∞ = 1.35

to 6.0, after the solutions converge to a steady state. However,

a study by Salas43 states that these zones fail to reach a stable

state even for a low supersonic condition. On the other hand,

studies for the transonic flow (e.g., the works of Moretti,1 Pan-

dolfi and Larocca,44 Botta,45 and Hafez and Wahba46) suggest

unsteady periodic patterns for such recirculation zones. Fur-

ther study to whether the absence of such periodic oscillations

at the supersonic region is a result of the supersonic nature of

the flow or due to any numerical simplification could reveal

some interesting insight.

III. THEORETICAL APPROACH

A. The modified Newtonian law

For the flow around blunt bodies, Lees47 proposed a

modification to the Newtonian impact theory in a form

Cp

Cp,max

= sin2θ, (10)

where θ is the angle of the body surface tangent to the

free stream flow direction, as shown in Fig. 2. The pressure

FIG. 2. A schematic showing the geometry of the flow field.

coefficient Cp is

Cp =
2

γM2
∞

(

p

p∞
− 1

)

, (11)

where p is the surface static pressure on the circular cylinder.

Using subscript “2” to denote the immediate after-shock con-

ditions on the stagnation stream line, i.e., the central line in

Fig. 2, the standard normal shock relation then gives

p2

p∞
= 1 +

2γ

γ + 1

(

M2
∞ − 1

)

. (12)

It is understood that for supersonic flows typical changes

associated with thermodynamic properties occur across the

shock wave, such as the increase in entropy and the drop

of the stagnation (or total) pressure, but the stagnation (or

total) temperature is still unchanged due to the conservation

of energy. Hypersonic flows could be even more complicated

since phenomena, for example, entropy layer, shock-boundary

layer interaction, and non-equilibrium effect of gases become

more dominant. Our discussion here shall focus on supersonic

flows, with the assumption that the flow after the shock waves

is regarded isentropic when no further shock waves occur. This

feature is also further confirmed in our CFD (computational

fluid dynamics) computations, for example, as shown in Fig. 11

in Appendix B. It means that the stagnation pressure after the

shock, p02, is constant too for the flow field between the shock

and the fore part of the body, which can be given by

p02

p2

=

(

1 +
γ − 1

2
M2

2

)
γ

(γ−1)

, (13)

where the after-normal-shock Mach number

M2 =

√

2 + (γ − 1) M2
∞

2γM2
∞ − γ + 1

. (14)

Considering a surface point on the cylinder with a Mach

number M with respect to the static pressure p, we can have a

similar relation to (13),

p02

p
=

(

1 +
γ − 1

2
M2

)
γ

(γ−1)

. (15)

Therefore, the static pressure coefficient Cp of (11) can

be obtained by combining Eqs. (12), (13), and (15) such that

p

p∞
=

p

p02

·
p02

p2

·
p2

p∞
. (16)

Consequently, the stagnation pressure coefficient Cp,max

is achieved when M = 0, in a form

Cp,max =
2

γM2
∞


[

(γ + 1)2M2
∞

4γM2
∞ − 2 (γ − 1)

] γ

γ−1

×
[

1 − γ + 2γM2
∞

γ + 1

]
− 1

}

. (17)

On the other hand, at the sonic point where Ms = 1, the

corresponding surface pressure coefficient Cps can be obtained

in a similar manner. Substituting Ms = 1 first into Equation (15)

gives

ps

p02

=

(

γ + 1

2

)− γ

γ−1

, (18)
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where ps is the static pressure at the surface sonic point of

the cylinder. Then further substituting (12), (13), and (18) into

(11) yields

Cps =
2

γM2
∞


(

γ + 1

2

)− γ

γ−1
[

(γ + 1)2M2
∞

4γM2
∞ − 2 (γ − 1)

] γ

γ−1

×
[

1 − γ + 2γM2
∞

γ + 1

]
− 1

}

. (19)

We can now calculate Cp,max and Cps according to (17)

and (19), respectively. With the specific heat ratio γ = 1.4,

Fig. 3 shows the variation of Cps and Cp,max for the free stream

Mach number from 1 to 10, where the coefficients increase

rapidly only for lower Mach numbers, say, up to around 3 to

4. In particular, when M∞ = 1, Cps = 0, and Cp,max = 1.2756.

When M∞→∞, the limiting values are Cps = 0.9717 and

Cp,max = 1.8394, respectively.

B. The sonic point at the cylinder surface

For the simplicity of discussion, let the radius of the cir-

cular cylinder R = x2 + y2 = 1, which can be achieved through

the non-dimensionalization of the length scales. Denote the

coordinates of the sonic point as (xs,ys), as shown in Fig. 4;

the inclination angle of the surface sonic point, θs, has rela-

tions such that sin θs = xs, cos θs = ys. Further let θs+ βs =
π
2

,

the arc length from the sonic point to the stagnation point

(or the leading edge point) on the cylinder is Ls =Rβs = βs.

Based on (10), we can establish a relation for βs in such a

form

βs =
π

2
− sin−1

√

Cps

Cp,max

. (20)

Note also that the angle βs must be given in radians when used

to calculate Ls.

Clearly, with the increase of the free stream Mach number,

the subsonic region that is bounded by the sonic lines decreases

too. For this reason, we denote βs as the surface sonic angle,

and its variation with M∞ is shown in Fig. 5 with γ = 1.4. Also

shown in the figure are the variation of the after-normal-shock

FIG. 3. Variation of the surface sonic pressure coefficient Cps and stagnation

pressure coefficient Cp ,max with the free stream Mach number M∞, where

γ = 1.4.

FIG. 4. Schematic showing the sonic point location, (xs,ys), on the cylinder

surface. A “sonic stream tube” is also illustrated in the diagram, where the

corresponding Mach number M3 = 1 in the tube. The bottom-left inset shows

a linear Mach number profile between the shock and the body on the central

stagnation stream line, where δ is the shock standoff distance, and α repre-

sents an angle between the Mach number line and central stagnation stream

line.

Mach number M2 (in dashed-dotted line) and the variation of

the density ratio across the normal shock ρ∞/ρ2 (in dashed

line) based on

ρ∞
ρ2

=

2 + (γ − 1)M2
∞

(γ + 1)M2
∞

. (21)

In the figure, the labels for M2 and ρ∞/ρ2 are marked

on the vertical axis on the right-hand-side. In particular,

when M∞ = 1, βs = 90◦ thus θs = 0◦, M2 = 1, and ρ∞/ρ2 = 1;

when M∞→∞, βs = 43.3787◦, θs = 46.6213◦, M2 = 0.3780,

and ρ∞/ρ2 =
1
6
.

FIG. 5. Variation of the surface sonic angle βs (in degrees here), M2 and

ρ∞/ρ2 with the free stream Mach number M∞, where γ = 1.4.
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C. A theoretical approximation to the shock
standoff distance

1. Reduction rate parameter for the after-shock
subsonic region, bys

In his experimental measurement of the shock standoff

distance for hypersonic flows around spheres, Lobb48 shows

that the ratio of the standoff distance δ to the sphere diameter

D correlates with the ratio of the free stream density ρ∞ to the

after-normal-shock density ρ2 on the central stagnation stream

line in such a relation

δ

D
= 0.41

ρ∞
ρ2

. (22)

This is followed by further experimental and theoreti-

cal studies on equilibrium and non-equilibrium hypersonic

flows over spheres and circular cylinders, e.g., the works of

Hornung,20 Wen and Hornung,21 and Olivier.49 Because the

standoff distance is related to the average density between the

shock wave and the body on the stagnation stream line (or

central line), a linear density profile is assumed if the den-

sity on the body is smaller than the equilibrium density.21

Indeed, such a linear density profile does show a good agree-

ment even with our simulation results, as shown in Fig. 13 (see

Appendix B). However, while (22) may show a good agree-

ment for the shock standoff distance for hypersonic flows, it

fails to provide a consistent agreement for lower supersonic

cases in particular when M∞ is close to 1 since theoretically,

δ/D becomes infinitely large but (22) only limits it to 0.41 as

ρ∞/ρ2 → 1.

Instead of assuming a linear density profile, we now adopt

a different approach. Consider a “sonic stream tube” in a flow

field between the after-shock region and the body, denoted by

subscript “3”, as shown in Fig. 4. The conservation of continu-

ity requires that the mass flow rate in this region, ṁ3 = ρ3A3v3,

is constant, where ρ3, A3, and v3 are the density, cross-sectional

area, and velocity at a location of the stream tube, respectively.

Assuming an isentropic condition for perfect gases, we can

further re-write ṁ3 into

ṁ3 = ρ3A3v3

=

p03A3M3
√
γ

√

RgT03

(

1 +
γ − 1

2
M2

3

)− γ+1
2(γ−1)

= constant, (23)

where Rg represents the gas constant. For the stagnation quan-

tities, the isentropic assumption gives that p03 = p02, T03 = T02,

where p02 and T02 can be obtained through the after-normal-

shock relation, for example, Equation (13). Therefore, we can

specify the sonic stream tube with the following conditions:

p03 = constant, T03 = constant, and M3 = 1. Further with γ

and Rg being fixed, we can conclude from (23) that any cross-

sectional area of the sonic stream tube, A3, remains constant

irrespectively, at least in an implicit way, of the free stream

Mach number M∞.

As previously discussed in Sec. III B, the after-shock

subsonic region bounded by the sonic lines reduces with the

increasing M∞, from infinitely large when M∞→ 1 to an

approximately fixed value when M∞ → ∞, we thus introduce

a subsonic region parameter b in the following form:

b =
A3

θs
=

A3

cos−1ys

. (24)

Since the cross-sectional area of the sonic stream tube

A3 only has a finite value, b varies inversely with the angle

θs, from infinitely large as M∞→ 1 to a limiting value as

M∞→∞ too, indicating a similar trend to the subsonic region.

We may further assume that b is a primary function of ys,

while the variation of A3 only has a secondary effect. There-

fore, the reduction rate of this subsonic region with M∞ can

be represented by the following parameter:

bys =
db

dys

=

A3
√

1 − y2
s

(

cos−1ys

)2
. (25)

With the geometrical relation for the unit circular cylin-

der shown in Fig. 4, we have xs =

√

1 − y2
s = cos βs and

ys = cos θs, so (25) can be re-written as

bys =
A3

θ2
s cos βs

. (26)

Fig. 6 shows a variation of the subsonic region parameter

b and its reduction rate parameter bys with M∞, where A3 is

chosen 1. The variation of bys is promising since it tends to

maintain both the dramatic drop for low M∞ and the asymp-

totical approach for high M∞. On the other hand, the use of

the cross-sectional area parameter A3 is also interesting since it

could further reshape the b-curve. Since A3 is related with the

sonic region, one direct and sensible choice is to let A3 =L2
s ,

where Ls is the arc length from the sonic point of the upper

surface to the stagnation point of the body, as shown in Fig. 4.

With the unit circular cylinder geometry, we have Ls = βs, thus

A3 = β
2
s . Other alternative representations for A3 have also

been attempted in the preliminary study, but this L2
s choice

is shown to offer a better result. Therefore, we can define a

reduction rate parameter for the after-shock subsonic region

in such a form

bys =
β2

s

θ2
s cos βs

. (27)

FIG. 6. Variation of b, bys, and ys with the free stream Mach number M∞.
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2. Reduction rate parameter for the shock
standoff distance, δM2

As mentioned in Sec. III C 1, linear density profiles

between the shock and the body have been used in many previ-

ous studies, but we here assume a linear Mach number profile

on the stagnation stream line instead. As shown in the inset

of Fig. 4, let δ be the standoff distance between the shock

and the body and α be the angle formed between the Mach

number line and the central stagnation stream line, then we

have

δ =
M2

tan α
. (28)

The dependence of δ on M2 and tan α can be rather com-

plicated. Since M2 only varies as a finite value regardless of

the variation of M∞, tan αmay thus be required to change from

0 (as M∞ → 1) to∞ (as M∞ → ∞) so as to accommodate the

corresponding variation for δ. With respect to the above, we

can define the range for α from 0 to π/2. To make it compa-

rable with bys, we introduce a reduction rate parameter for the

shock standoff distance in such a manner

δM2
=

∂δ

∂M2

=

∂

∂M2

(

M2

tan α

)

= cot α. (29)

Obviously, δM2
represents a rate of change of the shock

standoff distance with respect to the after-normal-shock Mach

number M2. With the linear Mach number profiles’ assump-

tion, it is simply equal to cot α. However, this simple relation

shows an interesting and reasonable representation for the vari-

ation of δM2
with M∞: when M∞ is low (i.e., close to 1), α is

also small (close to 0), so cot α, hence δM2
, changes dramat-

ically; when M∞ is relatively high, say, above 5, α can be

“tuned” close to π/2, hence the value of cot α is close to zero

already, which means δM2
is small and the standoff distance δ

is then close to a small and almost constant value. Therefore,

such a variation behavior for δM2
is at least consistent with, or

might even be a good approximation for the variation of δ if

cot α could be properly represented.

3. A proposed method: bys = δM2

After the discussions in Secs. III C 1 and III C 2, finding

a good representation for δM2
, the reduction rate parameter

for shock standoff distance, becomes the most important task.

In Sec. III C 2, a term “tuned” was deliberately used when

discussing the change for cot α. It makes us to almost naturally

link δM2
with bys, another parameter representing the reduction

rate for the subsonic region between the shock and the body,

possibly based on these two reasons. First, they both possess

a similar variational behavior with M∞, that is, changing from

infinitely large to a very small value at a rapid rate. Second,

bys itself carries abundant information about how a detached

shock, and consequently the subsonic region it has induced,

would vary with the free stream conditions, e.g., M∞, and with

the body surface conditions, e.g., ys. We therefore use bys to

“tune” δM2
in its simplest form

δM2
= cot α = bys =

β2
s

θ2
s cos βs

. (30)

With (28), the shock standoff distance is then formulated as

δ =
M2 β

2
s

θ2
s cos βs

. (31)

IV. DISCUSSION OF THE RESULT

A. Approximation of the shock standoff distance

Combining (31) with (14), the shock standoff distance can

be re-written as

δ =
β2

s

θ2
s cos βs

·

√

2 + (γ − 1) M2
∞

2γM2
∞ − γ + 1

. (32)

Note that δ here is already non-dimensionalized by the radius

of the circular cylinder since R = 1, and it is obtained under

the assumption of a linear Mach number profile between the

shock and the body on the central stagnation stream line. In

Fig. 7, the normalized shock standoff distance, δ/D, obtained

according to (32) is shown by the solid line. Surprisingly,

an excellent agreement of it is shown with the experimental

results by Alperin5 that are drawn as filled diamond symbols,

with the experimental results by Kim7 as filled circle sym-

bols, and also with our computational results as hollow square

symbols, for a Mach number range from 1.35 to 6. This excel-

lent agreement for the lower supersonic range, say, for Mach

numbers up to 3, might be of particular interest since most of

the available theoretical methods have so far failed to show

a better agreement. Also shown in the same figure are some

results that are obtained using different methods, as explained

below.

If adopting a linear density profile instead, without repeat-

ing the details of similar derivations, we may establish an

alternative relation for the shock standoff distance in such a

form

δ =
β2

s

θ2
s cos βs

·
ρ∞
ρ2

=

β2
s

θ2
s cos βs

·
2 + (γ − 1) M2

∞
(γ + 1) M2

∞
. (33)

In Fig. 7, the result for δ/D obtained from (33) is shown in dot-

ted lines, where a significant difference is seen with the above

FIG. 7. The non-dimensional shock standoff distance δ
2R

as a function of the

free stream Mach number M∞ obtained by different methods, where γ = 1.4.
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FIG. 8. Variation of ρ/ρ∞, M with x/R

on the central stagnation stream line for

the free stream M∞ = 1.35, 2, 5. The

scattered symbols represent computa-

tional results, the solid lines represent

theoretical calculations by assuming lin-

ear Mach number profiles and isentropic

flow for the region between the shock

and the body, and the dashed-dotted

lines represent the results based on lin-

ear density profiles. Note that the center

of the cylinder is at x = 0 which is not

shown in the graphs.

mentioned results. To further compare with the approximation

of Lobb,48 we create a constant coefficient for

L =
β2

s

θ2
s cos βs

(34)

under M∞ → ∞ and γ = 1.4, hence reach that L = 0.5956. This

means that if following the density ratio method of Lobb’s, the

shock standoff distance for supersonic flows around a circular

cylinder may be described as

δ

D
= 0.5956

ρ∞
ρ2

. (35)

With comparison to (22), the correlation factor of 0.5956 is

relatively high. This however seems reasonable since the flow

around a circular cylinder is in fact a two-dimensional prob-

lem, where the so-called “3d shock relieving effect” is not

considered. For a three-dimensional scenario, for example, a

supersonic flow around a sphere, the shock wave would be

further compressed against the sphere hence a shorter standoff

distance would be formed.

Another theoretical method that would be interesting

to compare with is the one developed by Hida.3 Assuming

an incompressible but rotational flow behind the detached

shock, he derived an approximation for the distance parameter,

B = δ + R, by finding solutions for a transcendental

equation

C(C2 − 2C + 8)B4
+ 4(C2 − 2C − 4)B2

− 4C3B2 log B − C2(2 + C) = 0, (36)

where the constant C is

C =
3
(

M2
∞ − 1

)2

(3M2
∞ − 1)

(

1 +
γ−1

2
M2
∞
) . (37)

According to his method, a limiting value, δ/D= 0.1241, is

reached as M∞→∞. However, since C is singular at M∞ = 1,

it tends to break down as M∞→ 1. The result for δ/D obtained

by this method is also shown in Fig. 7 in dashed lines. Inter-

estingly, his result appears to sit in-between the solutions

based on (33) and (35), and these results agree very closely

when the Mach number becomes high, say, above 3 to 4.

As a further reference of interest, some limiting values with

the variation of M∞ (for γ = 1.4) are given in Table I in

Appendix B.

B. Use of linear Mach number profiles and linear
density profiles

The results shown in Fig. 7 suggest a clear difference

for approximating δ between the use of linear Mach number

profiles, Equation (32), and the use of linear density profiles,

Equation (33). Clearly, formula (32) offers a better agreement.

To give more insight, we further plot the variation of the flow

properties, say, density ratio ρ/ρ∞ and Mach number M, in

a flow field on the central stagnation streamline for the free

stream Mach number M∞ = 1.35, 2, and 5, as shown in Fig. 8,

where a normal shock condition is observed on this line. It

may be understandable then why the linear density profiles

have been adopted in previous studies since they offered a bet-

ter agreement for the computational results for lower Mach

numbers of 1.35 and 2. However, the linear Mach number pro-

files show a better agreement when M∞ = 5. Perhaps because of

this better agreement for both ρ/ρ∞ and M when M∞ becomes

larger, formula (32) is able to provide a better overall agree-

ment for δ than (33). Further detailed results with the use of

linear Mach number profiles and linear density profiles are

given in Appendix B (e.g., Figs. 11–13), confirming a better

agreement for higher M∞ with the use of linear Mach number

profiles.

C. Extension to free-surface granular flows

Cui and Gray36 studied supercritical free-surface gran-

ular flows around a circular cylinder both numerically and

experimentally for a Froude number range up to 6. By anal-

ogy, the term “supercritical” is equivalent to supersonic in

gas flows, Froude number Fr∞ is similar to Mach number

M∞, while the avalanche thickness is equivalent to density.

In their experimental work, they measured the shock standoff

distance against the upstream Froude number, which agrees

well with the computational result for higher Froude num-

bers, say, Fr∞ ≥ 2.5. We now analogously apply (32) (theory-1,

with a linear Froude number profile) and (33) (theory-2, with a

linear avalanche thickness profile) to work out the correspond-

ing shock standoff distance. The comparison in Fig. 9 shows

a mixed picture. For lower Froude numbers, the theoretical

results based on the modified Newtonian theory are bet-

ter agreed with the computational and experimental results;

but for higher Froude numbers, the theoretical results

show a clear discrepancy though theory-2 looks slightly

better.
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FIG. 9. Shock standoff distance δ against the upstream Froude number Fr∞
for the granular flow around a circular cylinder. The analogous theoretical

results are compared with the results obtained by Cui and Gray.36 [Reproduced

with permission from Cui and Gray, J. Fluid Mech. 720, 329 (2013). Copyright

2013 Cambridge University Press.]

V. CONCLUSIONS

The modified Newtonian theory, Equation (10), estab-

lishes a relation between the pressure coefficient Cp and the

angle of the body surface θ. It allows the location of the surface

sonic point, parameterized by θs and βs, to be determined if

the flow properties in the region bounded between the bow

shock wave and the fore part of the body can be known.

To achieve this, three conditions have been made. First, the

change of the flow properties across the bow shock wave on

the stagnation stream line is calculated according to the stan-

dard normal shock relations, which is only dependent on the

upstream Mach number M∞. Second, the flow condition after

crossing the shock wave is regarded isentropic when no further

shock waves occur, which means the total (stagnation) proper-

ties, e.g., p02 and T02, remain constant in this region. Finally,

in order to determine the flow properties, say, p, ρ, T, and M

in this region, a further assumption needs to be made, which

can be either the “linear density profiles” used in previous

studies or the “linear Mach number profiles” adopted in our

work.

With the determination of the after-shock flow field and

the surface sonic point, the shock standoff distance is approx-

imated by relating it to the variation (or reduction) of the

after-shock subsonic region. That is, by letting bys = δM2
(see

Sec. III C 3), we have formulated an expression for the shock

standoff distance, Equation (32), based on the “linear Mach

number profiles” assumption. It has shown an excellent and

consistent agreement with the computational solutions and

previous experimental results for a broad range of Mach num-

bers from 1.35 to 6. Other alternative approaches, for example,

with the use of the “linear density profiles” or by apply-

ing different approximations for bys and δM2
, have also been

investigated but show no better results. On the other hand,

the extension of this method to granular flow problems does

not seem to be straightforward. Further extensions to super-

sonic flows around spheres and to hypersonic flows would be

beneficial to provide a broader assessment to the proposed

method.

In summary, providing a good theoretical approximation

for the shock standoff distance for a wide range of supersonic

speeds is obvious and important since the previous theoreti-

cal methods have been unable to do so. The proposed method

based on the modified Newtonian theory in this paper may offer

some useful insights for understanding the basics of super-

sonic flows. For example, the relation of the surface sonic

point hence the after-shock subsonic region with free stream

Mach numbers, the surface stagnation and sonic pressures,

the isentropic behavior in the after-shock flow field, the use

of linear Mach number profiles or linear density profiles, or

even the discrepancies between gasdynamic flows and granu-

lar flows may help to reveal important physical insights in this

field.
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APPENDIX A: A DESCRIPTION
OF THE COMPUTATIONAL METHOD

1. Finite volume approximation

The discretisation of the governing equations using the

FVM (finite volume method) is similar to what was used by

Jameson et al.51 and Ren.52 The governing equations are writ-

ten in the following FVM form, as a control balance equation

in two dimensions

∂

∂t

∫∫
Ωi,j

Udxdy +

∮

∂Ωi,j

H · ndl = 0, (A1)

where Ωi,j is the control volume, ∂Ωi,j represents its respec-

tive boundary, n = nxi + nyj is the unit vector normal to the

boundary, and U and H = F i + Gj are the conserved variable

and the inviscid flux tensor, respectively.

Using a quadrilateral control volume, the flux through the

boundary can be expressed as

∂

∂t

∫∫
Ωi,j

Udxdy +

4
∑

k=1

∮

Ik

H · ndl = 0, (A2)

where Ik represents the faces and k denoting each specific

face (k = 1, 2, 3, 4). Averaging U within the control volume

TABLE I. Limiting values for some important parameters for M∞ → 1 and

M∞ → ∞, where γ = 1.4.

M∞ M∞ → 1 M∞ → ∞

M2
a 1 0.3780

θs (radian) 0 0.8137

ρ∞/ρ2 1 1/6

δ/D, based on (32) ∞ 0.2251

δ/D, based on (33) ∞ 0.0993

δ/D, based on (35) 0.5956 0.0993

δ/D, based on Hida’s Undefined 0.1241

aCross-shock Mach number on the central stagnation stream line.
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gives

∂U

∂t
= − 1

|Ωi,j |

4
∑

k=1

∫
Ik

H · ndl = 0. (A3)

Integrating the flux terms according to the midpoint rule yields

a spatially second order approximation in such a form

∂U

∂t
= −

1

|Ωi,j |

4
∑

k=1

(H)k · (n)k∆Ik , (A4)

where ∆Ik denotes the length of Ik . The fluxes are approx-

imated using the Roe Flux Difference Splitting (Roe-FDS)

method (see the work of Roe40), for example,

Fn =
1

2
(FnL + FnR) −

1

2

4
∑

k=1

ak |λk | rk , (A5)

where ak denotes the wave strength, λk is an eigenvalue, rk

represents the right eigenvector, and subscripts “L” and “R”

represent the left and right fluxes, respectively.

The “least squares cell based” method was selected as the

interpolation scheme, which assumes the data between each

cell zone vary linearly,

φcf = φc0 + (∇φ)c0 · ∆rf , (A6)

where φ is the flux variable and rf represents the vector from

the cell centroid c0 to the cell face cf. The subscripts f and 0

denote the cell face and center conditions, respectively. Writ-

ing similar equations to (A6) in a compact form for each cell

surrounding c0 gives

[J] (∇φ)c0 = ∆φ = (φcf − φc0), (A7)

where [J] is the Jacobian coefficient matrix. The cell gra-

dient ∇φ is then calculated from this “over determined”

linear system of equations by decomposing the composi-

tion matrix using the Gram-Schmidt process, a procedure

detailed by Anderson.53 For this two dimensional cell cen-

tered scheme, a matrix of weights for each cell is found, with a

separate weight component for each cell face W x
i0

and W
y

i0
.

Thus, the gradient at the cell center is found by multiply-

ing the said weights by the difference vector ∆φ, hence we

have

(φx)c0 =

N
∑

i=1

W x
i0(φcf − φc0), (A8)

(φy)
c0
=

N
∑

i=1

W
y

i0
(φcf − φc0). (A9)

In the summation N represents the number of edges that

connect to the cell. A similar process is shown by Anderson

and Bonhaus54 with further details relating to the calculation

of the weights.

2. Boundary conditions

A pressure far field boundary is used for this numeri-

cal study with the free stream conditions P∞ = 101 350 Pa,

T∞ = 300 K, and 1.35 6 M∞ 6 6. It can only be used along-

side the ideal gas law; for the compressible flow this is given

as

ρ =
pop + p

Rg

Mw
T

, (A10)

where pop and p are the operating and local relative pressures,

respectively, Rg is the ideal gas constant, Mw is the molecular

weight, and T is the static temperature.

The far field is based on Riemann invariants where this

non-reflective boundary condition computes the flow variable

based on incoming and outgoing waves. Thus, the normal

velocity, Vn, on the wall and the local speed of sound, a, are

obtained as

Vnb
=

1

2
(R+ + R−), (A11)

ab =
γ − 1

4
(R+ − R−), (A12)

where γ is the specific heat ratio, R+ denotes the Riemann

invariant for an internal grid (outgoing wave) and R☞ for a far

field value (incoming wave) detailed by Anderson and Bon-

haus54 and Carlson,55 and the subscript b denotes the boundary

condition. For this computation, the flow is locally supersonic

entering and leaving the domain, so the following equations

are valid

R+ = Vni
−

2ai

γ − 1
, (A13)

R− = Vno
+

2ao

γ − 1
, (A14)

with the subscripts i and o representing incoming and outgo-

ing characteristics, respectively. Consequently, the tangential

velocity Vθ and entropy S are extrapolated from the interior

by

Vθ =
xu − yv
√

x2
+ y2

, (A15)

S = cv

[
p/pref

(ρ/ρref )γ
− 1

]
, (A16)

where cv is the specific heat at constant volume and the sub-

script ref represents free stream conditions. The remaining

boundary values such as ub, vb, ρb, and pb are then found

using

ub = uref + n̂x(Vnb
− Vnref

), (A17)

vb = vref + n̂y(Vnb
− Vnref

), (A18)

with n̂ being the normal unit vector in the x or y direction,

and

ρb =
*,

a2
b

γSb

+-
1

γ−1

, pb =

ρba2
b

γ
, (A19)

and the temperature is simply extrapolated from (A10).

Obviously, the inviscid nature of the flow means a slip-

wall boundary is enforced at the body surface. These com-

putations are performed on an unstructured quadrilateral

grid to allow a better flexibility for adapting the grid as

needed.

APPENDIX B: SOME FIGURES AND TABLES

The appendix gives some further figures and tables that

may be helpful to gain a more detailed picture for the rele-

vant topics. This includes the following: the limiting values for

some important parameters used in the approximation study,
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FIG. 10. The after-shock subsonic region for different Mach numbers (top panel), where the left hand side is for M∞ = 1.7 and the right hand side for M∞ = 3. The

images at the bottom panel show streamlines around the cylinder, where the recirculation zones at the rear of the cylinder are clearly shown stable (computational

results).

as given in Table I; the after-shock subsonic region for dif-

ferent Mach numbers and corresponding streamlines around

the cylinder, as shown in Fig. 10; the variation of the total

temperature and total pressure around the shock waves, as

shown in Fig. 11; the variation of the flow properties across

the shock waves, as shown in Figs. 12 and 13.

FIG. 11. Variation of T0/T∞ and p0/p∞ with x/R on the central stagnation stream line for M∞ = 1.35, 1.7, 2, 3, 4, 5. The scattered symbols denote computational

results and the solid lines represent theoretical calculations. Note that for the pressure ratio on the right hand side, the vertical axis is given in the logarithm scale.

From these two graphs, it shows clearly the conservation of the stagnation temperature across the shocks, and the stagnation pressure drops across the shocks

but is then conserved before reaching the surface of the cylinder (x/R = ☞1). Therefore, the flow field between the shock and the front of the cylinder behaves

isentropically.



026102-12 J. Sinclair and X. Cui Phys. Fluids 29, 026102 (2017)

FIG. 12. Variation of ρ/ρ∞, M,

T/T∞, and p/p∞ with x/R on the

central stagnation stream line for

M∞ = 1.35, 1.7, 2, 3, 4, 5. The scattered

symbols represent computational results

and the solid lines represent theoretical

calculations by assuming linear Mach

number profiles and isentropic flow

for the region between the shock and

the body. Note that the center of the

cylinder is at x/R = 0 which is not shown

in the graphs.

FIG. 13. Variation of ρ/ρ∞, M,

T/T∞, and p/p∞ with x/R on the

central stagnation stream line for

M∞ = 1.35, 1.7, 2, 3, 4, 5. The scattered

symbols represent computational

results and the solid lines represent

theoretical calculations by assuming

linear density profiles and isentropic

flow for the region between the shock

and the body.
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