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Abstract

In this paper, we provide both qualitative and quantitative measures of the precision of

measuring integrated volatility by realized volatility for a �xed frequency of observation. We

start by characterizing for a general di�usion the di�erence between realized and integrated

volatility for a given frequency of observation. Then we compute the mean and variance of this

noise and the correlation between the noise and the integrated volatility in the Eigenfunction

Stochastic Volatility model of Meddahi (2001a). This model has as special cases log-normal,

aÆne and GARCH di�usion models. Using previous empirical results, we show that the noise

is substantial compared with the unconditional mean and variance of integrated volatility,

even if one employs �ve-minute returns. We also propose a simple approach to capture the

information about integrated volatility contained in the returns through the leverage e�ect.

We show that in practice, the leverage e�ect does not matter.
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1 Introduction

Several recent studies highlight the advantage of using high-frequency data to measure volatility

of �nancial returns. These include Andersen and Bollerslev (1998), Andersen, Bollerslev,

Diebold and Ebens (2001), Andersen, Bollerslev, Diebold and Labys (2001a, ABDL hereafter),

Barndor�-Nielsen and Shephard (2001b-d), Taylor and Xu (1997) and Zhou (1996); for a

survey of this literature, Andersen, Bollerslev and Diebold (2001), Barndor�-Nielsen, Nicolato

and Shephard (2002) and Dacorogna et al. (2001) should be consulted. Typically, when one is

interested in volatility over, say, a day, then these papers propose to study the estimation of

this volatility by the sum of the intra-daily squared returns, such as returns over �ve or thirty

minutes. This measure of volatility is called the realized volatility. The theoretical justi�cation

for this approach is that when the length of the intra-daily returns tends to zero, the sum tends

in probability to the quadratic variation of the underlying di�usion process (ABDL, 2001a;

Barndor�-Nielsen and Shephard, 2001a; Comte and Renault, 1998). Quadratic variation plays

a central role in the option pricing literature. In particular, when there are no jumps, quadratic

variation equals the integrated volatility highlighted by Hull and White (1987).

An important characteristic of high-frequency data is the presence of microstructure e�ects

(Bai, Russell and Tiao, 2001; Andreou and Ghysels, 2001). Therefore, using data at the highest

available frequency to measure volatility is not necessarily the best approach since the measure

may be contaminated by microstructure e�ects. The solution adopted in the literature is to

consider intra-daily returns over an intermediate frequency. For instance, when ABDL (2001b)

address the issue of forecasting volatility through realized volatilities, the latter are based on

intra-daily returns over thirty minutes.

The main objective of the paper is to provide both qualitative and quantitative measures of

the precision of measuring integrated volatility by the realized volatility for a given frequency.

In particular, we characterize the relative quality of the measures when one moves from one

frequency to another.

Throughout the paper, we will assume the underlying data generating process is a

continuous time, continuous sample-path model. We will derive the properties of the di�erence

between integrated volatility and the realized volatility computed with intra-daily returns for

a given frequency. The random variable de�ned as the realized volatility minus the integrated

volatility is denoted the noise in what follows.

We start by characterizing this noise term in a general setting. The form of the noise allows

us to give three of its qualitative characteristics. First, the unconditional mean of the noise

is nonzero if and only if the drift of the di�usion characterizing the asset returns is nonzero.

Second, the noise is heteroskedastic. Moreover, its conditional variance is correlated with the

integrated and realized volatilities. Third, the noise is correlated with the integrated volatility

if and only if there is a leverage e�ect or the drift depends on the instantaneous volatility.
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In order to quantify these three characteristics, we consider a speci�c, yet general, class

of continuous-time models. We assume that the underlying continuous-time process is an

Eigenfunction Stochastic Volatility (ESV) model as presented in Meddahi (2001a). This class

contains most of the popular SV models; in particular, the log-normal model of Hull and White

(1987) and Wiggins (1987), the square-root and aÆne models of Heston (1993) and DuÆe, Pan

and Singleton (2000) respectively, and the GARCH di�usion model of Nelson (1990). In this

setting, we derive explicitly the mean and the variance of the noise and its correlation with

integrated volatility.

These theoretical results complement those of Barndor�-Nielsen and Shephard (2001b).

These authors provide two important theoretical results. They give in a general setting a

Central Limit Theorem of the convergence of the realized volatility to the integrated volatility

when the length of the intra-daily returns tends to zero. Thus they provide the speed of

convergence and the asymptotic variance of the noise term. This variance is stochastic, even

in the limit. In the second more speci�c result, they characterize the mean and variance of the

noise when the underlying instantaneous variance process is a linear combination of stationary

covariance and autoregressive processes as the positive L�evy processes of Barndor�-Nielsen and

Shephard (2001a).1 In both cases, the authors ruled out leverage e�ects and assumed a driftless

model in the second case. Thus our results extend the second results of Barndor�-Nielsen and

Shephard (2001b) to the case where the underlying di�usion process governing the volatility

is general and where there is both leverage e�ect and drift. Moreover, we provide also the

�rst-order limit of the mean and variance of the noise term. Therefore, while it is not a Central

Limit Theorem, our results complement those of Barndor�-Nielsen and Shephard (2001b). In

particular, we show that this �rst-order limit does not depend on the leverage e�ect. This may

suggest that the asymptotic result of Barndor�-Nielsen and Shephard (2001b) holds also when

there is a leverage e�ect.2

We quantify values for the mean and variance of the noise and its correlation with integrated

volatility by taking explicit examples from the literature. These examples include: i) the

GARCH di�usion models without drift and leverage e�ect used by Andersen and Bollerslev

(1998) and Andreou and Ghysels (2001); ii) the aÆne models with drift and leverage e�ect

estimated by Andersen, Benzoni and Lund (2001) on the S&P500; iii) the log-normal model

with drift and leverage e�ect also estimated by Andersen, Benzoni and Lund (2001) on the

S&P500.

1As advocated by these authors, their results hold when the variance process is a marginalization of a
vector of factors, where this vector admits a Vector Autoregressive representation of order one, VAR(1).
Andersen (1994) �rstly introduced such models in discrete time and called them the Square-Root Stochastic
Autoregressive Volatility (SR-SARV) models while Meddahi and Renault (1996, 2000) introduced them in
continuous time and showed their robustness against temporal and cross-sectional aggregations.

2Simulation results reported in Barndor�-Nielsen and Shephard (2002) suggest that this result holds also in
the multivariate case. Note that in the previous version of this paper, Meddahi (2001c), we also provided some
theoretical results in the multivariate case.
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The main �ndings of empirical illustrations may be summarized as follows. First, the

mean of the noise is very small relative to the mean of integrated volatility when one uses

intra-daily observations. In particular, it is smaller (in absolute value) than .2%. Second,

the standard deviation of the noise is relatively important with respect to the mean and the

standard deviation of integrated volatility. In particular, when one uses realized volatility

based on returns at �ve (resp. thirty) minutes, the ratio of the standard deviation of the noise

over the mean of the integrated volatility is around 10% (resp. 25%). At the same frequencies,

the ratio of the variance of the noise over the variance of the integrated volatility is around 5%

(resp. 10%) and some times much more. These two ratios suggest that the noise is important

even when one considers �ve-minute returns. Third, under leverage e�ects, the autocorrelation

between the noise and integrated volatility is very small. Finally, we �nd that by using the

simpler �rst-order asymptotic approximation, one obtains results that are very close those ones

obtained by using exact formulas.

We also suggest an approach to extract through the leverage e�ect information concerning

integrated volatility contained in the returns. It turns out that, in practice, this additional

information is negligible.

The paper is organized as follows. In section 2, we characterize the noise and discuss

its qualitative properties. In section 3, we recap the main properties of the ESV models of

Meddahi (2001a). In the fourth section, we compute explicitly the mean and variance of the

noise and the correlation between the noise and the integrated volatility. At each step, we give

an empirical illustration of the importance of these terms. Section 5 suggests a solution for

extracting information about integrated volatility contained in the returns through the leverage

e�ect. The last section concludes, while all the proofs are provided in the Appendices.

2 The relationship between integrated and realized

volatility

In this section, we characterize the relationship between integrated and realized volatility by

using Ito lemma. Consider St a continuous time process representing the price of an asset or

the exchange rate between two currencies. Assume that it is characterized by the following

stochastic di�erential equation:

d log(St) = mtdt+ �tdWt (2.1)

where Wt is a standard Brownian process. We assume that mt is general and may depend, for

instance, on �t and log(St). The process �t is also general and we allow for leverage e�ect; i.e.,

if one assumes that �2t is characterized by

d�2t = ~mtdt+ ~�td ~Wt;
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then we allow d ~Wt to be correlated with dWt. We assume here (without loss of generality)

that the time t is measured in units of one day. Consider a real h such that 1=h is a positive

integer and de�ne the realized volatility RVt(h) by

RVt(h) �
1=hX
i=1

r
(h)2
t�1+ih (2.2)

where r
(h)
t�1+ih is the return over the period [t� 1 + (i� 1)h; t� 1 + ih], given by

r
(h)
t�1+ih � log

 
St�1+ih

St�1+(i�1)h

!
: (2.3)

When h goes to zero, the realized volatility converges in probability. This limit, which is

independent of the discretization over the period [t � 1; t], de�nes the quadratic variation of

the process log(St) over the period [t� 1; t]. In our context, the quadratic variation equals the

integrated volatility denoted by IVt and de�ned by3

IVt �
Z t

t�1
�2udu: (2.4)

Barndor�-Nielsen and Shephard (2001b-d) provide an asymptotic theory of the convergence

of the realized volatility to the integrated volatility. In particular, they show that given the

information �(�u; t� 1 � u � t), we have that4

p
h�1(RVt(h)� IVt) �! N (0; 2

Z t

t�1
�4udu): (2.5)

While RVt(h) converges to IVt when h! 0, the di�erence may be not negligible for a given h.

In order to study the di�erence, de�ne �
(h)
t�1+ih and "

(h)
t�1+ih by

�
(h)
t�1+ih �

Z t�1+ih

t�1+(i�1)h
mudu and "

(h)
t�1+ih �

Z t�1+ih

t�1+(i�1)h
�udWu: (2.6)

It is clear that

r
(h)
t�1+ih = �

(h)
t�1+ih + "

(h)
t�1+ih: (2.7)

Therefore,

(r
(h)
t�1+ih)

2 = (�
(h)
t�1+ih)

2 + 2�
(h)
t�1+ih"

(h)
t�1+ih + ("

(h)
t�1+ih)

2:

Hence,

(r
(h)
t�1+ih)

2 =
Z t�1+ih

t�1+(i�1)h
�2udu+ (�

(h)
t�1+ih)

2 + 2�
(h)
t�1+ih"

(h)
t�1+ih +

 
("

(h)
t�1+ih)

2 �
Z t�1+ih

t�1+(i�1)h
�2udu

!
:

To understand the properties of the third term, it is useful to rewrite it in terms of a

stochastic integral. This is the purpose of the following Proposition, where we use Ito's

Lemma to characterize the noise de�ned as the di�erence between the realized and integrated

volatilities:
3If one incorporates jumps in (2.1), then the quadratic variation will be equal to the integrated volatility

plus an additional term due to the jumps.
4As advocated by Barndor�-Nielsen and Shephard (2001b), since the variance of the asymptotic error in

(2.5) is random, (2.5) is a mixed Gaussian limit theory.
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Proposition 2.1 Characterizing the noise. Let h be a positive real such that 1=h is an

integer, i an integer and consider the processes St, RVt(h), r
(h)
t�1+ih, IVt, �

(h)
t�1+ih and "

(h)
t�1+ih

de�ned respectively in (2.1), (2.2), (2.3), (2.4) and (2.6). Then:

(r
(h)
t�1+ih)

2 =
Z t�1+ih

t�1+(i�1)h
�2udu+ u

(h)
t�1+ih; where (2.8)

u
(h)
t�1+ih = (�

(h)
t�1+ih)

2 + 2�
(h)
t�1+ih"

(h)
t�1+ih + 2

Z t�1+ih

t�1+(i�1)h
(
Z u

t�1+(i�1)h
�sdWs)�udWu: (2.9)

Hence,

RVt(h) = IVt + ut(h) (2.10)

where

ut(h) =
1=hX
i=1

u
(h)
t�1+ih: (2.11)

We draw the following corollary from the proposition concerning the properties of the noise:

Corollary 2.1

a- The mean of u(h)t�1+ih and ut(h) are in general nonzero when the drift mu is nonzero.

b- The noise terms u
(h)
t�1+ih and ut(h) are in general heteroskedastic.

c- Under leverage e�ect, u
(h)
t�1+ih and ut(h) are correlated with integrated volatility IVt.

These properties are clearly implied by the structure of the noise in (2.9). Note that

the nonzero mean of the noise is not in contradiction with the asymptotic result (2.5) of

Barndor�-Nielsen and Shephard (2001b) that implies

limh!0
E[ut(h)]p

h
= 0:

Moreover, the heteroskedasticity of the noise, also implicit in (2.5), is problematic since the

di�erence between the integrated and realized volatilities will have a higher variance when the

instantaneous variance �2t and integrated volatility IVt are high. Finally, under leverage e�ect,

if the drift mu depends on the volatility, the mean of the second term in (2.9) is nonzero.

Most of the previous remarks are well known. For instance, Barndor�-Nielsen and Shephard

(2001b) pointed out that the mean of the noise is nonzero and that the noise is heteroskedastic.

However, the impact of the leverage e�ect is not considered in the literature. We will consider

explicit examples in the fourth section to quantify the characteristics of ut(h).

It is important to observe that we adopt a di�erent approach than Barndor�-Nielsen and

Shephard (2001a-b) to study the �nite sample properties of ut(h). Their proofs are done given

the sample path of the volatility. However, they exclude leverage e�ects and assume that the

drift is an aÆne function of the variance. Our proofs use Ito lemma to study the leverage e�ect

and more general formulations of the drift.
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3 Eigenfunction Stochastic Volatility Models

In this section, we recap the main properties of the Eigenfunction Stochastic Volatility

(ESV) models introduced in Meddahi (2001a). These models provide a convenient tractable

framework, where many well-known models can be represented and in which analytic

calculations can readily be performed. We will give a brief introduction to the general class of

models, before indicating how common volatility models can be rewritten in this form.

3.1 General theory

The most popular stochastic volatility models like log-normal (Hull and White, 1987; Wiggins,

1987), square-root (Heston, 1993) and GARCH di�usion (Nelson, 1990) models have the

following form:

d log(St) = mtdt+ �t [
q
1� �2dW

(1)
t + �dW

(2)
t ]; with (3.1)

�2t = g(ft):

Here ft is a state variable with simple dynamics that is characterized by

dft = �(ft)dt+ �(ft)dW
(2)
t ; (3.2)

g(:) is a known and ad hoc function; andW (1)
t andW (2)

t are two independent standard Brownian

processes. In particular, we can represent:

1- Log-normal model: �2t = exp(ft); dft = k[� � ft]dt+ �dW
(2)
t ;

2- Square-root model: �2t = ft; dft = k[� � ft]dt+ �
q
ftdW

(2)
t ;

3- GARCH di�usion model: �2t = ft; dft = k[� � ft]dt+ �ftdW
(2)
t :

Instead of taking an ad hoc function g(:), Meddahi (2001a) proposes a exible functional

approach. More precisely, he assumes that the variance process �2t is given by

�2t =
pX

i=0

aiEi(ft); (3.3)

where p is an integer, potentially in�nite; ai, i = 0; :::; p; are real numbers; and Ei(ft) are the

eigenfunctions of the in�nitesimal generator associated with ft; see Hansen, Scheinkman (1995)

and Ait-Sahalia, Hansen and Scheinkman (2001) for a review. In Appendix B, we recap the

de�nition of this operator and some related properties. Such functions have some interesting

properties:

i) two eigenfunctions Ei(ft) and Ej(ft) associated with two di�erent eigenvalues are orthogonal,

and any nonconstant eigenfunction is centered:

E[Ei(ft)Ej(ft)] = 0 and E[Ei(ft)] = 0; (3.4)

ii) any eigenfunction is an autoregressive process of order one, in general heteroskedastic:

8h > 0; E[Ei(ft+h) j f� ; � � t] = exp(�Æih)Ei(ft); (3.5)
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iii) any square-integrable function g, i.e. E[g(ft)
2] <1, may be written as a linear combination

of the eigenfunctions, i.e.

g(ft) =
1X
i=0

aiEi(ft) where ai = E[g(ft)Ei(ft)] and
1X
i=0

a2i = E[g(ft)
2] <1: (3.6)

Therefore, g(ft) is the limit in mean-square of
Pp

i=0 aiEi(ft) when p goes to +1.5

These three properties explain the powerfullness of the ESV approach. Consider any

function of current or future values of returns. Given the Markovian nature of the joint process

(Log(St); ft), a conditional expectation of any transformation of this variable, like the variance,

is a function of ft. Therefore, by using the third property, one can expand this function onto

the eigenfunctions. The autoregressive features of these eigenfunctions (second property) allow

for ready computation of the dynamics of this function. Finally, given the �rst property, it is

easy to compute the covariance of two functions.

3.2 Examples

3.2.1 The log-normal example

Consider the state variable ft de�ned by, after a normalization,

dft = �kftdt+
p
2k dW

(2)
t : (3.7)

The eigenfunction associated with the Ornstein-Uhlenbeck process (3.7) are the Hermite

polynomials Hi associated with the eigenvalues Æi = ki. These polynomials are given in

Appendix B. Meddahi (2001a) shows that the log-normal model of Hull and White (1987) and

Wiggins (1987) is an ESV model with

�2t =
1X
i=0

aiHi(ft); where ai = exp(� +
�2

4k
)
(�=

p
2k)ip
i!

: (3.8)

3.2.2 The square-root example

Consider the state variable ft de�ned by, after a normalization,

dft = k(� + 1� ft)dt+
p
2k
q
ftdW

(2)
t with � =

2k�

�2
� 1: (3.9)

The eigenfunctions associated with (3.9) are the Laguerre polynomials L(�)
i (ft) associated with

the eigenvalues Æi = ki. The Laguerre polynomials are given in Appendix B. Meddahi (2001a)

shows that the square-root model of Heston (1993) is an ESV model with

�2t = a0L
(�)
0 (ft) + a1L

(�)
1 (ft) where a0 = � and a1 = �

p
��p
2k
: (3.10)

Note that this is also the case for the aÆne model of DuÆe, Pan and Singleton (2000).

5Observe that we make a normalization assumption by specifying that V ar[Ei(ft)] = 1 for i 6= 0. Likewise,
we assume that E0(ft) = 1.
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3.2.3 The GARCH di�usion example

Consider the state variable ft de�ned by

dft = k(� � ft)dt+ �ftdW
(2)
t : (3.11)

This process was �rst introduced by Wong (1964) and popularized by Nelson (1990). This

process violates assumption A2, Appendix B. The main consequence is that in the expansion

results (third property), one has to take an integral instead of a sum. We will not consider this

approach in this paper. Instead, we assume that the variance is a GARCH di�usion model, i.e.

g(x) = x, and that the second moment of the variance �2t is �nite. These assumptions suÆce

to do all the calculations, since the �rst eigenfunction is an aÆne function given by

E1(x) =

p
1� �

�
p
�

(x� �) where � = �2=2k; (3.12)

and the variance depends only on E0 and E1. Indeed, we have:

�2t = a0E0(ft) + a1E1(ft) where a0 = � and a1 =
�
p
�p

1� �
: (3.13)

Note that the second moment of the variance �2t is �nite when � is smaller than one. Andersen

and Bollerslev (1998) and Andreou and Ghysels (2001) who consider this example also assume

the existence of the second moment of �2t in order to use the weak GARCH results of Drost

and Werker (1996).

3.3 The multifactor case

Meddahi (2001a) considers also the case where the variance is a function of several factors as

in Bollerslev and Zhou (2001), Engle and Lee (1999) and Harvey, Ruiz and Shephard (1994)

among others. Without loss of generality, we consider the two-factor case. Let f1;t and f2;t be

two independent stochastic processes characterized by

dfj;t = �j(fj;t)dt+ �j(fj;t)dWj;t; j = 1; 2; (3.14)

where the eigenfunctions (resp eigenvalues) of the corresponding in�nitesimal generator are

denoted E1;i(f1;t) and E2;i(f2;t) (resp Æ1;i and Æ2;i). Then the variance process �2t is de�ned by

�2t =
X

0�i;j�p

ai;jE1;i(f1;t)E2;j(f2;t) where
X

0�i;j�p

a2i;j <1:

It turns out that the properties of the eigenfunctions de�ned in (3.4), (3.5) and (3.6) also hold

for the functions Ei;j(ft) de�ned by

Ei;j(ft) � E1;i(f1;t)E2;j(f2;t) where ft � (f1;t; f2;t)
0: (3.15)

Hence, Ei;j(ft) are the eigenfunctions associated with the bivariate state variable (f1;t; f2;t).
6

6See Chen, Hansen and Scheinkman (2000) for a general approach of eigenfunction modeling in the
multivariate case.
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4 Characteristics of the noise

In this section, we quantify the importance of the noise term. We start by computing its mean

and variance. This generalizes Barndor�-Nielsen and Shephard (2001b) to allow a drift and

leverage e�ect. At each step, we illustrate this importance by considering examples from the

literature. Note that all the results that we will show later hold also when one considers a

multifactor model without leverage e�ect.

4.1 Mean of the noise

We assume that the processes log(St), �t and ft are de�ned by (3.1), (3.3) and (3.2). Besides,

the drift mu is assumed to be

mu =
pX

i=0

biEi(fu) with
pX

i=0

j bi j< +1: (4.1)

Observe that the condition (4.1) implies that
Pp

i=0 b
2
i < +1 and, hence, we include any

example where the drift is assumed to be a square-integrable function of ft. In particular, if

the drift is assumed to be an aÆne function of the variance, i.e.

mu = c+ d�2u; (4.2)

then the coeÆcients bi are given by

b0 = c+ da0; bi = dai; i � 1: (4.3)

In the following propositions, for a given i, the reals fei;jg and pi are de�ned by the (L2)

expansion of �t�(ft)E
0
i(ft) onto the eigenfunctions, i.e.

�t�(ft)E
0
i(ft) =

piX
j=0

ei;jEj(ft); (4.4)

where E 0
i(:) is the �rst derivative of Ei(:). Thus we assume that �t�(ft)E

0
i(ft) is square-

integrable. For further details, see Meddahi (2001b).

Proposition 4.1 Mean of the noise. Let h be a positive real such that 1=h is an integer,

and consider the processes log(St), �t, ft, mt, RVt(h), IVt and ut(h) de�ned respectively in

(3.1), (3.3), (3.2), (4.1), (2.2), (2.4) and (2.10). Then:

E[ut(h)] = hb20 +
2

h

 pX
i=1

bi(bi + �ei;0)

Æ2i
[exp(�Æih)� 1 + Æih]

!
: (4.5)

As a consequence, when h! 0, we obtain

E[ut(h)] � h[b20 +
pX

i=1

bi(bi + �ei;0)]: (4.6)
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Corollary 4.1

a- The mean of ut(h) in nonzero when the drift is nonzero.

b- The mean of ut(h) depends on the leverage e�ect.

c- Equation (4.6) adds information to the asymptotic result (2.5) of Barndor�-Nielsen and

Shephard (2001b) by implying that

E[ut(h)]p
h

�
p
h[b20 +

pX
i=1

bi(bi + �ei;0)] when h! 0:

To assess the importance of this mean, we consider the empirical results of Andersen, Benzoni

and Lund (2001). These authors estimated several models on daily returns of the S&P500.7 In

particular, they estimated the square-root and log-normal models without and with leverage

e�ect. They consider an aÆne drift as in (4.3). Although they rejected these models, we

consider their empirical results in order to get a �rst-order approximation of the importance

of (4.5) and (4.6).8

To measure the importance of the mean of the noise, we introduce the following criterion:

Ratio = 100
E[ut(h)]

E[IVt]
: (4.7)

In other words, we consider the ratio, in percentages, of the mean of the noise term over the

mean of the integrated volatility. Table 1 gives the results of the ratio by using the exact

formula (4.5) and the asymptotic approximation (4.6).

Table 1. Mean of the noise: AÆne and log-normal models with leverage

Model AÆne Log-normal
1/h freq Ratio-Ex Ratio-As Ratio-Ex Ratio-As
1 day .168 .168 .179 .179
24 1 hour .00701 .00701 .00747 .00745
48 30 mn .00351 .00351 .00373 .00373
96 15 mn .00175 .00175 .00187 .00186
144 10 mn .00117 .00117 .00124 .00124
288 5 mn .000584 .000584 .000622 .000621

From Table 1,9 it is clear that the results based on both exact and asymptotic formulae

are the same. Moreover, the mean of the noise is almost the same in both aÆne and log-

normal models. Finally, and more importantly, the mean of the noise is relatively negligible

with intra-daily data, for instance when one uses returns based on hourly data or a higher

frequency.10

7The sample period is 01/02/1953-12/31/1996.
8Models including jumps in (3.1) that we exclude in our study were not rejected by Andersen, Benzoni and

Lund (2001). Note however that ESV models of Meddahi (2001a) can have jumps.
9The results of the log-normal model are based on the expansion (4.5) by taking the �rst 100 terms.
10As we mentioned in the introduction, we do not consider impact the of microstructure e�ects.
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4.2 Variance of the noise

In the sequel, we will assume that the drift is constant, i.e.

mu = b0: (4.8)

Proposition 4.2 Variance of the noise term. Let h be a positive real such that 1=h is an

integer, and consider the processes log(St), �t, ft, mt, RVt(h), IVt and ut(h) de�ned respectively

in (3.1), (3.3), (3.2), (4.1), (2.2), (2.4) and (2.10). Assume that the drift mu is given by (4.8).

Then:

V ar[u(h)t+ih] = 4a0b
2
0h

3 + 8b0h�
pX

i=1

aiei;0
Æ2i

[exp(�Æih)� 1 + Æih] + 4
pX

i=0

a2i
Æ2i
[exp(�Æih)� 1 + Æih]

+8�2
pX

i=1

ai

2
4 piX
j=1

ei;j
ej;0
Æj

"
h

Æi
� 1� exp(�Æih)

Æ2i
� 1� exp(�Æjh)

Æj(Æi � Æj)
+
1� exp(�Æih)
Æi(Æi � Æj)

#3
5 (4.9)

where ei;j and pi are de�ned in (4.4) and under the convention

1� exp(�Æjh)
Æj(Æi � Æj)

� 1� exp(�Æih)
Æi(Æi � Æj)

= �exp(�Æih)(1 + Æih)� 1

Æ2i
when Æi = Æj:

Moreover, the random variables u
(h)
t+ih are uncorrelated. Hence,

V ar[ut(h)] =
V ar[u

(h)
t+ih]

h
: (4.10)

Finally, when h! 0, we have:

V ar[ut(h)] � h 2
pX

i=0

a2i : (4.11)

Corollary 4.2

a- If there is neither drift nor leverage e�ect, V ar[ut(h)] becomes

V ar[ut(h)] =
4

h

 
a20h

2

2
+

pX
i=1

a2i
Æ2i
[exp(�Æih)� 1 + Æih]

!
:

b- We have limh!0V ar[ut(h)] = 0. Hence, realized volatility tends to integrated volatility in

mean-square and in probability.

c- The asymptotic variance of the noise ut(h), i.e. V ar[
p
h�1ut(h)], does not depend on the

leverage e�ect and equals the one of Barndor�-Nielsen and Shephard (2001b) since

E[
Z t

t�1
�4udu] =

pX
i=0

a2i : (4.12)

Note that the formula established when there is neither leverage e�ect nor drift coincides with

one of Barndor�-Nielsen and Shephard (2001b). Moreover, we already pointed out in section
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2 the well-known convergence result. Finally, given that the asymptotic variance does not

depend on the leverage e�ect, one can suggest that the asymptotic result of Barndor�-Nielsen

and Shephard (2001b) holds also when there is leverage e�ect, at least unconditionally.

In order to quantify the importance of the variance of the noise for a given frequency, we

consider several examples. We start by considering models without drift and leverage e�ect.

The �rst examples are the square-root models estimated by Bollerslev and Zhou (2001) on

daily exchange rate data using realized volatilities.11 They estimated a model with one factor

and another with two factors. They rejected only the �rst one. The second group of examples

considered are the GARCH di�usions models of Andersen and Bollerslev (1998) and Andreou

and Ghysels (2001). After that, we consider further examples with leverage e�ect where the

drift is constant, in particular the square-root and log-normal models estimated by Andersen,

Benzoni and Lund (2001).12

We use two criteria in order to measure the importance of the variance of the noise:

Ratio1 = 100

q
V ar[ut(h)]

E[IVt]
and Ratio2 = 100

V ar[ut(h)]

V ar[IVt]
: (4.13)

The �rst criterion is clearly related to the length of the con�dence interval of integrated

volatility. The second criterion is appealing because of the randomness of the integrated

volatility. Typically, when the noise is uncorrelated with the integrated volatility,13 the variance

of the realized volatility is the sum of the variances of the noise and the integrated volatility.

This ratio is crucial when one considers �ltering the integrated volatility from the realized

volatilities.

Table 2-a. Variance of the noise: AÆne model without leverage

1 Fac. 2 Fac. 1 Fac. 2 Fac. 1 Fac. 2 Fac.
1/h freq Std-Ex Std-As Std-Ex Std-As Ratio1 Ratio1 Ratio2 Ratio2
1 day 1.29 1.31 .749 .753 249 149 295 2137
24 1 hour .267 .268 .154 .154 51.7 30.5 12.7 89.9
48 30 mn .189 .189 .109 .109 36.6 21.5 6.34 45.0
96 15 mn .134 .134 .0768 .0768 25.9 15.2 3.17 22.5
144 10 mn .109 .109 .0627 .0627 21.1 12.4 2.12 15.0
288 5 mn .0773 .0773 .0444 .0444 14.9 8.80 1.06 7.50

In Table 2-a, we report the results based on the models estimated by Bollerslev and Zhou

(2001). The �rst interesting result is that computing the standard deviation of the noise

by using the exact formula or by using the asymptotic �rst order approximation is almost

the same when one uses intra-daily data. Besides, the standard deviation of the noise is

11Galbraith and Zinde-Walsh (2001) and Maheu and McCurdy (2001) consider also estimation of GARCH
models of Engle (1982) and Bollerslev (1986) by using realized volatilities.

12Notice that we do not take into account the aÆne term in the drift, i.e., we assume that the drift is constant.
13This holds when there is neither drift nor leverage e�ect; see the next subsection.
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almost divided by two when one goes from the one factor model to the two factors one.

Therefore, since the unconditional mean of the integrated volatility is almost the same for

both models (.517 and .504 respectively), the �rst criterion is also divided by two when one

goes from the one-factor model to the two-factor model. Consider the two factors model that

was not rejected by Bollerslev and Zhou (2001). According to the �rst criterion, the results

are 8.8% and 21.5% when one considers realized volatilities computed with �ve and thirty

minutes returns respectively. This is clearly not negligible since it means that the length of the

con�dence interval of the integrated volatility is relatively large with respect to the integrated

volatility. Of course this criterion does not take into account the dependence between the

conditional standard deviation of the noise and the integrated volatility. Therefore, one has to

be cautious in interpreting the results. However, by using the asymptotic theory developed in

Barndor�-Nielsen and Shephard (2001b), Barndor�-Nielsen and Shephard (2001c) estimated

empirically at each day the con�dence interval of the integrated volatility and showed that its

length is large and positively correlated with the integrated volatility.

Consider now the second criterion. For the two-factor model, the results are 7.5% and 45%,

again when one considers realized volatilities computed with �ve and thirty minutes returns

respectively. Again, this is not negligible, especially when one uses thirty minutes returns, and

suggests that one has to �lter the integrated volatility by using all the history of the realized

volatility. Notice that for the one-factor model, the results for this criterion are relatively small

since the integrated volatility is more volatile than for the two-factor model (the standard

deviations are .751 and .162 respectively). Finally, the values of the second criterion are high

even one uses thirty minutes returns for the following reason. In their inference procedure,

Bollerslev and Zhou (2001) did not take into account the di�erence between the integrated

and realized volatilities.14 More precisely, they derived theoretical moment conditions for the

integrated volatilities while they used the realized volatilities in the estimation procedure. By

so doing, they incorporated the noise term in the variance process. Therefore, they obtained

a high variance of the variance which inuences crucially the second criterion. In particular,

the variance of the variance clearly appears in (4.12) and (2.5).

Consider now the two GARCH di�usions models considered by Andersen and Bollerslev

(1998) and Andreou and Ghysels (2001). They correspond to daily returns of DM-US$ and

Yen-US$. The results are presented in Table 2-b.15 Note again the small di�erence between

using exact and �rst-order approximations for the standard deviation of the noise. Moreover,

the results are almost the same for both DM-US$ and Yen-US$ returns. We consider only

the results on DM-US$. The �rst criterion is still not negligible (around 10% with �ve-minute

returns). Thus the length of the con�dence intervals will be relatively important. However,

14An alternative estimation approach is considered by Barndor�-Nielsen and Shephard (2001b) that takes
into account the noise.

15Note that the variance of the noise corresponds to the MSE computed by simulation in Andersen and
Bollerslev (1998). The exact results are very close to their ones.
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the second criterion is negligible at �ve minutes (2.37%) but not at thirty minutes (14.2%). In

other words, �ltering the integrated volatility when one uses realized volatility computed with

thirty (resp. �ve) minutes returns will have a large (resp. small) impact on the quality of the

measure of the integrated volatility.

Table 2-b. Variance of the noise: GARCH di�usion model

Model DM-US$ Yen-US$ DM Yen DM Yen
1/h freq Std-Ex Std-As Std-Ex Std-As Ratio1 Ratio1 Ratio2 Ratio2
1 day 1.07 1.07 .930 .934 168. 195. 681 421
24 1 hour .219 .219 .191 .191 34.4 40.0 28.5 17.7
48 30 mn .155 .155 .135 .135 24.3 28.3 14.2 8.84
96 15 mn .109 .109 .0953 .0953 17.2 20.0 7.12 4.42
144 10 mn .0893 .0893 .0778 .0778 14.0 16.3 4.75 2.95
288 5 mn .0632 .0632 .0550 .0550 9.93 11.6 2.37 1.47

Consider now the results on the aÆne and log-normal models with leverage e�ect estimated

by Andersen, Benzoni and Lund (2001) reported in Table 2-c. Consider the aÆne case. Again,

the di�erence between the exact and asymptotic results is very small. The �rst criterion is

still not negligible (around 10% with �ve minutes returns) while the second one is at �ve

minutes (around 2.5%) but not at thirty minutes (around 15%). The same results hold for the

log-normal model.

Table 2-c. Variance of the noise: AÆne and log-normal models with leverage

Model A�. Log-nor. A�. Log-nor.
1/h freq Std-Ex Std-As Std-Ex Std-As Ratio1 Ratio2 Ratio1 Ratio2
1 day .891 .892 .992 .993 166.7 714.9 180.2 524.0
24 1 hour .182 .182 .202 .203 34.1 29.8 36.8 21.8
48 30 mn .129 .129 .143 .143 24.1 14.9 26.0 10.9
96 15 mn .0910 .0910 .101 .101 17.0 7.45 18.4 5.46
144 10 mn .0743 .0743 .0827 .0827 13.9 4.96 15.0 3.64
288 5 mn .0526 .0526 .0585 .0585 9.82 2.48 10.6 1.82

4.3 Covariance between the noise and integrated volatility

Given that the variable of interest IVt is observed with errors, it is important to characterize the

covariance between IVt and the noise term for estimation, �ltering and forecasting purposes.

This covariance is characterized in the following proposition.

Proposition 4.3 Covariance between the noise and the integrated volatility. Let h

be a positive real such that 1=h is an integer, and consider the processes log(St), �t, ft, mt,

RVt(h), IVt and ut(h) de�ned respectively in (3.1), (3.3), (3.2), (4.1), (2.2), (2.4) and (2.10).

Assume that the drift mu is given by (4.8). Then:
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Cov(u
(h)
t+ih;

Z t�1+ih

t�1+(i�1)h
�2udu) = 2b0h�

pX
i=1

aiei;0
Æ2i

[exp(�Æih)� 1 + Æih]

+2�2
pX

i=1

ai

2
4 piX
j=1

ei;j
ej;0
Æj

"
h

Æi
� 1� exp(�Æih)

Æ2i
� 1� exp(�Æjh)

Æj(Æi � Æj)
+
1� exp(�Æih)
Æi(Æi � Æj)

#35 : (4.14)

Besides,

Cov(ut(h); IVt) =
1

h
Cov(u

(h)
t+ih;

Z t�1+ih

t�1+(i�1)h
�2udu): (4.15)

Finally, when h! 0, the correlation between the noise ut(h) and integrated volatility IVt is

Corr(ut(h); IVt) = O(h3=2): (4.16)

Corollary 4.3

a- As pointed out by Barndor�-Nielsen and Shephard (2001b), the correlation of the noise with

integrated volatility is zero when leverage e�ect is zero.

b- The correlation between the noise and integrated volatility tends to zero very quickly as one

increases the frequency of intra-daily observations.

In order to assess the importance of this correlation, we consider models with leverage

e�ect. In Table 3, we report this correlation for the aÆne and log-normal models estimated by

Andersen, Benzoni and Lund (2001). Note that we provide two results for the log-normal case.

The �rst one corresponds to one estimated by Andersen, Benzoni and Lund (2001). Given

that the correlation is positive, we also take di�erent values for the drift by �xing the other

parameters. The second results correspond to b0 = :0334 while the �rst ones correspond to

b0 = :0314. The di�erence between these two values is statistically small since the standard

deviation of this parameter reported by Andersen, Benzoni and Lund (2001) is .0057. Note

that the correlation is negative for the second results.

These results clearly establish that the correlation between the noise and the integrated

volatility is very small, for instance -3.643 e-06 when one considers returns at thirty minutes

in the aÆne case. Thus, this correlation can be ignored.

Table 3. Correlation between the noise and the integrated volatility

1/h freq AÆne Log-normal
1 day -0.001209 0.000119 -3.10e-05
24 1 hour -1.030e-05 1.14e-06 -1.37e-07
48 30 mn -3.643e-06 4.05e-07 -4.76e-08
96 15 mn -1.288e-06 1.43e-07 -1.65e-08
144 10 mn -7.019e-07 7.82e-08 -8.87e-09
2880 5 mn -2.461e-07 2.84e-08 -2.42e-09
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5 Leverage e�ect and integrated volatility

It is well known since Nelson (1991) that equity returns are negatively correlated with their

instantaneous volatility. This is the so-called leverage e�ect. Thus, it is natural to extract the

information about integrated volatility contained in the current daily return. This is the main

purpose of this section.

We propose a simple approach for doing this extraction. We make the linear regression of

the integrated volatility onto realized volatility, the current daily return and a constant. We

calculate explicitly the coeÆcients of the regression and the corresponding R2. Of course, the

approach holds when one knows that the underlying continuous time model is a ESV one. This

is not always the case. Again, in this case, our approach may be viewed as a benchmark.

Before doing this regression, we �rst regress integrated volatility onto realized volatility and

a constant (under leverage e�ect or not). This is important because when realized volatility

is a very noisy estimator of the integrated volatility, it may be optimal in terms of mean

square error to consider a weighted estimator of the realized volatility and the unconditional

expectation of the integrated volatility. The best weighted estimator is obviously the linear

regression of the integrated volatility onto the realized volatility and a constant, i.e.

IVt = a(h) + b(h)RVt(h) + �t(h): (5.1)

It is obvious that

b(h) =
Cov(IVt; RVt(h))

V ar[RVt(h)]
; a(h) = E[IVt]� b(h)E[RVt(h)] (5.2)

and that the R2 of the regression (5.1) is given by

R2(h) =
Cov(IVt; RVt(h))

2

V ar[IVt]V ar[RVt(h)]
: (5.3)

Observe that when IVt and ut(h) are not correlated, we have:

b(h) =
1

1 + V ar[ut(h)]=V ar[IVt]
; R2(h) = b(h) and

V ar[�t(h)]

V ar[ut(h)]
= R2(h): (5.4)

Table 4. Combining realized volatility with a constant

Model A�. 2 fac. GARCH DM A�. with lev. Log-nor. with lev.
1/h freq b(h) b(h) b(h) R2(h) Ratio b(h) R2(h) Ratio
1 day .0447 .128 .122 .122 .123 .160 .160 .160
24 1 hour .527 .778 .770 .770 .770 .821 .821 .821
48 30 mn .690 .875 .870 .870 .870 .902 .902 .902
96 15 mn .816 .934 .931 .931 .931 .948 .948 .948
144 10 mn .870 .955 .953 .953 .953 .965 .965 .965
288 5 mn .930 .977 .976 .976 .976 .982 .982 .982
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We report in Table 4 di�erent values of b(h), R2(h) and the ratio V ar[�t(h)]=V ar[ut(h)] as

h varies. Note that V ar[�t(h)] is the MSE of the regression (5.1), while V ar[ut(h)] is the MSE

that we considered in the previous section, i.e., when one considers the realized volatility as a

measure for integrated volatility.

We report the result of the aÆne model with two factors, the GARCH di�usion for the

DM-US$, the aÆne and log-normal models with leverage e�ect. The results of the other models

are similar. Note that for models without leverage e�ect, we report only one column for b(h),

R2(h) and the ratio V ar[�t(h)]=V ar[ut(h)] since they are the same (see (5.4)).16 From Table

4, it is clear that it is better to combine the constant and the realized volatility when one

considers intra-daily returns at �fteen minutes or more. The ratio of the MSEs suggests that

this improvement is important even if one considers �ve minutes returns.

However, one has to be careful with this criterion when both measures are very good.

Consider three random variables y, x1 and x2. Let m1 (resp m2) be the best linear regression

of y given x1 (resp x2), R21 andMSE1 (resp R22 andMSE2) the corresponding R2 and MSE.

Then it is easy to show that
MSE1

MSE2

=
1�R21
1�R22

:

Thus, the ratio of the MSEs may be high (or small) when R21 and R22 are close to one, that

is the explanatory variables x1 and x2 explain well the variable y. For instance, if R21 = :98

and R22 = :99, then the ratio of the MSEs is two. This is exactly what happens in Table 4

when h is very small.

We now reconsider the leverage e�ect case and study the regression

IVt = a1(h) + b1(h)RVt(h) + c1(h)rt +  t(h) (5.5)

where rt is the daily return de�ned by

rt � log(St=St�1): (5.6)

Again, we have the following relationships

"
b1(h)
c1(h)

#
=

 
V ar

"
RVt(h)
rt

#!�1 "
Cov(RVt(h); IVt)
Cov(rt; IVt)

#
: (5.7)

The theoretical formulas of b1(h) and c1(h) are provided in Appendix D. Table 5 gives di�erent

values of b(h), b1(h) and c1(h) for the aÆne and log-normal models with leverage e�ect

estimated by Andersen, Benzoni and Lund (2001). We see that the contribution of the daily

return rt in explaining integrated volatility is very small when one uses realized volatility

computed with intra-daily data. The result is not very surprising perhaps given the convergence

16Under leverage e�ect, they are not the same. However, in practice, ther are very close; see Table 4.
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of realized volatility to integrated volatility when the length of intra-daily returns tends to zero.

However, it is somewhat surprising for the daily frequency case.

The main reason of this small contribution is the following. Consider the autocorrelation

between integrated volatility and daily return. By using results in Appendix D, one gets in

the aÆne case that

Corr(IVt; rt) = �

s
exp(�k)� 1 + k

k
: (5.8)

By using empirical results of Andersen, Benzoni and Lund (2001), one gets that this correlation

is around (-.1). Thus the R2 of the regression of integrated volatility onto the daily return

and a constant is 1%, which is very low. This is in contrast with the high (in absolute

value) conditional correlation between the continuous-time innovations of the volatility and

the price. The daily correlation is small since daily returns (and integrated volatility) are

highly heteroskedastic and, hence, contain an important amount of noise not correlated with

volatility. This is the same argument used by Andersen and Bollerslev (1998).

Table 5. Extracting the information from daily returns through the leverage e�ect

AÆne Log-normal
1/h freq b1(h) c1(h) R2(h) b1(h) c1(h) R2(h)
1 day .122 -.0162 .123 .160 -.0199 .162
24 1 hour .770 -.00425 .770 .821 -.00424 .821
48 30 mn .870 -.00240 .870 .901 -.00233 .902
96 15 mn .931 -.00128 .931 .948 -.00123 .948
144 10 mn .953 -.000876 .953 .965 -.000831 .965
288 5 mn .976 -.000448 .976 .982 -.000423 .982

A potential limitation of this approach is that it could deliver negative integrated variance

estimates. This is not the case in practice. The estimated integrated variance may be written

as
1=hX
i=1

h
b1(h)r

(h)2
t�1+ih + c1(h)r

(h)
t�1+ih + a1(h)h

i
: (5.9)

A suÆcient condition ensuring the positivity of integrated volatility estimator is that each

term in the sum (5.9) is positive. This positivity holds whatever the realization of r
(h)
t�1+ih

when �(h) = c1(h)
2 � 4b1(h)a1(h)h si negative. It turns that this is the case when one uses

the estimators we �nd for both aÆne and log-normal models. For instance, in the aÆne case,

�(1) = �:229, �(1=48) = �:005 and �(h) tends toward zero when h! 0.
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6 Conclusion

In this paper, we provide qualitative and quantitative results about the characteristics of the

di�erence between the realized and integrated volatility for a given frequency of observations

and termed the noise. The main �ndings are threefold. First, under leverage e�ect or time

varying drift, the mean of the noise is nonzero but negligible compared to the mean of the

integrated volatility. Second, the noise is heteroskedastic and its standard deviation is not

negligible with respect to the mean and the standard deviation of the integrated volatility even

if one considers returns at �ve-minute intervals. Third, under leverage e�ect, the correlation

of the noise with integrated volatility is nonzero but very small.

We also show that combining the realized volatility with the constant or some other variables

reduces the noise. In particular, it is better to consider the linear regression of the integrated

volatility on the constant and the realized volatility. Moreover, under leverage e�ect, we can

add the daily return to extract the information that it contains about the integrated volatility

through the leverage e�ect. It turns out that the improvement is small.

Our work can be extended in di�erent directions. We need to take into account parameter

uncertainty, since, in practice, these parameters must be estimated. Moreover, we ignore

microstructures e�ects. A simple approach is to assume that one of the factors is a continuous-

time Markov chain since such processes also admit an eigenfunctions decomposition.

Two other major extensions are currently under investigation. The �rst one incorporates

jumps in the price or its volatility. Assuming the characteristics of the jumps, i.e. their intensity

and sizes, are functions of the same state variable we consider will be very useful. This is

exactly what happens in the aÆne models with jumps of DuÆe, Pan and Singleton (2000).

The second extension is related to the realized power variations considered by Barndor�-Nielsen

and Shephard (2001d). These authors showed that
1=hX
i=1

j r(h)t�1+ih j converges toward
Z t

t�1
�
udu

when h ! 0 and provided a Central Limit Theorem as well. They also showed that the

di�erence between the previous quantities, up to the asymptotic scaling parameter, is smaller

when one considers  equal to one (for instance) instead of two. Thus, �nding the optimal

 that reduces the importance of the microstructure e�ects is of interest. Interestingly, the

eigenfunctions expansion is still valid in this case and very easy indeed. For instance, if one

considers the log-normal model, then we have

�
t =

1X
i=0

ai()Hi(ft); where ai() = exp(
�

2
+
�22

16k
)
(�=

p
8k)ip
i!

:

Thus, using our approach will be useful in this case.
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Appendix A

We start the Appendix by giving some lemmas.

Lemma A1 Let ft de�ned by (3.2). Then:

dEi(fu) = �ÆiEi(fu)du+ E 0
i(fu)�(fu)dW

(2)
u ; (A.1)

8s < u; Ei(fu) = exp(�Æi(u�s))Ei(fs)+exp(�Æi(u�s))
Z u

s
exp(Æi(w�s))�(fw)E 0

i(fw)dW
(2)
w ;

(A.2)

E[
Z u

0
Ei(fu)�sdWs] = �ei;0

1� exp(�Æiu)
Æi

; (A.3)

where ei;0 is given by ei;0 = E[�s�(fs)E
0
i(fs)] (and de�ned in (4.4)). Thus,

E[
Z h

0
(
Z u

0
Ei(fu)�sdWs)du] = �ei;0

exp(�Æih) + Æih� 1

Æ2i
: (A.4)

Proof: By Ito's Lemma, we get

dEi(ft) = AEi(ft)dt+ E 0
i(ft)�(ft)dW

(2)
t :

By de�ntion, AEi(ft) = �ÆiEi(ft). Thus, we get (A.1).

De�ne zu by zu = exp(Æiu)Ei(fu). By using Ito's Lemma we get dzu =

exp(Æiu)E
0
i(fu)�(fu)dW

(2)
u : Hence, zu = zs+

R u
s exp(Æiw)E

0
i(fw)�(fw)dW

(2)
w :We then get (A.2).

We have:

E
�Z u

0
Ei(fu)�sdWs

�
= E

�Z u

0
exp(�Æi(u� s))Ei(fs)�sdWs

�

+E
�Z u

0
exp(�Æi(u� s))

�Z u

s
exp(Æi(w � s))�(fw)E

0
i(fw)dW

(2)
w

�
�sdWs

�

= 0 +
Z u

0
exp(�Æi(u� s))[exp(Æi(s� s))�(fs)E

0
i(fs)�s�ds]

= �ei;0

Z u

0
exp(�Æi(u�s))ds = �ei;0

1� exp(�Æiu)
Æi

; i.e. (A.3). From (A.3), one gets (A.4).2

Proof of Proposition 2.1. We have

r
(h)
t�1+ih =

Z t�1+ih

t�1+(i�1)h
mudu +

Z t�1+ih

t�1+(i�1)h
�udWu:

Therefore,

r
(h)2
t�1+ih =

 Z t�1+ih

t�1+(i�1)h
mudu

!2

+ 2

 Z t�1+ih

t�1+(i�1)h
mudu

!  Z t�1+ih

t�1+(i�1)h
�udWu

!
+

 Z t�1+ih

t�1+(i�1)h
�udWu

!2

:

Let us consider
R h
0 �udWu and compute its square by using Ito's Lemma. We have

(
Z h

0
�udWu)

2 = 2
Z h

0
(
Z u

0
�sdWs)�udWu +

Z h

0
�2udu:

Hence, Z t�1+ih

t�1+(i�1)h
�udWu

!2

= 2
Z t�1+ih

t�1+(i�1)h
(
Z u

t�1+(i�1)h
�sdWs)�udWu +

Z t�1+ih

t�1+(i�1)h
�2udu:

As a consequence, we get (2.8) and, hence, (2.7).2
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Appendix B

Let A be the in�nitesimal generator oprerator associated with ft:

A�(ft) � �(ft)�
0(ft) +

�2(ft)

2
�
00

(ft); (B.1)

where �(ft) is a square-integrable function and twice di�erentiable. Let Ei(ft), i = 0; 1; :::; be

the set of the eigenfunctions of A with corresponding eigenvalues (�Æi), i.e.

AEi(ft) = �ÆiEi(ft): (B.2)

Here, we assume that the eigenvalues are real numbers and that the spectrum, i.e. the set of

the eigenvalues, is discrete:

Assumption A1. The stationary process fftg is time reversible.

Assumption A2. The spectrum of the in�nitesimal generator operator A of fftg is discrete
and denoted f�Æi; i 2 Ng with Æ0 = 0 and Æ0 < Æ1 < Æ2 < ::: < Æi < Æi+1:::; the corresponding

eigenfunctions are denoted Ei(ft), i 2 N.

Hansen, Scheinkman and Touzi (1998) show that under some appropriate boundary protocol,

stationary scalar di�usions are time-reversible. Hence, assumption A1 is not restrictive when

one considers a volatility model that depends on one factor. It is, however, when one considers

a multivariate vector ft. This assumption is ensured when the factors are independent as in

the volatility literature. Assumption A2 is true for both log-normal and square-root models

but not for the GARCH di�usion model. A suÆcient assumption that ensures A2 is that the

operator A is compact.

Hermite Polynomials:

H0(x) = 1; H1(x) = x and 8i > 1; Hi(x) =
1p
i
fxHi�1(x)�

p
i� 1Hi�2(x)g: (B.3)

Laguerre Polynomials: 
i+ �
i

!1=2

i L
(�)
i (x) =

 
i� 1 + �
i� 1

!1=2

(�x + 2i+ �� 1)L
(�)
i�1(x)

�
 
i� 2 + �
i� 2

!1=2

(i + �� 1)L
(�)
i�2(x); where (B.4)

L
(�)
0 (x) = 1; L

(�)
1 (x) =

1 + �� xp
1 + �

:
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Appendix C

Proof of Proposition 4.1. Let �h and "h de�ned respectively by

�h �
Z h

0
mudu and "h �

Z h

0
�udW: (C.1)

By Ito's Lemma, we have:

�2h = 2
Z h

0
�ud�u +

Z h

0
d[�; �]u = 2

Z h

0
�umudu = 2

Z h

0
(
Z u

0
msmuds)du: Hence,

E[�2h] = 2
Z h

0
(
Z u

0
E[msmu]ds)du: But, for u � s:

E[msmu] =
X

0�i;j�p

bibjE[Ei(fs)Ej(fu)] =
X

0�i;j�p

bibj exp(�Æj(u� s))E[Ei(fs)Ej(fs)]

=
Pp

i=0 b
2
i exp(�Æi(u� s)): Hence,Z u

0
E[msmu]ds =

pX
i=0

b2i
Æi
[1� exp(�Æiu)]: As a consequence,

E[�2h] = 2
pX

i=0

b2i
Æ2i
[exp(�Æih)� 1 + Æih]:

Let ~�h de�ned by

~�h � 2
Z h

0
mudu

Z h

0
�udWu: (C.2)

By Ito's Lemma, we have:

~�h = 2
Z h

0
(
Z u

0
�sdWs)mudu+ 2

Z h

0
(
Z u

0
msds)�udWu: Hence,

E[~�h] = 2E[
Z h

0
(
Z u

0
�sdWs)mudu] = 2

pX
i=0

bi

Z h

0
E(
Z u

0
Ei(fu)�sdWs))du.

= 2�
pX

i=0

biei;0
Æ2i

[exp(�Æih) + Æih� 1] by (A.4).

The expectation of the third term in u
(h)
t+ih is zero. Hence

E[u
(h)
t+ih] = E[�2h] + E[~�h] = 2

pX
i=0

b2i + �biei;0
Æ2i

[exp(�Æih)� 1 + Æih]

= hb20 + 2
pX

i=1

b2i + �biei;0
Æ2i

[exp(�Æih)� 1 + Æih] since e0;0 = 0.

Therefore we get (4.5) since E[ut(h)] =
1

h
E[u(h)t+ih].

For a small h, since Æi 6= 0, we have: [exp(�Æih)� 1 + Æih] � Æ2i h
2=2. Thus, (4.6) is deduced.2

Proof of Proposition 4.2. We have V ar[ut+ih] = V ar[b20h
2 + 2b0h"h + 2 ~Zh]; where ~Zh �R h

0 (
R u
0 �sdWs)�udWu: Thus,

V ar[ut+ih] = 4b20h
2V ar["h]+4V ar[ ~Zh]+8b0hCov["h; ~Zh] = 4b20h

2E["2h]+4E[ ~Z2
h]+8b0hE["h ~Zh]:

We will compute the three terms:

i) We have: E["2h] = E[
R h
0 �

2
udu] = a0h:

ii) By Ito's Lemma, we have:

~Z2
h = 2

Z h

0

~Zu d ~Zu +
Z h

0
d[ ~Z; ~Z]u = 2

Z h

0

~Zu (
Z u

0
�sdWs)�udWu +

Z h

0
(
Z u

0
�sdWs)

2�2udu:

Therefore,
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E[ ~Z2
h] = E

"Z h

0
(
Z u

0
�sdWs)

2�2udu

#
=
Z h

0
E
��
2
Z u

0

�Z s

0
�wdWw

�
�sdWs +

Z u

0
�2sds

�
�2udu

�
:

We have to compute the two terms. Consider the second one. We have:Z h

0
E
��Z u

0
�2sds

�
�2u

�
du =

pX
i=0

ai

Z h

0

�Z u

0
E[Ei(fu)�

2
s ]ds

�
du

=
pX

i=0

ai

Z h

0

�Z u

0
exp(�Æi(u� s))E[Ei(fs)�

2
s ]ds

�
du =

pX
i=0

a2i

Z h

0

�Z u

0
exp(�Æi(u� s))ds

�
du

=
pX

i=0

a2i
Æ2i
[exp(�Æih)� 1 + Æih]:

Consider now the �rst term. Let us compute at a �rst step

E
��Z u

0

�Z s

0
�wdWw

�
�sdWs

�
Ei(fu)

�
:

This term is zero when i = 0 since E0(:) = 1. For i 6= 0, we have:

E[ ~ZuEi(fu)] = E
��Z u

0

�Z s

0
�wdWw

�
�sdWs

�
Ei(fu)

�
= E

�Z u

0

�Z s

0
�wdWw

�
Ei(fu)�sdWs

�
by

(A.2),

= E
�Z u

0

�Z s

0
�wdWw

�
� exp(�Æi(u� s))Ei(fu)

0�(fs)�sds
�
by (4.4),

= �E

2
4Z u

0

�Z s

0
�wdWw

�
exp(�Æi(u� s))(

piX
j=0

ei;jEj(fs))ds

3
5

= �
piX
j=0

ei;j

Z u

0

�Z s

0
E[Ej(fs)�wdWw]

�
exp(�Æi(u� s))ds

= �
piX
j=0

ei;j

Z u

0

�Z s

0
E[� exp(�Æj(s� w))Ej(fw)

0�(fw)�wdw]
�
exp(�Æi(u� s))ds by (A.2),

= �2
piX
j=0

ei;j

Z u

0

�Z s

0
exp(�Æj(s� w))ej;0dw

�
exp(�Æi(u� s))ds

= �2
piX
j=1

ei;j

Z u

0

�Z s

0
exp(�Æj(s� w))ej;0dw

�
exp(�Æi(u� s))ds since e0;0 = 0

= �2
piX
j=1

ei;j
ej;0
Æj

"
1� exp(�Æiu)

Æi
� exp(�Æju)� exp(�Æiu)

Æi � Æj

#

Hence,

E[
Z h

0

~Zu�
2
udu] =

Z h

0
E
��Z u

0

�Z s

0
�wdWw

�
�sdWs

�
�2udu

�

=
pX

i=1

ai

Z h

0
E
��Z u

0

�Z s

0
�wdWw

�
�sdWs

�
Ei(fu)du

�

= �2
pX

i=1

ai

Z h

0

2
4 piX
j=1

ei;j
ej;0
Æj

"
1� exp(�Æiu)

Æi
� exp(�Æju)� exp(�Æiu)

Æi � Æj

#35 du

= �2
pX

i=1

ai

2
4 piX
j=1

ei;j
ej;0
Æj

"
h

Æi
� 1� exp(�Æih)

Æ2i
� 1� exp(�Æjh)

Æj(Æi � Æj)
+
1� exp(�Æih)
Æi(Æi � Æj)

#35 : (C.3)

As a summary,
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E[ ~Z2
h] =

pX
i=0

a2i
Æ2i
[exp(�Æih)� 1 + Æih]

+ 2�2
pX

i=1

ai

2
4 piX
j=1

ei;j
ej;0
Æj

"
h

Æi
� 1� exp(�Æih)

Æ2i
� 1� exp(�Æjh)

Æj(Æi � Æj)
+
1� exp(�Æih)
Æi(Æi � Æj)

#35 (C.4)

iii) "h ~Zh =
Z h

0

~Zud"u +
Z h

0
d ~Zu"u +

Z h

0
d[ ~Z; "]u =

Z h

0

~Zu�udWu +
Z h

0
"2u�udWu +

Z h

0
�2u"udu.

Thus,

E["h ~Zh] = E[
Z h

0
�2u"udu] =

pX
i=0

ai

Z h

0

Z u

0
E[Ei(fu)�sdWs]

=
pX

i=0

ai

Z h

0
�
ei;0
Æi

(1� exp(�Æiu))du = �
pX

i=1

aiei;0
Æ2i

[exp(�Æih)� 1 + Æih] since e0;0 = 0:

Hence,

V ar[ut+ih] = 4a0b
2
0h

3 + 8b0h�
pX

i=1

aiei;0
Æ2i

[exp(�Æih)� 1 + Æih] + 4
pX

i=0

a2i
Æ2i
[exp(�Æih)� 1 + Æih]

+8�2
pX

i=1

ai

2
4 piX
j=1

ei;j
ej;0
Æj

"
h

Æi
� 1� exp(�Æih)

Æ2i
� 1� exp(�Æjh)

Æj(Æi � Æj)
+
1� exp(�Æih)
Æi(Æi � Æj)

#35, i.e. (4.9).
The random variables u

(h)
t�1+(i�1)h are uncorrelated since

Z t�1+ih

t�1+(i�1)h
�udWu andZ t�1+ih

t�1+(i�1)h
(
Z u

t�1+(i�1)h
�sdWs)�udWu are martingale di�erence sequences.

Thus, V ar[ut(h)] = V ar[u
(h)
t�1+ih]=h.

For a small h, we have:

i) [exp(�Æih)� 1 + Æih] � Æ2i h
2=2;

ii)
h

Æi
� 1� exp(�Æih)

Æ2i
� 1� exp(�Æjh)

Æj(Æi � Æj)
+
1� exp(�Æih)
Æi(Æi � Æj)

=
h3Æj
6

+ o(h3):

Hence, for a small h, the dominant term in (4.9) is the third one. Thus, we get (4.11).2

Proof of Proposition 4.3. We have:

Cov(u
(h)
t+ih;

Z t�1+ih

t�1+(i�1)h
�2udu) = E[u

(h)
t+ih

Z t�1+ih

t�1+(i�1)h
�2udu]� E[u

(h)
t+ih]E[

Z t�1+ih

t�1+(i�1)h
�2udu]

= E[u
(h)
t+ih

Z t�1+ih

t�1+(i�1)h
�2udu]� h3a0b

2
0 = E[(b20h

2 + 2b0h"h + 2 ~Zh)
Z h

0
�2udu]� h3a0b

2
0

= 2E[(b0h"h + ~Zh)
Z h

0
�2udu]:

We have: E["h

Z h

0
�2udu] = E[

Z h

0
"u�

2
udu] =

pX
i=0

ai

Z h

0
E[Ei(fu)

Z u

0
�sdWs]

= �
pX

i=1

aiei;0
Æ2i

[exp(�Æih)� 1 + Æih] since e0;0 = 0 and (A.4).

Moreover: E[ ~Zh

Z h

0
�2udu] = E[

Z h

0
(
Z u

0
�2udu)d ~Zu] + E[

Z h

0

~Zu�
2
udu] = E[

Z h

0

~Zu�
2
udu]

= �2
pX

i=0

ai

2
4 piX
j=0

ei;j
ej;0
Æj

"
h

Æi
� 1� exp(�Æih)

Æ2i
� 1� exp(�Æjh)

Æj(Æi � Æj)
+
1� exp(�Æih)
Æi(Æi � Æj)

#35 by (C.3).

Hence,
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+
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Æi(Æi � Æj)

#35 :2

Appendix D

In this Appendix, we compute some variables used in the text or the Tables.

1- Mean and variance of the integrated volatility: Meddahi (2001b) shows that:

E[IVt] = a0 and V ar[IVt] = 2
pX

i=1

a2i
Æ2i
[exp(�Æi)� 1 + Æi]: (D.1)

2- CoeÆcients ei;j: Meddahi (2001b) shows that:

For an aÆne model: e1;0 =
p
2k� and e1;1 = �.

For a log-normal model: ei;0 =
p
2k
p
i exp

 
�

2
+

�2

16k

!
(�=

p
8k)i�1q

(i� 1)!
and

ei;j =
p
2k
p
i exp(

�

2
+

�2

16k
)

X
jj�i+1j�s�j+i�1; j�i+1+s

2
2N

�s

(8k)s=2s!

 
s

j�i+1+s
2

! 0
@(j�i+1+s)=2�1Y

q=0

(j � q)
(i�1�j+s)=2�1Y

q=0

(i� 1� q)

1
A

1=2

:

3- CoeÆcients b1(h) c1(h) We have to compute the coeÆcients in the right part of (5.7).

The coeÆcients Cov(RVt; IVt) and V ar[RVt(h)] are already computed.

i) Cov(rt; IVt) = Cov(
R t
t�1 �udWu;

R t
t�1 �

2
udu) = E(

R t
t�1 �udWu

R t
t�1 �

2
udu)

= E(
R t
t�1(

R u
t�1 �sdWs)�

2
udu+

R t
t�1(

R u
t�1 �

2
sds)�udWu) by Ito's Lemma

= E(
R t
t�1(

R u
t�1 �sdWs)�

2
udu) = �

pX
i=1

aiei;0
Æ2i

[exp(�Æi)� 1 + Æi] by (A.4).

ii) Cov(rt; RVt(h)) = Cov(rt; IVt) + Cov(rt; ut(h)): But:

Cov(rt; ut(h)) = Cov(
P1=h

i=1 r
(h)
t�1+ih;

P1=h
i=1 u

(h)
t�1+ih) =

1

h
Cov(r

(h)
t�1+h; u

(h)
t�1+h) =

1

h
E(r

(h)
t�1+hu

(h)
t�1+h):

By using Ito's Lemma we get:

E[r
(h)
t�1+hu

(h)
t�1+h] = E

�R t�1+h
t�1 �udWu

� �R t�1+h
t�1 (

R u
t�1 �sdWs)�udWu

�
= E

R t�1+h
t�1 (

R u
t�1+h �sdWs)�

2
udu = �

pX
i=1

aiei;0
Æ2i

[exp(�Æih)� 1 + Æih] by (A.4).

Hence, Cov(rt; ut(h)) =
�

h

pX
i=1

aiei;0
Æ2i

[exp(�Æih)� 1 + Æih].

iii) V ar(rt) = E[
R t
t�1 �

2
udu] = a0:
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