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A Theoretical Comparison of Batch-Mode, 
On-Line, Cyclic, and Almost-Cyclic Learning 

Tom Heskes and Wim Wiegerinck 

Abstruct- We study and compare different neural network 
learning strategies: hatch-mode learning, on-line learning, cyclic 
learning, and almost-cyclic learning. Incremental learning strate- 
gies require less storage capacity than hatch-mode learning. 
However, due to the arbitrariness in the presentation order of 
the training patterns, incremental learning is a stochastic process; 
whereas hatch-mode learning is deterministic. In zeroth order, 
i.e., as the learning parameter 7 tends to zero, all learning 
strategies approximate the same ordinary differential equation 
for convenience referred to as the “ideal behavior.” Using sto- 
chastic methods valid for small learning parameters q ,  we derive 
differential equations describing the evolution of the lowest- 
order deviations from this ideal behavior. We compute how 
the asymptotic misadjustment, measuring the average asymptotic 
distance from a stable fixed point of the ideal behavior, scales as 
a function of the learning parameter and the number of training 
patterns. Knowing the asymptotic misadjustment, we calculate 
the typical number of learning steps necessary to generate a 
weight within order E of this fixed point, both with fixed and time- 
dependent learning parameters. We conclude that almost-cyclic 
learning (learning with random cycles) is a better alternative for 
batch-mode learning than cyclic learning (learning with a fixed 
cycle). 

I. INTRODUCTION 
N most neural-network applications, learning plays an I essential role. Through learning, the weights of the network 

are adapted to meet the requirements of its environment. Usu- 
ally, the environment consists of a finite number of examples, 
the training set. We consider two popular ways of learning 
with this training set: incrementally and batch-mode. With 
incremental learning, a pattern 211 is presented to the network, 
and the weight vector w is updated before the next pattern is 
considered 

with r ]  the learning parameter and f ( . ,  .) the learning rule. 
This learning rule can be either supervised, e.g., the backprop- 
agation learning rule [ l ]  where x p  represents an input-output 
combination, or unsupervised, e.g., the Kohonen learning rule 
[2] where x p  stands for an input vector. In batch-mode, we first 
average the learning rule over all P training patterns before 
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changing the weights 

a w  = r ] -  1 f ( w ,  x”) 
P 

p=1 

= v F ( w )  

where we have defined the average learning rule or drift F ( w ) .  
Both incremental and batch-mode learning can be viewed as 
an attempt to realize, or at least approximate, the ordinary 
differential equation 

( 3 )  
dw 
d t  
- = F ( w ) .  

In [3] it was rigorously established that the sequence of 
weight vectors following (1) can be approximated by the 
differential (3) in the limit r] -+ 0. However, choosing an 
infinitesimal learning parameter is not realistic, since the 
smaller the learning parameter, the longer the time needed to 
converge. In this paper, we will therefore go one step further 
and calculate the lowest-order deviations from the differential 
(3) for small learning parameters 7. For convenience, we will 
refer to (3) as the “ideal behavior.” If the drift F ( w )  can be 
written as the gradient of an error potential E ( w ) ,  i.e., if 

F ( w )  = -VE(w) 

the ideal behavior will lead the weights w to a (local) minimum 

Batch-mode learning is completely deterministic but re- 
quires additional storage for each weight which can be in- 
convenient in hardware applications. Incremental learning 
strategies, on the other hand, are less demanding on the 
memory side, but the arbitrariness of the order in which the 
patterns are presented makes them stochastic. We will consider 
three popular incremental learning strategies: on-line learning, 
cyclic learning, and almost-cyclic learning. At each on-line 
learning step, one of the patterns is drawn at random from 
the training set and presented to the network. The training 
process for (almost) cyclic learning consists of training cycles 
in which each of the P patterns is presented exactly once. 
Cyclic learning is learning with a fixed cycle, i.e., before 
learning starts, a particular order of pattern presentation is 
drawn at random and then fixed in time. In almost-cyclic 
learning, on the other hand, the order of pattern presentation 
is continually drawn at random after each training cycle. 

On-line learning has been studied using stochastic methods 
borrowed from statistical physics (see, e.g., [4]-[6]). These 
studies are not restricted to on-line learning on finite pattern 

of E ( w ) .  
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sets, but also discuss leaming in changing environments [7], 
[8], learning with time-correlated patterns [9], and learning 
with momentum term [lo], [ l l ] .  The method we use in this 
paper to derive the (well-known) results on on-line learning 
can also be applied to learning with cycles of training patterns. 
Learning with cycles has been studied in [12] for the linear 
LMS learning rule. Our results are valid for any (nonlinear) 
leaming rule that can be written in the form of (1) Further- 
more, we will point out and quantify the important difference 
between cyclic and almost-cyclic learning. 

In Section 11, we will apply a mixture between the time- 
averaging method proposed in [SI and Van Kampen’s ex- 
pansion [13] explained in [6] to derive the lowest-order 
deviations from the ideal behavior (3) for the various learning 
strategies. At first reading, the reader may want to skip this 
section or view it as an appendix. Section I11 focuses on the 
asymptotic behavior. The asymptotic misadjustment measures 
the asymptotic local deviations between the weight vector and 
a stable fixed point of the ideal behavior (3) and is therefore 
a useful indication of the network’s performance. Another 
closely related performance measure is the typical number 
of learning steps n, necessary to generate a weight within 
order t of the stable fixed point. We will calculate n, for the 
three incremental learning strategies, both with fixed and with 
time-dependent learning parameters. 

11. THEORY 

In this section we will study batch-mode learning, on-line 
learning, cyclic learning, and almost-cyclic learning in the 
limit of small learning parameters q. We will focus on the 
lowest-order deviations from the ordinary differential equation 
found in the limit 7 + 0. For convenience, we will use one- 
dimensional notation. It is straightforward to generalize the 
results to higher dimensions. 

A. Batch-Mode Learning 
In the following, we will use subscripts n and m to indicate 

that time is measured in number of presentations of one pattern 
and in number of cycles of P patterns, respectively, i.e., 
n = mP. With this convention, the batch-mode learning rule 
(2) can be written 

Up to the two lowest orders in the learning parameter v, (4) 
is equivalent to 

= F[q!I(t)] 
d t  

= F / [ 4 ( t ) ] Q ( t )  - F‘[@( t ) ]F[4( t ) ] .  (6) 
d t  

For batch-mode learning, the deviation from the ideal behavior 
(3) is of order U = qP. This deviation, which is a consequence 
of the discretization of the learning steps, is well known as the 
error of Euler’s method in numerical analysis [14]. 

B: On-Line Learning 

On-line learning is an incremental learning strategy where 
a weight update takes place after each presentation of one 
randomly drawn training pattern. Given training pattern x, at 
learning step n, the weight change reads 

(7) w n + i ~  wn = qf (wnj xn). 

We start with the ansatz in which the fluctuations are small, 
i.e., we write (see, e.g., [6]) 

wn = q!In + f i E n  

with 4, a deterministic part and E, a noise term. After T 
iterations of the learning rule (7), we have 

(8) &+T - 4n f f i [ [ n + T  - (n1 
T-1 

L i=0 
r T-i 1 

(9) 
L a=O 

where in the last step we used that @=+% = qhn + U( iv )  and 
similarly for We write the first sum on the right-hand 
side as an average part plus a noise term 

T-1 
W,+P - W n  = Wm+l  - W m  

P rl f(4n. IC,+%) = (rlT)F(4n.) + f i I m X n ( 4 5 n )  (10) 
t = O  

= v f (wm, .“I 
= uF(w,) (4) 

p= 1 with the drift F ( w )  defined in (2) and noise xn(w) defined by 

1 T-l 

dT z=o 
x n ( w )  = ~ [ f ( w ,  X n + z )  - F(w)1. where we have defined the rescaled learning parameter v 

vP.  To turn (4) into a set of differential equations, we make 
the ansatz For large T the noise xn(w), consisting of T independent 

w, z= $( t )  + u fq t )  

with 
t r u m  

terms, is Gaussian distributed with zero average and variance 

D(w) = ( f 2 ( w ,  x)) ,  - J q W )  
- P  
1 
P 

= ~ f y w ,  x ” )  - F2(W).  

”=I = qn. 
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From (9), we obtain the set of difference equations In terms of the rescaled learning parameter v 
time m measured in cycles, (1 3) yields 

qP and the 

&+T - 4n = (VT)F(&) + O(V2T2) 

<n+T - <n = ( V W ’ ( 4 n ) C n  + Jrirxn(4n) 
+ U(q2T2) .  

vm+1 - vm = ~ F ( v m )  
x,+1 - xm = v[F’(.U,)x, + b(w,, 2) 

(14) 
(1 1) 

For small learning parameters 7, we can replace the difference 
equation for 4n by the differential (5). The deviation due to 
discretization is of order 7 (see the analysis of batch-mode 
learning) which is negligible in comparison with the noise 
term of order fi. The difference equation (1 1) for the noise 
tn is a discretized version of a Langevin equation which, in the 
limit VT + 0, becomes a continuous-time Langevin equation 
(see, e.g., [ 151). The corresponding Fokker-Planck equation 
for the probability Il(<, t )  is 

(12) 

In “zeroth order” the weights follow the ideal behavior (5). The 
randomness of the sampling, however, leads to deviations of 
order fi. This result is not new and has been derived in many 
different ways (see, e.g., [7], [8], and [16]). Our derivation 
combines the ansatze suggested by Van Kampen’s expansion 
[6],  [13] with the time-averaging procedure applied in [5].  In 
the following section we will show how a similar procedure 
can be used to study learning with cycles. 

C. Learning with Cycles 

Let 2 = {zO, . . .  , z,, . . .  , Z P - ~ }  denote a cycle of pat- 
terns. There are P !  possible different training cycles. Given 
such a training cycle 2, the weight change can be written as 

P-1 

z = o  

which, after substitution of the ansatz 

wn = + ( ~ P ) z ,  

can be turned into 

Vn+P - vn + (VP)[Xn+P - xn] 
P-  1 P- 1 

+ U(V3P3) 

i=O i=l j=O 

P-1 

with definition 

+ F/(vm)F(vm)] + U ( y 2 ) .  (15) 

Difference equation (14) for v, is just the batch-mode learning 
rule (4). Lowest-order correction (6) to the ideal behavior ( 5 )  
can be incorporated in the difference equation for x,. Up to 
order v2, (14) and (15) are therefore equivalent to (5) and 

zm+1 - xm = v{F’[4(t)]&n + b[$( t ) ,  .’,I} + U ( u 2 )  (16) 

with 2, the particular cycle presented at “cycle step” m. 
Neglecting the higher-order terms, (7) can be viewed as an 
incremental learning rule for training cycle 2,, just as (7) 
is the learning rule for training pattern z,. All necessary 
information about the cycle 2, is contained in the term 
b [ d ( t ) ,  2,]. With cyclic learning, we have the same cycle 
Zm = Z at all cycle steps with almost-cyclic learning we draw 
the cycle Zm at random at each cycle step. 

1) Almost-Cyclic Learning: With almost-cyclic learning, 
subsequent training cycles are drawn at random; almost- 
cyclic learning is on-line learning with training cycles instead 
of training patterns. We can apply a similar time-averaging 
procedure as in our study of on-line learning. Starting from 
the ansatz 

1 
x m = p $ m + f i G  

we obtain, after T iterations of the “learning rule” (16) and 
neglecting all terms of order v2T2 and higher 

$,+T - $m = (vT){F’[4(t)]$,  + B[4(t)]}  (17) 

(18) Cm+T - 5m = W)F’[4( t )15 ,  + m X m [ 4 ( t ) ]  

with definitions 

B ( w )  r P ( b ( w ,  Z))z 
and 

The variance Q(w)  for the white noise xm(w)  is given by 

Q ( w )  P[(b2(w,  .’))a - (b(w, .‘))$I. (19) 

Calculation of the average B ( w )  and the variance Q(w) is 
tedious but straightforward. In terms of 

l P  
C ( w )  = 7 f ’ (w,  S ” ) f ( W ,  x”) 

G(w) I [ f ’ (w,  x ” ) ] ~  
”=I P 



922 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 4, JULY 1996 

we obtain 
1 
2 

B ( w )  = - ~ C ( w )  

Q(w)  = 12 {[F'(w)120(w) + F2(w)G(w)  

+ 2 F ' ( w ) F ( w ) C ( w ) }  

1 

(20) 
1 

+ 12p lD(w)G(w) - C'(w)l. 

We can, similar to what we did for on-line learning, turn 
(17) for $m and (18) for cm into a differential equation for 
$( t )  and a Fokker-Planck equation for II(<! t )  

D. A Note on the Validity 

Let us reconsider our ansatze. We assumed that deviations 
from the ideal behavior 4(t)  scale with some positive power 
of v ,  i.e., the smaller 7 the smaller these deviations. Looking 
at the differential and Langevin-type equations for these devia- 
tions, we see that the deviations remain bounded if and only if 
F'[4 ( t ) ]  < 0. Assuming that the drift F ( w )  can be written as 
minus the gradient of some error potential E(w), this implies 
that the theory is valid in regions of weight space where the 
error potential is convex which is true in the vicinity of the 
local minima w* . Outside these so-called "attraction regions," 
our derivations are only valid on short time scales (see [6] for 
a more detailed discussion on the validity of Fokker-Planck 
approaches of on-line learning processes). 

A second notion concerns perfectly learnable problems. For 
these problems there exists a weight or a set of weights w* 
such that f ( w * ,  x") G 0 for all patterns p in the training 
set. An example is a perceptron learning a linearly separable 
problem. For these perfectly learnable problems the "perfect" 
weight w* acts like a sink-all learning processes will end 
up in this state. In our analysis, a perfectly trainable network 
has a vanishing asymptotic diffusion. Most practical problems, 

Recalling all our definitions and ansatze, we conclude that 
this set of equations, in combination with (5 ) ,  can be used to 
predict the behavior of 

wn = 4(7n) + q+(r/n) + ( ~ p ) f i < ( ~ )  + 0 ( v 2 p 2 ) .  

For almost-cyclic learning, the deviation from the ideal be- 
havior due to discretization of learning steps is of order 7, 
and the deviation due to the randomness of the sampling is 

however, are not perfectly learnable, and a minimum of the 
error potential w* corresponds to the best compromise on the 
training set. In this paper, we therefore restrict ourselves to 
networks that are not perfectly trainable. 

- -  
of order q3/2 P. 

2 )  Cyclic Learning: With cyclic learning, a particular cycle 
2 is drawn at random from the set of P !  possible cycles 
and then kept fixed at all times. The "learning rule" is, up 
to order u2, given in (16). Given a particular training cycle 2" 
with corresponding b"(w) f b(w, P), the evolution of the 
deviation za  is completely deterministic 

We can split ~ " ( t )  in an average part $( t ) ,  common to all 
cycles, and a specific part y" ( t )  

The evolution of $( t )  follows (21), and the evolution of ~ " ( t )  
is given by 

where we have defined the term 

q"(w) F @[b"(w) - (b(w, 2))4 
with zero average and variance Q(w) defined in (19) and 
computed in (20). From 

w," = 4(7n) + v $ ( v )  + 7*Y"(74 

we conclude that for learning with a particular fixed cycle P, 
the weight vector w," follows the ideal behavior d(7n) with 
correction terms of order v@. These correction terms for 
cyclic learning are larger than those for almost-cyclic learning. 

111. ASYMPTOTIC PROPERTIES 

The ideal behavior (3) leads w to a stable fixed point w* 
obeying 

F ( w * )  = 0 and F'(w*) < 0 

i.e., to a (local) minimum of the error potential E ( w )  (as- 
suming such an error potential exists). In this section we will 
study asymptotic properties of the various learning strategies. 
We will focus on the asymptotic behavior of the misadjustment 

Adn = ( (w - w*)2), 

= l(w)w - W*l2 + [ ( W 2 L  - (43 
= a + c  (24) 

where the average is over the distribution of the weights after 
a large number of learning steps n. A and C are called the 
bias and the variance, respectively. 

A. The Asymptotic Misadjustment 
First, we will consider the asymptotic misadjustment A = 

Mm for the various learning strategies. We will concentrate on 
training sets with a large number of patterns and small learning 
parameters, i.e., we will consider the situation 1 -CK P << 1/q. 
In the following we will only give the results in leading order. 

1) Butch-Mode Learning: A stable fixed point w* of the 
differential (2) is also a stable fixed point of the batch-mode 
(2). Therefore, all deviations from the ideal behavior will 
completely vanish, and the batch-mode learning rule yields 
zero asymptotic misadjustment. 
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2) On-Line Learning: The most important contribution to 
the asymptotic misadjustment for on-line learning stems from 
the noise 4 due to the randomness of the sampling. The 
Fokker-Planck (12) yields 

A = C  

= r ] ( E 2 )  

i.e., the asymptotic misadjustment is of order q. The diffusion 
D(w*) measures the local fluctuations in the learning rule, the 
derivative F’(w*) the local curvature of the error potential. 
The bias A is of order q2 and thus negligible [8]. 

3) Almost-Cyclic Learning: For almost-cyclic learning, the 
bias A follows from the stationary solution of the average 
deviation $. Equation (21) gives 

where C(w*)  measures the correlation between the learning 
rule and its derivative. The variance is of higher order in 7 
but strongly depends on the number of patterns P 

C = q3P2(5’) 

which follows from the Fokker-Planck equation (22) and (20). 
Depending on the term qP’, the asymptotic misadjustment is 
dominated by either the bias or the variance. 

4)  Cyclic Learning: With cyclic learning, we first have to 
calculate the asymptotic misadjustment for a particular cycle 
P. In lowest-order, we obtain 

A“ = r ] 2 [ ~ y c u ] 2  

with y“ the asymptotic solution of the differential (23) 

The average asymptotic misadjustment, which is the average 
over all possible cycles, thus obeys 

A 3 (A“)a 

The (average) asymptotic misadjustment for cyclic learning 
is (for small learning parameters and a considerable number 
of patterns P )  always an order of magnitude larger than the 
asymptotic misadjustment for almost-cyclic learning. Almost- 
cyclic learning is therefore a better alternative for batch-mode 
learning than cyclic learning. 

B. Necessary Number of Learning Steps 

In this section we consider the decay of the misadjustment 
to its asymptotic solution for the three incremental learning 
strategies, both with fixed and with time-dependent learning 
parameters. We will work in the limit 1 << P2 << l /qn << n. 
The analysis in Section I1 shows that the convergence rate is 
the same for all learning strategies discussed in this paper, 
i.e.. in lowest-order we can write 

Mn+l - Mn = 2~nlF’(w*)I [A(~f i )  - Mn] (26) 

with vn the learning parameter at learning step n and A(?/) the 
asymptotic misadjustment for the various learning strategies. 
We recall from Section I11 that A(q) IX q for on-line learning, 
A(7) o( q2 for almost-cyclic learning, and A(r]) IX Pv2 for 
cyclic learning. Following [12], we consider the concept of 
an €-optimal weight, i.e., a weight w within order E of the 
local minimum w*. We will calculate the typical number 
of learning steps n, necessary to reach such an €-optimal 
weight, i.e., the typical number of learning steps until the 
misadjustment is of order c2. Our analysis is a generalization 
of [ 121 to general (nonlinear) learning rules and points out the 
important difference between the three incremental learning 
strategies. 

I )  Fixed Learning Parameters: With a fixed learning pa- 
rameter, i.e., qn = 7 for all n, the misadjustment Mn obeying 
(26) can be written 

M~ = ~ ( 7 )  + ~ [ e - ’ I F ’ ( w * ) l n q ] .  (27) 

To make sure that the asymptotic misadjustment is of order E’,  

we have to choose r ]  = O[A-l(€’)] with A-’(.) the inverse 
of A(.). Substitution into (27) yields 

0 ( E 2  1 e-xnq 

with X = O(1). Thus, the typical number of learning steps n, 
necessary to generate an t-optimal weight is 

We have n, N l / t2 log(l / t )  for on-line learning, n, 
N 1 / ~  log (1 /~)  for almost-cyclic learning, and n, N 

@/c log (I/€) for cyclic learning. 
2) Time-Dependent Learning Parameter: With time-de- 

pendent learning parameters we can choose the learning 
parameter qn yielding the fastest possible decay of the 
misadjustment Mn. Optimizing the right-hand side of (26) 
with respect to qn, we obtain a relationship between Mn and 
V n  

A(qn) - Mn + qnA’(qn) =z 0 

and thus 

with r = 1 for on-line learning and r = 2 for learning 
with cycles. Substitution of (28) into (26) yields a difference 
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equation for q,. For large n, the solution of this difference 
equation reads 

Combining (28) and (29), we obtain M, - 1/n and thus 
n, - I/& for on-line learning, Mn N l / n 2  and ne - I/€ 
for almost-cyclic learning, and M, - P / n 2  and n, - 
for cyclic learning. With time-dependent learning parameters, 
the necessary number of learning steps n, is order log ( 1 / E )  

smaller than with fixed learning parameters. In both cases, 
cyclic learning requires about @ more learning steps than 
almost-cyclic learning. 

IV. DISCUSSION 

We have studied the consequences of different learning 
strategies. For local optimization, learning with cycles is a 
better alternative for batch-mode learning than on-line leam- 
ing. The asymptotic misadjustment for learning with cycles 
scales with q2,  whereas the asymptotic misadjustment for 
on-line learning is proportional to 7. Furthermore, learning 
with cycles requires less learning steps to get close to the 
minimum. Almost-cyclic learning yields, in this respect, even 
better performances than cyclic learning. 

Learning with cycles can be interpreted as a more “conser- 
vative” learning strategy, since within each cycle the network 
receives information about all training patterns. With on- 
line learning, on the other hand, the time span between two 
presentations of a particular pattern can be much larger than 
the period of one cycle. As a result, the fluctuations in 
the network weights are larger for on-line learning than for 
learning with cycles. The asymptotic bias for cyclic learning 
can be viewed as an artifact of the fixed presentation order. 
Almost-cyclic learning prevents this artifact by randomizing 
over the presentation orders at the (lower) price of small 
asymptotic fluctuations. 

In our presentation, we have used one-dimensional nota- 
tion. However, it is straightforward to generalize the results 
to general high-dimensional weight vectors. The asymptotic 
misadjustment for the various learning strategies then depends 
on, most importantly, the Hessian matrix and the diffusion 
matrix. The Hessian matrix is related to the local curvature 
of the error potential, the diffusion matrix to the fluctuations 
in the learning rule. Training sets with lots of redundant 
information have a l o w e r  diffusion and thus a lower asymptotic 
bias than training sets with very specific and contradictory 
information. 

For backpropagation as well as for other learning rules 
minimizing the loglikelihood of training patterns, the diffusion 
matrix is, up to a global scale factor, proportional to the 
Hessian matrix (see, e.g., [17]). As a consequence, for on-line 
learning the asymptotic distribution of the weights is isotropic 
(see [SI). Similarly, it can be shown that the asymptotic co- 
variance matrix for cyclic learning (averaged over all possible 
representation orders) is, in a lowest-order approximation, 
proportional to the diffusion matrix as could be guessed from 
the one-dimensional result (25). Therefore, this covariance 

matrix is, for learning rules based on loglikelihood procedures, 
also proportional to the Hessian matrix. The asymptotic co- 
variance matrix for almost-cyclic learning is proportional to 
the square of the Hessian matrix. The covariance matrix that 
would result from a local lowest-order approximation of a 
Gibbs distribution is proportional to the inverse of the Hessian 
matrix. 

Our analysis is valid in the limit of small learning parame- 
ters q, but even then only locally, i.e., in the vicinity of local 
minima and on short time scales. The theory can therefore 
not be used to make quantitative predictions about global 
properties of the learning behavior such as escape times out of 
local minima or stationary distributions. However, the above 
local description may be helpful to explain some aspects of 
global properties. For instance, the larger the local fluctuations, 
the higher the probability to escape (see, e.g., [IS] and [191). 
This might be one of the reasons why on-line learning, the 
learning strategy with the largest fluctuations, often yields the 
best results, especially in complex problems with many local 
minima (see, e.g., [20]). 
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