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ABSTRACT

In Section 1 a general theoretical expression is derived for the gain in signal
strength attainable by atomic fluorescence spectroscopy (AFS) when compared
to flame emission spectroscopy (FES), if the same atomic line, flame and measur-
ing instrument are used. In particular, the usefulness of the hot hydrogen—
oxygen flame in AFS is discussed, In Section 2 the shape of the analytical curve
in AFS is derived from the curve-of-growth theory, for a continuum as well as a
narrow-line source and under idealized conditions. The effects of partial illumi-
nation of the observed flame cell, and of partial observation of the illuminated
flame cell on the shape of this curve, are shown both theoretically and experi-
mentally. Possible sources of deviation of practical curves from the calculated
curves are mentioned. In Section 3 the advantages of non-resonance fluorescence
are summarized. A general theoretical expression is derived for the ratio of
fluorescence signals obtained when one or another atomic line is used as an
exciting and fluorescent line, respectively. This is done for direct line fluorescence

as well as stepwise line fluorescence.

1. COMPARISON OF SIGNAL STRENGTHS ATTAINABLE IN
ATOMIC FLUORESCENCE (AFS) AND FLAME EMISSION

SPECTROSCbPY (FES)
The improvement of detection limits is one of the main goals in AFS.

The actual detection limit depends on many factors and will vary strongly
from element to element and from instrument to instrument. Elaborate
theoretical expressions based on detailed noise considerations have been
given in the literature1'2. These expressions are difficult to survey and do
not demonstrate clearly the fundamental advantages of AFS over FES in
this respect. Assuming idealized conditions we shall briefly derive a simple
expression for the fluorescence signal compared to the thermal emission
signal, leaving out all accidental factors. Only a few fundamental parameters
will be retained that enable us to estimate roughly the gain in detection limit
attainable by AFS. The derivation of the gain factor to be presented makes
use of some general relationships only and bypasses in a way the detailed and
elaborate calculations of absolute detection limits.

In comparing the two spectroscopic methods, we assume that the same
atomic resonance line is excited and observed in the same flame volume fed
by the same sprayer. Also, the solid angle under which the flame is observed,
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the spectral apparatus and the photometer are assumed to be identical in
the two cases. We suppose that in both cases the detection limit is set by the
common shot-noise level due to the flame-background signal. When this
shot-noise is not detectable because of a very low background emission, the
detection limit may be supposed to be set by the dark-current and amplifier
noise. These noise effects will again be the same in AFS and FES, when the same
photometer is used. We disregard the contribution of scattering to the back-
ground noise in AFS, since this noise source is accidental and may be over-
come by appropriate instrumental measures. Under these conditions, the
ratio of the detection limits attainable with the two spectroscopic methods
is determined only by the ratio of the absolute signal strengths. When the
exciting light-beam or the flame emission is chopped by a light-modulator,
an additional factor J2 may occur in the ratio of the detection limits. This
small effect will be disregarded here. For simplicity's sake, the temperature
Tf and composition of the flame part under observation is assumed to be
homogeneous. The same applies to the radiation density pS (in erg cm _3) or
the spectral radiation density p (in erg cm per unit of wavelength interval
in A) of the exciting light-beam throughout the observed flame part. Since we
are just comparing detection limits, the weakening of the exciting light-
beam due to its absorption in the flame, as well as the self-absorption of the
(re-)emitted atomic radiation may be neglected. In other words, our calcula-
tions are applicable in good approximation for sufficiently small metal
concentrations n (number of atoms per cm3). In this case the following calcula-
tions are also valid when the distribution of atoms is not homogeneous.

(a) Case of continuum source
The concentration of excited atoms in the case of a Boltzmann equilibrium

is denoted by nt. In the presence of a continuum radiation field with spectral
density of p0 at line centre Ao the concentration will be raised to a higher
value n* The fluorescence radiation intensity (expressed in number of photons
re-emitted in all directions per cubic centimetre and per second) is given by
the product: A(n* — n), where A is the optical transition probability (per
second). This product is also equal to the number of excitations, U, per
second and per cubic centimetre by absorption of primary photons, multi-
plied by the yield factor Y of resonance fluorescence.This factor is defined
as the fraction of photons absorbed that are re-emitted as fluorescence in
the limit of negligible self-absorption. Thus we have (see also footnotet)

A(n* — n) = UY (1)

t In actual flames (without external light-source) the excited-state population at low atom
concentrations will be lower than the Boltzmann value, because the rate of radiative dc-excitation
is not compensated by an equal rate of photo-excitation. Exact compensation exists only if the
radiation density equals the Planck value at the flame temperature. The relative deviation
from the Boltzmann population is equal to the fluorescence yield factor Ydefined by equation 2,
in the limit of vanishing atom concentrations24. In normal flames used in FES, Y amounts to
a few per cent only, so we may still regard n as a good measure for the signal strength in FES.
In flames used in AFS. Y may be as large as about a haiL and n in equation 1 should properly be
replaced by nf (1 — Y). For simplicity's sake the factor (1 — Y) is omitted in the following
defivation. An exact derivation has been given5.
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with

Y=A/(A+k) (2)

Herein k denotes the probability per second that an excited atom is de-
activated by a quenching collision.

If, in principle, we could place the flame inside a black box with the same
temperature as the flame, thermodynamic equilibrium would be fully
attaincd. A detailed balance could then be applied to the rates of photon
absorption and photon emission, respectively, which yields the relation

An = Uh (3)

Here Ut,, is the rate of photon absorption inside the black box where the
spectral radiation density is equal to the Planck density, p0(T1), at flame
temperature. Dividing the corresponding sides of equations 1 and 3 we get

(n* — n3/nf = YU/U,, (4)

Since the absorption coefficient of the atomic vapour is not influenced by the
presence of a radiation field, we expect U/Ui,, simply to be equal to the
corresponding ratio of spectral densities, pioJpo(Tf), Thus we get from
equation 4

— n)/n = Yp0/pj7}) (5)

When a continuum source with spectral radiance B (denoting power
emitted per square centimetre, per sterad and per unit wavelength interval)
is imaged on the observed part of the flame under a solid angle Q, the spectral
irradiance E20 (i.e. the power received by the flame surface per square
centimetre and per unit wavelength interval) is, at its maximum, eLlual to
B0Q. Introducing formally the radiance temperature 1', of the continuum
source at A0 by the relation: B0(7) B0, the maximum irradiance received
by the flame can also be written as: B0(7)Q. In fact 7 is the temperature of
a black body that has the same radiance (given by the Planck law) as the
actual source at A.

When Q equals its maximum value 4ir sterad, the flame would effectively
be surrounded by a black body at temperature T5 and the spectral radiation
density would equal the Planck value p0(7). When the experimental condi-
tions are such that Q < 4ir as is usual, the (maximum) spectral density
attainable in the flame by the use of the continuum source considered
amounts to (Q/4iv)p0(7). Substituting the latter value for p0 in equation 5,
we find that the maximum of the ratio (n* — n)/n attainable under the
stated conditions is

(* — n)/n= Y(Q/4rr){p0(T)ip0(7})} (6)

Under the simplifying assumptions made earlier in this Section, this ratio of
excited atom concentrations yields directly the ratio of fluorescence to
thermal emission signals. Again, this equals the gain in detection limit that
is attainable — under the assumed experimental conditions—---by the applica-
tion of AFS. it appears that the only parameters of the atomic resonance
line involved in this gain are its wavelength A and the yield factor Y.
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It is interesting to note that neither the transition probability A nor the
(integrated) absorption coefficient occurs explicitly in the RHS of equation 6.
Of course, A is implicitly contained in V (see equation 2), but flame con-
ditions might, in principle, be chosen such that Y 1, so that Y becomes
virtually independent of A. The independence of the gain factor of the
emission and absorption properties of the atoms concerned (for Y 1)
is based on the proportional relationship that fundamentally exists between
A and the integrated absorption coefficient6. When both quantities are
raised by the same factor, the rates of the radiative de-excitation and excita-
tion processes (for given p0 and for V 1) again hold each other in balance,
and the value of n will not be changed.

The only parameter of the continuum source involved in equation 6 is its
radiance temperature 7; (which may depend on A0 when the source is not
'optically black'). The parameters Y and T1 depend on the flame chosen,
while Q is determined by the optical components. As expected, the gain in
the detection limit is proportional to Y, which may vary from a few per cent
in flames diluted by nitrogen, to above 50 per cent in premixed hydrogen—
oxygen flames diluted by argon2'3'7' 8 Realistic values of Q may range
approximately from 01 to 1 sterad; the use of a mirror behind the flame
may nearly double the effective solid angle. So at best we can expect YQ/4it
to be roughly 005. Any substantial gain in the detection limit must thus
come from the ratio of the Planck factors. This ratio may be very large for
ultra-violet lines, when 7; and Tf differ by some thousands of °K.

If we take, for example, T1 = 2000°K, Y = 05, Q = 1 sterad and ,l
3000 A, we calculate from equation 6 a theoretical gain in the detection
limit of the order of 106, if a xenon arc with radiance temperature 7; 6000°K
is used. When T1 is increased to 3 000°K, the gain is lowered by a factor of
3 x iO, but is still very large.

Of course, when discussing practical detection limits, we should consider
many other factors too. For example, the optimum choice of analysis line
and flame temperatures may be different in AFS and FES. The flame back-
ground fluctuations as observed in FES may exceed the shot-noise level.
On the other hand, the application of FES may allow one to observe a
larger flame volume than could be illuminated by the light-source in AFS
because of the limited extensions of the source etc. It was not our intention
to discuss these additional, practical factors which may sensibly vary from
case to case. The simple expressions derived only serve as a first guide to
give a rough insight into the essential parameters that determine the per-
formance of AFS when compared to FES.

(b) Case of sharp-line source
The theoretical gain in the detection limit attainable by AFS with a

sharp-line source can be found from equation 5, if we replace p0 therein by
the effective spectral density PS7A1leff. of the exciting light-beam in the flame

— n3/n= Y(pS/AAeff)/po(7}) (7)

Here pS (erg/cm3) is the radiation density integrated over the whole spectral
width of the exciting line, which is supposed to be small compared to the
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effective width Aeff. of the absorption line. The latter quantity is defined
by

'leff. — $ k(A) dA/k(20)

where k()L) is the wavelength-dependent absorption coefficient and the
integration is taken over the whole width of the absorption line. An exact
derivation has been given by Alkemade and Zeegers5. The only atomic
line parameters involved in equation 7 are 2, '1eff. and Y. The properties
of the light-source and of the optical system that images this source in the
flame are contained in pS, while 7}, Y and eff. still depend on the kind of
flame chosen.

Assuming: Y = 05, A0 = 2300 A, 1eff. 002 A, and T1 = 2000°K, the
gain factor is calculatedirom equation 7 to be 07 x 108 for pS = 3 x iO
erg cm3. The integrated radiance of a Cd electrodeless discharge tube
has been reported by Mansfield et al.9 to be about io erg sec1 cm2
sterad' at 2288 A. When this source is imaged under a solid angle of 1
sterad in the flame, the above assumed value 0fpS could be realized. According
to equation 6 this gain factor would also be attained, when under the same
experimental conditions a high-pressure xenon lamp XBO 450 with radiance
temperature1° T 6000°K is used. The Osram Cd vapour lamp has been
reported1° to yield a 10 x higher radiance than the above Cd electrodeless
lamp, so that even a gain factor exceeding 108 could be expected.

(c) Conclusions
It appears from the above examples, that under suitable conditions the

excited state population in AFS can considerably exceed the thermal value.
In the calculation of detection limits for resonance fluorescence, the shot-
noise of the photocurrent released by the thermal atomic emission is then
irrelevant and the equations given by Jenkins2 for the detection limit are
not applicable.

The examples given also show that under suitable conditions a strong
population inversion can be expected between the level excited by the source
radiation, and other excitation levels that lie within, say, 1 eV distance below
this level. Population inversion is known to be a necessary but not a sufficient
condition for the operation of a laser.

A more specific discussion of the theoretical gain factors in AFS requires
experimental data on the fluorescence yield factor Y as well as on the (spectral)
radiance or radiance temperature of available light-sources. Extensive data
on different types of sources have been reported by Prugger' O The numerical
values obtained for sources that show strong spatial inhomogeneity should
be carefully considered. The radiance measured by Prugger1° for a high-
pressure xenon arc, for example, appear to exceed by about one order of
magnitude the values measured by Zeegers and Snelieman (personal com-
munications). Zeegers has mapped the spatial distribution of the radiance
of this source and found a strong inhomogeneity in both axial and radial
directions.

There is still a great lack of experimental Y values for atomic lines belonging
to elements that are of interest in practical AFS. Jenkins2' 11—13has reported
Y values for the resonance lines of Li, Na, K, Rb, Cs and Ti; Hooymayers
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and Alkemade7, Hooymayers and Nienhuis14 and Hooymayers and Lijnse'5
have measured Y for Na, K (4P and 5P levels) and Rb in flames with several
diluent gases. Pearce, de Galan and Winefordner16 have measured approxi-
mate fluorescence yield factors in unpremixed fuel-rich hydrogen—oxygen,
acetylene—oxygen and hydrogen—argon-entrained air flames for the resonance
lines of Mg, Ag, Cu, Ti, Au, Pb, Ca, Mn, Co, Fe and Cd. Turbulent mixing
with the surrounding air introduces an appreciable amount of nitrogen in
all three flames. Recently the low value Y = 10 x 10-2 was found17 for
the 2852 A Mg line in a premixed acetylene—air flame at T =2410°K.

In order to promote the volatilization of elements that form stable com-
pounds in the condensed phase, high-temperature flames are often recom-
mended. In this respect, the fairly hot unpremixed hydrogen-oxygen flame
would look promising in AFS, as the major flame constituent (water vapour)
is known to have a low quenching efficiency for a number of metal lines (see
ref. 5 for a survey). Since hydrogen is often reported to have a much lower
quenching efficiency than oxygen (and sometimes even than water vapour),
a fuel-rich hydrogen-oxygen flame may be preferred. Using the specific
cross section measured by Jenkins'3 for the quenching of Tl(72 S) by water
vapour in flames at 1 400°K, one might expect that in the hydrogen—oxygen
flame the fluorescence yield factor would approach its maximum value
within a factor of three. Since optical transitions from the Tl(72S) level
occur to both the 62P ground level and the low-lying 62P excitation level,
the maximum yield factor here is lower than unity when only one fluorescent
line is measured18. These estimates of the yield factor in hydrogen-oxygen
flames are rather uncertain, as turbulent mixing with the surrounding air
could noticeably reduce the actual fluorescence yield16. The presence of a
sheath of argon around the flame might be profitable in this respect.

Also the possible presence of OH radicals in significant concentrations
may cause some uncertainty, as cross sections for quenching by OH are not
known. However, the presence of 0 or H atoms can be fully neglected here,
since monatomic species usually have negligible quenching efficiencies5.
Another source of error might be the extrapolation of the experimental
quenching cross section for H2O to the higher temperature of the hydrogen—
oxygen flame. Part of the quenching by H20 is achieved by a dissociative
process5 according to

M* + H20 -+ M + H + OH
Here M* and M are an excited and a ground-state metal atom, respectively.
The efficiency of this dissociative quenching is expected to increase expo-
nentially with temperature. This holds at least if the excitation energy of
M* (33 eV for the 72Sf Ti level) is lower than the dissociation energy of
H2O (52 eV). Under this condition, the dissociative quenching process is
endothermic.

A comparison of the signal strengths attainable in AFS and in atomic
absorption spectroscopy (AAS) under similar measuring conditions and
with the same light-source has been given previously'9. From solid-angle
considerations, the maximum ratio of the signal strengths in AFS and AAS
appears to be -Y, which is at most equal to -.Nevertheless, since the back-
ground noise is usually of a quite different nature with these two spectro-
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scopic methods, the actual detection limit in AFS could still be better than
that in AAS.

When combining the general expression for the ratio of signal strengths19
in AFS and AAS with that for the ratio of signal strengths in AAS and FES2°
one obtains essentially the same result as that expressed by equations 6
or 7, albeit in a slightly different form. The latter equations, however, are
here derived in a more direct way which does not involve Kirchhoff's law
but is mainly based on kinetic consideration"

2. THE SHAPE OF THE ANALYTICAL CURVE IN ATOMIC
FLUORESCENCE SPECTROSCOPY

As is well known, the experimental analytical curves in AFS show an
inversion at high solution concentrations with a line source, and level off
to a constant plateau with a continuum source. This holds in the usual case
of resonance fluorescence involving an optical transition to or from the
ground state. The shape of the curves with non-resonance fluorescence will
not be considered here, but the following theoretical treatment can be
easily modified to include the latter case too.

After some preliminary attempts21' 22, a more definitive theoretical
treatment of the analytical curves in AFS has been given by Hooymayers23
(see also ref. 24). In this treatment the spectral shapes of the exciting and
fluorescent radiation are explicitly taken into account, which leads to rather
complicated equations involving several integrations over frequency as
well as spatial coordinates. As will be shown here, a more direct and simpler
surveyable derivation can be given in the extreme cases of a continuum and
a sharp-line source, respectively. This derivation starts from the curve-of-
growth theory, which is well known in connection with the analytical curves
found in FES for resonance lines.

(a) Recapitulation of the curve-of-growth theory
There is a close connection between the integral line radiance B (in erg

sec1 cm2 sterad — 1) ofa resonance emission line and the so-called integral
absorption A of the same line seen in absorption against a continuum
source. The latter quantity is defined as the integral of the wavelength-
dependent absorption factor cx(A) (fraction of radiation power absorbed)
over the whole line width

A, j (2) d). (8)

When the flame temperature is homogeneous and according to Kirchhoff's
law, we have in the case of thermal equilibrium

B — B0A (9)

Here B0 is the spectral radiance (radiance per unit wavelength interval in A)
of a black body at flame temperature 'l} and at the wavelength ) of the line
centre. In very good approximation is given by Wien's law which contains
the factor exp [— hv0/kT.]. Here h and k are the Planck and Boltzmann con-
stants, respectively, while V0 is the optical frequency at line centre. For
resonance lines, we have hv0 = where Eexc is the excitation energy.
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The same exponential factor is also found in Boltzmann's law which describes
the relative population nt/n of the excited state. Thus we can also write
instead of equation 9

B = c1(n*/n)A (10)
where c1 is a constant for a given atomic line.

The factor B0 in equation 9 explains the strong, exponential dependence
of the emission intensity on temperature. The factor A, which is but weakly
dependent on temperature, describes the variation of intensity with ground-
state concentration n and flame depth 1. In fact, it is a function of the product
ni. This function depends on the parameter a defined by a (In 2) times
the ratio of Lorentz to Doppler half-intensity width. The curve relating A,
or some quantity proportional to it, to ni, or some other proportional
quantity, is called a curve-of-growth. This curve describes the dependence
of resonance line intensity on metal concentration in flame emission spec-
troscopy. Figure 1 shows some curves for different a parameters, in a double-
logarithmic plot (for calculation of the curves-of-growth, see refs. 25—27).
For small concentrations all curves approach a linear asymptote (A cc ni),
whereas for high concentrations a square-root asymptote [A, cc (nl)] is
attained, at least if a 0. The deviation from the initial linear asymptote
is caused by the effect of self-absorption, which is well known in flame
emission analysis 28 With regard to what follows, it is important to note
from Figure 1 that for 0 < a 1 the curves show an inflection. That is, the
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Fiqure 1. Theoretical curves-of-growth are shown for several a parameters ranging from 0 to
50. The quantity plotted on the ordinate is proportional to the integral absorption', while the
quantity plotted on the abscissa is proportional to the atomic ground-state concentration times

the flame depth. (Derived from T. Hollander, Thesis, Utrecht, 1964)
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derivative y d log (A)/d log (nO has a minimum value at some intermediate
value of ni. This minimum value is smaller than a half, being the value
attained on the asymptote for high concentrations. In contrast, for a 1

the derivative y decreases monotonically from unity to one half for ni going
from zero to infinity.

Equation 10 applies not only in equilibrium, but also when n*/n is enhanced
above its thermal equilibrium value, for example, by an exciting light-beam,
as in the case of AFS. The oniy condition for equation 10 is that n*/n is
uniform along the line of observation. The more general validity of equation
10 may be made plausible by realizing that the dependence of the emission
on n*/n does not involve the specific way in which the excited state is popu-
lated, whether by thermal collisions or by absorption of photons. The factor
A which describes the effect of self-absorption on the emitted radiation,
is also independent of the way in which the atoms are excited. For a further
discussion on the validity of equation 10 see ref. 5.

(b) General expression for the fluorescence intensity
Consider the brick-shaped flame cell shown in Figure 2. The concentration

n of metal atoms in the ground state is assumed to be uniform. The flame is

Source ——w1 I—.
radicst ion

I
—- -

H

Ce

Figure 2. Dimensions of brick-shaped flame cell considered in the derivation of the analytical
curve in fluorescence spectroscopy from the curveof-growth theory

irradiated by a homogeneous beam of light perpendicular to the left-hand
face. The resonance fluorescence radiation perpendicular to the front
face is observed. The thermal emission of the atomic line is supposed to be
eliminated by the application of a modulation technique. Thus we shall
consider here only the increase An* — n in the concentration of
excited atoms brought about by absorption of the primary photons. The
contribution to the excitation rate from re-absorption of secondary photons
is neglected. Since the exciting radiation is gradually weakened on its way
through the flame along the x axis, An* will, in general, be a function of x.
Inside a thin slab of flame gas with thickness Ax (see Figure 2), An* may,
however, be considered to be uniform. Consequently, equation 10 can be
applied to this slab to calculate the radiance BF(x) of the fluorescence line
observed at distance x from the irradiated face. Thus we have
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BF(x) ci{An*(x)/n}A(nl) (11)

A(nl) denotes the value of A for a flame with atom concentration n and
depth 1 which is measured along the line of observation. For An* we have
according to equation 1

A An*(x) = YU(x) (12)

where U(x) is the number of excitations per second and per cubic centimetre
by photon absorption, as a function of x. Combination of equations 11 and
12 yields

BF(x) = (c1Y/A)U(x)A(nl)/n (13)

The radiant intensity AIF (in erg sec' sterad 1) of the fluorescence emitted
by the designated flame slab with surface area H Ax, follows from equation 13

AIF = (c1YH/A)U(x){A(nl)/n} Ax (14)

The total radiant intensity 'F of the fluorescence radiation in the direction
of observation, is obtained by integration over x

'F = c2{A(nl)/n}J U(x) dx (15)

with: c2 c1 YH/A. The integral in equation 15 equals the number of
primary photons absorbed per second in an arbitrary baulk with length L
parallel to the x axis and with a cross section of 1 cm2 (see baulk with hatched
end-face in Figure 2). The combined dependences of this integral and of
A(nl)/n on n determine the shape of the analytical curve in AFS, at least
under the idealized geometrical conditions imposed. In two extreme cases
as regards the relative spectral profile of the source radiation, equation 15
leads to a simple expression, as we shall presently see.

(c) Shape of analytical curve with a continuum source
The spectral irradiance of the source radiation at the surface of the flame

(x = 0), is denoted by E20 (in erg sec1 cm 2 per unit wavelength interval
in A). This quantity is assumed to be constant over the whole width of the
comparatively narrow absorption line. The power absorbed in the whole
baulk shown in Figure 2 is then given by

E0x(,l.) dA. = EAOAI(nL)

as the baulk has a length L. Thus we have

$ U(x) dx = EA0AJnL)/hvO (16)

and with the aid of equation 15

'F = c3A1(nl)A1(nL)/n (17)

with c3 c1 YHE2cJAhv0.
The close connection between the analytical curve in AFS (that is, 'F as

a function of n or solution concentration) and the analytical curve in FES
or the curve-of-growth (that is, A as a function of n) is evident. From the
known shape of the latter curve for a given a parameter, the shape of the
analytical curve in AFS can now be simply deduced. We note that the factor
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A(nL) in equation 17 accounts for the absorbed source radiation as a
function of n, while the factor A(n1)/n accounts for the loss of fluorescence
radiation due to self-absorption. The possibility of describing these absorp-
tion effects by means of two separate factors is connected with the special
geometry of the flame cell chosen.

For a given a parameter the shape of the analytical curve, plotted double-
logarithmically, depends only on the ratio L1l. That is, for a given c-value
we can always bring the analytical curve into coincidence with the curve
describing log A(y)Ajy)/y as a function of log y through an appropriate
shift parallel to the coordinate axes.

The asymptotic behaviour of the analytical curve follows directly from
equation 17, if we recall the general asymptotic behaviour of the curve-of-
growth shown in Figure 2. When n —+ 0, A(nl) and A(nL) vary as ni and nL,
respectively. Thus we expect a linear asymptote 'F x n2lL/n = niL for n —p 0.

The dependence of 'F on the oscillator strength f at the low-concentration asymptote also
follows from equation 17. Curve-of-growth theory indicates that A will become proportional
to f for n — 06,29. Thus we find with the help of equation 2

'F (Y/A)f2 = f2/(A + k)
where the transition probability A is connected to f through (see same literature)

fg, = 151 x 1016 )gA (18)

Here g, and g are the statistical weights of the lower and upper atomic levels involved in the
optical transition, and 2 is expressed in A. Consequently, 'F varies as f2 as long as the yield
factor Y is small compared to unity, that is, A k. For A 'k, however, 'F varies as f Atomic
resonance lines with large f values ( 1) are thus favourable for obtaining a large signal strength
in AFS. It is noted for comparison that the signal strengths obtained in AAS and FES are always
proportional to J in the limit that n —* 0.

For large n-values, A(nl) and A(nL) vary as (nl) and (nL), respectively,
and we have

'F cc (ni)(nL)t/n = (iL)1

which is independent of n. With a continuum source, the analytical curve
thus approaches a horizontal asymptote in the high-concentration range
and chemical analysis is no longer possible. In the same range of high
concentrations the analytical curve for FES varies as n and chemical
analysis is still possible here, albeit perhaps with a slightly lower precision
than in the linear range. Figure 3 (upper curve) shows a calculated analytical
curve with a continuum source together with its linear and horizontal
asymptotes for an assumed value a = 04.

The appearance of a local maximum in the upper curve of Figure 3 is to
be noted. This is connected with the inflection occurring in the curve-of-
growth for a 1 (see Section 2a). Because of this inflection there is an
intermediate range of concentrations where the derivative y of log A as a
function of log n is smaller than the final asymptotic value y = . Upon
differentiating log 'F with regard to log n one gets from equation 17

(d log IF/d log n) = y + y' — 1 (19)

where '' d log A(nl)/d log n, and y' d log A(nL)/d log n. When for some
(finite) value of n, (y + y')just equals one, an extremum (here: a maximum)
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/. /2/. aO

H
'F

Metal concentration, n orb. units

Figure 3. Fluorescence intensity 'F as a function of metal concentration n for the flame cell
considered in Figure 2, with a continuum light-source. The upper curve was calculated for a fully
illuminated flame cell, with a = 04. The lower curve was calculated for a partially illuminated
flame cell (see insert) with the same a parameter. Experimental values with their spreads are
represented by vertical bars and refer to the 2852 A Mg-line in a premixed acetylene—air flame
with a xenon lamp as exciting light-source. Their relative positions are to be compared with the

lower theoretical curve. (According to calculations and measurements by Zeegers)

will occur in the analytical curve. If, for example, I = L, this maximum is
found at that value of n at which the tangent of the curve-of-growth, plotted
double-logarithmically, has a slope tan fi . Sincefor I = L, y = = tanfJ,
we have here y + y' = 1.

In the limit n — , both y and y' tend to and a second extremum is
attained. This extremum is identical to the constant plateau to which the
curve approaches asymptotically. This (asymptotic) extremum occurs for
all a values larger than zero.

The incipient deviation of the analytical curve from its initial asymptote
can be found in a first order approximation as follows. According to the
curve-of-growth theory, A(nI) can be expanded5 in a series for small values
of ni

A(nl) cx nl{1 — k())l + . . .} (20)

with k(..1) k2(A) dA/f k(A) dA, which is proportional to n, since k(}.) is so.
Application of this series expansion to both A factors in equation 17 yields

IF1{1 —(l+L)+...} (21)

The relative deviation from linearity is thus approximately —-k(A)(l + L) at
sufficiently low concentrations. The corresponding relative deviation because
of self-absorption in the case of FES is —k(2)l where 1 is the flame depth
along the line of observation. When 1 L, the concentration at which a
deviation of one per cent is found, is half as small in AFS as in FES, when
the same flame is used. In general, the range of linearity extends, in practice,
in FES to a concentration that is (1 + L)/l times as high as in AFS, for a
given resonance line.

When the flame cell is only partially illuminated by the source (as shown
by the insert in Figure 3), the shape of the analytical curve will be affected
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due to seif-resersal in the non-illuminated flame layer facing the detector.
It might be advantageous to illuminate only the middle portion of the flame,
when turbulence at the flame border would otherwise cause the fluorescence
intensity to fluctuate too strongly.

In this situation the fluorescence intensity 'F with a continuum source,
can be derived directly from equation 17. Let Al be the thickness of the non-
illuminated part of the flame shown in Figure 3 and assume that the atomic
concentration is uniform throughout the flame. Obviously, 'F now equals
the difference of the fluorescence intensity obtained with the flame illuminated
part of the flame shown in Figure 5 and assume that the flame part with
thickness Al illuminated. Thus we have

'F = c3A1(nL){A(nl + n Al) — A1(n Al)}/n (22)

This equation r identical to that derived by Hooymayers23 in a more
complicated way involving explicitly the absorption coefficient as a function
of frequency. Since all functions A occurring in equation 22 vary linearly
with n for n —* 0, again a linear initial asymptote (I cx n) is expected. The
position of this asymptote is independent of Al. When n grows large, all
functions A1 behave as n and 'F again approaches a horizontal asymptote.
Defining Al/i, we can write equation 22 in the form

'F = (c3/n) A(nL)A1(ni)I[A{ni( + 1)} — A(nl)1JA1(nl) (23)

where the left-hand principal factor (leading the square brackets) just equals
the RHS of equation 17 which describes 'F for Al = 0. The asymptotic value
of 'F for n — is thus found to equal the value for Al = 0 multiplied by:

[tnl( + 1)} — = { + 1} —

The lower curve drawn in Figure 3 was calculated for = 1. The initial
asymptote is, indeed, seen to coincide with that of the upper curve (Al =0),
whereas the height of the horizontal asymptote is (J2 — 1) = 041 times
that of the upper curve.

The right-hand principal factor in equation 23 is unity for n =0 and
approaches a value {( + 1) — }, being smaller than unity, for n —÷ cc.
In the intermediate range of concentrations where the curve-of-growth
A1(nl) changes over from a linear to a square-root dependence, the de-
crease of this factor with increasing concentration is most pronounced.
Because of this additional decreasing factor, the local maximum in the lower
curve of Figure 3 ( = 1) is more accentuated than that in the upper curve( = 0) where this factor is unity.

In the special case = 1, the curve relating {A(2n1) — .4(n1)}/A(nl) to ni is called the dupli-
cation curve. It describes the relative increment in flame emission as a function of n when a mirror
is placed behind the flame27. The detailed course of this curve depends on the a parameter and
has been discussed in the literature cited.

Since the final value {( + l) — of the right-hand principal factor
in equation 23 drops to zero for large , the rate of decrease of this factor
with increasing n and thus the appearance of the local maximum will become
the more pronounced, the larger is . The presence of a non-illuminated
absorbing layer in the flame may give rise to a local maximum even when
a> I where the curve for Al = 0 shows no maximum at all (see above).
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This is clearly demonstrated in the curve for a = 50 in Figure 2 of Hooy-
mayers23, calculated for the case Al/i = F5.

These theoretical calculations have recently been confirmed experimentally
by Zeegers (to be published) at the Department of Chemistry in the University
of Florida at Gainesville. The vertical bars in Figure 3 show the experimental
values with their spreads for the 2 852 A Mg line in a rectangular, premixed
acetylene—air flame with i = L and a = 04. The flame was partially
illuminated by a xenon lamp. The a parameter was determined independently.
The agreement with the calculated (lower) curve is excellent. The measure-
ments are shown in Figure 3 in arbitrary units, but were actually done on an
absolute scale. The absolute intensity values appeared to be consistent with
the value FO x 102 for the fluorescence yield factor Y determined in-
dependently.

The spectral shape of the fluorescent line is not explicitly considered
in this treatment. For the model considered here, the relative spectral
shape of the fluorescent resonance line is the same as that of the thermally
excited line, for equal values of atom concentration and flame depth. In
both cases, the line appears to be broadened by self-absorption to the same
extent. For Al > 0, an additional self-reversal effect exists. The latter effect
would also be expected for a thermally excited line that is observed through
a cool outer layer with the same thickness Al and metal concentration. In
this comparison the weak dependence of A on the actual temperature in
the outer layer is disregarded.

When the fluorescence is observed over only a part of the illuminated
flame cell (see insert of Figure 4 when we take Al = 0), the intensity as a
function of n can again be described by equation 23 if we interchange 1 and L
therein. This holds because of the symmetrical way in which l and L occur
in equation 17 from which equation 23 was derived. The analytical curves
found in this case are similar to that shown in Figure 3, and the same dis-
cussion applies as before. The only difference from the former case is that
the relative spectral shape of the fluorescence line is not affected.

d) Shape of the analytical curve with a narrow-line source
We now consider the other extreme case, namely when the spectral line-

width of the source is small compared to that of the absorption line. The
integral irradiance of the source line at the surface of the flame is denoted
by E (in erg sec1 cm2). The fraction of source radiation absorbed per
centimetre path length is assumed to be practically equal to the peak absorp-
tion coefficient km. According to Beer's law the number of primary photons
absorbed per second in the baulk considered in Figure 2 is

U(x) dx (E/hv0) (1 — exp [ kmL])
For 'F we then get from equation 15

'F = c4A(nl) (1 — exp [— kmL])/fl (24)

with c4 c2E/hv0.
Considering the asymptotic behaviour of A and expanding the exponential

function in a series, we find for small n-values approximately

'F X fllkmL/fl = kmlL
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where km is proportional to n. Thus again an initial linear asymptote (IF c n)
exists. In contrast to the continuum case, the slope of this asymptote now
depends on km and thus on the spectral width of the absorption line.

For high concentrations the exponential function drops to zero, that is,
practically all the primary photons become absorbed while A(n!) behaves
as (n1) (for a> 0). We then get from equation 24: 'F l/&. The position
of the high-concentration branch (with negative slope) of the analytical
curve is insensitive to changes in L, but still depends on 1.

Since the curve rises at low concentrations and decays to zero for high
concentrations, a maximum will occur for all values of the a parameter.
This maximum is positioned at some intermediate n value, where simul-
taneously the fluorescence intensity becomes markedly affected by self-
absorption and kmL is no longer small compared to unity. In a double-
logarithmic plot the analytical curve has thus an initial asymptote with
positive slope tan j3 = 1,and a final asymptote with negative slope tan /3 = —

The shape of the curve and the point of intersection of these asymptotes
depend on the a parameter (see the curves calculated by Hooymayers23).

The incipient deviation from the initial asymptote (IF x n) in the low-
concentration range can be calculated as follows. Expanding exp [—kmL] as
well as A(nl) in a series (see equation 20) we get from equation 24 in second
order of n

'F a: {1 iJ)1} (1 — kmL)kmL
(25)

kmL{l — kL)l +kmL}

Here km and k) are both proportional to n. The relative deviation from the
initial asymptote for small values of n is thus — 4k(2) {l + Lkm/i2}. Com-
paring this with the corresponding equation 21 for a continuum source,
we see that under similar flame conditions the analytical curve with a line
source begins to deviate from a linear relationship at a lower concentration.
This holds because km/k(A) is always larger than unity. The latter ratio
depends on the relative spectral shape of the absorption coefficient kg),
that is, on the a parameter. In ordinary flames at 1 atm this ratio is about
14 for the yellow Na doublet. There will be no great difference, then,
between a line and a continuum source as regards the concentration range
in which the analytical curve is practically linear.

When only part of the observed flame cell is illuminated or (and) the
fluorescence from only a part of the illuminated cell is observed (see insert
in Figure 4), the shape of the analytical curve will again be affected. The pre-
sence of a non-illuminated absorbing layer with thickness Al causes a
self-reversal effect which can be calculated in complete analogy with the
continuum case. As a result, we find that the high-concentration branch is
displaced downward by a constant factor. The slope of the asymptote
for n — in a double-logarithmic plot thus remains the same. Analytical
curves for a flame with a rectangular cross section and with Al/i = 15 have
been calculated by Hooymayers23 for various a parameters.

The partial absorption of the source radiation in a layer with thickness AL
between the source and the observed part of the flame affects the analytical
curve more markedly. For a narrow-line source the fraction of radiation
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transmitted by this layer equals exp [ km AL] according to Beer's law.
We find as a function of n by multiplying c4 in equation 24 by this fraction

'F c4A(nl) exp [km AL] (1 — exp [kmL])/fl (26)

For high concentrations, that is for kmL I and A(nl) n 'F varies with n
practically as exp [km AL]/n exp [—c5n]/n, with c5 km AL/n.
Through this additional exponential factor the fluorescence intensity
becomes strongly depressed when n grows large. The relative decrease of
'F per unit concentration interval, that is —(dIF/dn)/IF, is the stronger, the
larger is AL. In other words, this relative decline of 'F at the high-concentra-
tion branch can be made arbitrarily strong, by choosing AL sufficiently
large. However, when we relate the analytical sensitivity to the variation
in concentration for which 'F decreases by one per cent, AFS provides no
substantial advantage over AAS when applied to a similar flame with
absorption path length AL. We note that the absolute decline, —dF/dn,
at the high-concentration branch becomes just the smaller, the larger is
AL. From the point of view of absolute signal strengths, this branch is not
suitable for the measurement of small variations in n.

C

>
C
a)

U)

c
a)
U,
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0

Figure4. Fluorescence intensity 'F as a function of metal concentration n in the case of a partially
illuminated flame cell (see insert) and for a narrow-line source. The full curve with its initial and
final asymptotes is calculated for AL = 0, 1 = 5L,Al = 041 and a = 04. The broken curve was
measured for the 2852 A Mg-line in a premixed acetylene air flame with AL = 55L, 1 = 5L,
and Al = 041, with a microwave discharge Mg-lamp as primary light-source. Comparison of
the full curve with the broken curve shows the effect of partial observation of the illuminated

flame cell (AL 0). (According to calculations and measurements by P. J. Th. Zeegers.)

This particular effect of an absorbing layer with thickness AL between the
light-source and the observed flame section has been experimentally checked
by Zeegers' . Theanalytical curve was measured on an absolute scale with a
microwave discharge lamp emitting the 2852 A Mg line, under similar condi-
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tions as prevailing in the measurements shown in Figure 3 for a continuum
source. The relevant path lengths and flame dimensions are shown in Figure 4,
where the analytical curve is plotted in arbitrary units for two values of AL.
The value of L is not very relevant as far as the high-concentration
branch is concerned (see above). The curves in the double-logarithmic plot
were shifted so that their initial and final asymptotes, which would be
approached when AL equalled zero, coincided. The position of the final
asymptote for AL = 0 was calculated from additional measurements of the
a parameter, Al etc. The experimental curves for AL 0 clearly deviate from
the latter asymptote the more so, the larger are n and AL. These deviations
appear to be reasonably well described by an exponential factor, conforming
to theory (see above).

(e) Conclusions
It should be well borne in mind that the quantitative relations in this

Section are derived under rather idealized conditions. In practical situations
deviations from the calculated shape of the analytical curve can be expected
because these conditions may not be fulfilled.

(i) The atomic source line may not usually be considered as extremely
sharp compared to the absorption line-width. A correction may be_made for
this deviation by replacing km in equation 24 by an effective value k which is
smaller. An approximate expression for k has been given30 in terms of the
a parameter and the ratio of half-widths of the source and absorption line.
It should be realized, however, that the relative spectral distribution of the
exciting radiation continuously varies on its way through the flame at strong
absorptions. Since the centre of the exciting line is more strongly absorbed
than the line wings, an apparent broadening and even a self-reversal of the
exciting line may occur inside the flame. This effect will not be very sig-
nificant when at high concentrations practically all incoming source
radiation is absorbed within the observed flame section (AL = 0; see insert
in Figure 4). However, when AL 0 and km'AL 1. the intensity of the
source radiation incident on the actually observed flame section may not be
accurately described by Beer's law with an effective absorption coefficient
that is independent of n. It is noted that even a small difference Ak in absorp-
tion coefficient will result in a large difference in transmitted radiation
power, when at high concentrations (Ak)' becomes less than the absorption
path length. When, for example, for a certain wavelength (A), k deviates by
ten per cent from the peak absorption coefficient at A, a difference of a
factor three in transmitted power at A and A0, respectively, may be expected
with the yellow Na-line in a premixed flame with thickness of 1 cm, fed by
spraying a 1000 ppm. sodium solution.

(ii) The geometry of the whole flame as well as of its illuminated and
observed sections is usually different from that assumed in the theoretical
analysis. In particular, the detailed shape of the curves with a cylindrical
flame will deviate markedly from the curves shown in Figures 3 and 4. For
the latter kind of flame the exact theoretical expressions are much more
complicated.

(iii) Due to spatial inhomogeneity of the lamp radiance, the density of the
exciting radiation may not be uniform over the illuminated flame surface.
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The relative excited state population nt/n is then not uniform inside the thin
flame slab with thickness Ax considered in Figure 2. Thus no simple expres-
sion can be given for the fluorescent radiance of this flame slab at arbitrary
concentrations. Similar difficulties may arise with turbulent flames where
the fluorescence yield factor Y could vary with distance from the axis
because of the entrainment of nitrogen from the surrounding air.

(iv) The given expressions for 'F are not strictly applicable when the solid
angle under which the source radiation enters the flame is large. Light
rays traversing the flame under different directions will not undergo the
same absorption. A similar conclusion holds for the degree of self-absorption
of the fluorescence radiation, when light rays with largely different directions
are collected by the optical measuring system. This complication also arises
when a thermally excited resonance line is observed in FES under a large
solid angle. However, if the maximum angle between different light rays
is less than 300, the deviation from the given formulae is still unimportant23.

All these considerations together may easily explain why the shape of the
curves observed in practical flame analysis does not accurately conform to
the theoretical equations. It is to be recalled that the experimental values
plotted in Figures 3 and 4 were obtained under special experimental condi-
tions which closely agreed with those assumed in the theory. Under the
usual practical conditions the local bump expected from theory for a con-
tinutm source might be smeared out and not appear at all. Some practical
curves showed a sublinear behaviour over a surprisingly long range of low
concentrations with a continuum source31. An explanation has not yet
been offered.

The theoretical discussion presented may still have some value with
regard to practical curves. It provides a general physical understanding of
the appearance of a plateau in the case -of a continuum source, and of a
maximum in the case of a line source. These features have been observed
frequently in analytical applications of AFS. The theoretical calculations
may also give a general insight into the influence of the flame dimensions
in the direction of the source and of the spectrometer upon the deviation
from the initial linear asymptote. This influence appears to be not very
different for a continuum and a line source. The discussed effects on the
analytical curve of partial illumination or partial observation of the illu-
minated flame cell may be instructive in practical applications too.

The plateau in the analytical curve with a continuum source is, of course,
of no practical use. The discussion on the declining branch of the curve
with a line source at high concentrations might be of some interest when the
applicability of this branch for practical analysis is questioned.

Apart from the point of view of analytical applications, the shape and abso-
lute position of the analytical curve is also of interest in theoretical flame
studies.because of its relation to the a-parameter and the fluorescence yield
factor'7' 23

3. THE YIELD OF NON-RESONANCE FLUORESCENCE
(a) Introduction

When the exciting line and th observed fluorescence line are different,
we speak of non-resonance fluorescence (see for a general introduction refs.
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21, 29, 32). Some examples of non-resonance fluorescence are shown sche-
matically in Figure 5 for an atom with two excitation levels (1 and 2) and a
ground level (0). Tn the case of Figure 5(a) and (b) different optical transitions
to and from the same upper level (2) are involved (direct line fluorescence).
In the case of Figure 5(c) and (d) the upper levels of the exciting and the

f02

(a)

(C)

(b)

(dl

2

0

Figure 5. Three-level model ol' atom showing non-resonance fluorescence (direct line fluorescence
in case a and b; stepwise line fluorescence in case c and d). The optical transition involved in the
photo-excitation process is denoted by a bold arrow pointing upwards. The optical transition
involved in the observed fluorescence radiation is indicated by a bold arrow pointing downwards.
Concurrent optical and collisional transitions are indicated by thin wavy and straight arrows,

respectively

fluorescence line are different (stepwise line fluorescence). Atoms excited to
one of the upper levels are transferred to the other excitation level from
which the fluorescence is observed. This transfer is usually achieved by a
radiationless transition induced by collisions with flame molecules. In
cases b and d the frequency of the fluorescence line is greater than that of
the exciting line (so-called anti-Stokes fluorescence). The deficit in photon
energy is supplied by the thermal energy of the collision partners. We are
dealing here with an example of thermally assisted fluorescence33. In the
reverse cases a and c the excess photon energy is usually converted into
thermal energy.

An example of cases a and b is thallium which has a low-lying excitation
level (62P.) at 097 eV above the 62P1 ground level, and a higher excitation
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level (72Sf). Optical transitions can occur between the latter excitation level
and the ground level at 3775 A, and between the two excitation levels at
5350 A. The strength of the non-resonance absorption line at 5350 A
depends on the population of the 62P state, which is but a small fraction
(about 0.02) of the ground-state population at T = 2400°K.

Examples of cases c and d are the alkali atoms having doublet levels
(2P. and 2P) which are optically connected to the 2S ground level. The
energy separation of these doublet levels increases in the order Na—K—Rb—Cs
from 0002 to 007 eV. The separation of the first resonance doublet of
lithium is too small to be of practical interest in flames.

In practical spectroscopic applications non-resonance fluorescence may
have some advantages over resonance fluorescence. Scattering problems
can be avoided by removing the spectral line used for excitation from the
fluorescence spectrum. Further, the spectral line used for excitation may lie in
a wavelength interval where the flame emits a strong (fluctuating) background.
It could then be advantageous to measure the fluorescence at a different
line outside this interval2. In some cases, non-resonance fluorescence yields
a higher photon flux than resonance fluorescence. For example, when
Tl atoms are excited at 3775 A, the flux of photons re-emitted at 5350 A is
twice as large as the flux re-emitted at the same resonance line18. Since
photo-(multiplier) tubes are essentially quantum detectors, it is appropriate
to compare here the photon flux, and not the radiation power.

Finally, it may also be profitable to use a fluorescent line that does not
terminate at the ground level, in order to avoid self-absorption losses at
higher concentrations. This has, moreover, the advantage that the analytical
curve with a continuum source does not level off to a constant plateau.
This would otherwise make analytical determinations impossible at high
concentrations. When the fluorescent line is not a resonance line, the factor
A(nl)/n in equation 17 is practically independent of n. The dependence of
I on n is then determined by the factor A(nL) only. In this case, the shape
of the analytical curve is identical to that when the line used for excitation
is observed in FES, for equal flame depth L.

In this Section we shall compare theoretically the photon yields in the
case of non-resonance fluorescence that are to be expected when one line
or the other is used for excitation, respectively. In Section 3b we shall
derive from general theoretical relationships the conditions under which
case a or case b in Figure 5 can yield the larger photon flux. In Section
3c a similar discussion will be given for cases c and d. Practical problems
in the application of non-resonance fluorescence are not dealt with.
The general conclusions drawn are illustrated by arbitrary examples
which may themselves be of little practical interest. However, they are
believed to be helpful as a first guide in any systematic search for optimum
measuring conditions.

For simplicity's sake we restrict ourselves to the linear branch of the
analytical curve, that is, to the range of small concentrations n. Conse-
quently self-absorption of the fluorescent radiation will be disregarded and
the fraction of primary radiation absorbed is assumed to be proportional
to n. The metal concentration, temperature and radiation density in the
flame are, moreover, assumed to be homogeneous.
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(b) Direct-line fluorescence
See Figures 5(a) and (b). Quantities relating to transitions between any

pair of atomic levels are indicated by the corresponding level numbers
(0, 1 or 2) as suffix. Similarly we have n0, n1 and n2 for the concentrations of
atoms in the corresponding states shown in Figure 5. The central wavelength
and frequency of the optical transition between levels 0 and 1 are denoted
by 2 and v01, the oscillator strength for the corresponding absorption
line is f01, while the Einstein transition probability for the same line in
emission is A10.

Consider first case a where excitation occurs at 202 only and fluorescence is
observed at 212 (212 > 202). Let the flame be uniformly illuminated by a
continuum source (through an appropriate filter) with a spectral irradiance
E02 (erg sec1 cm2 per unit of wavelength interval in A). When a narrow-
line source is used, we simply have to replace E02 everywhere by E02/A202.
Here E02 is the integral irradiance of the exciting line (in erg sec cm 2)
and Al02 is the effective spectral width (in A) of the absorption line at 202
in the flame (see also Section Ib).

The number F21 of secondary photons emitted per second at 212 equals
the number of photons absorbed per second at 102multiplied by the yield
factor (also called quantum efficiency) of the fluorescence process considered.
This yield factor is A21/(A20 + A21 + k2) where k2 is the total quenching
rate constant per second for state 2 due to radiationless transitions to other
states. Using a well-known expression for the integrated absorption co-
efficientb 29, we find for F21 (case a)

F21 = CE02f0222n0A21/(A20 + 21 + k2) (27)

where the constant C depends on the geometry of the illuminated flame cell
but not on the atomic parameters.

In the opposite case b, we have by analogy for the number F20 of secondary
photons emitted per second at 202

F20 = CE,12f1212n1A20/(A20 + A21 + k2) (28)
From equations 27 and 28 we getF = E,2f12A2o(1n1 (29)

F21 EA02 f02A21 \202J no

Assuming that the relative population of level 1 (with excitation energy
E1 and statistical weight g1) conforms to Boltzmann's law at flame tempera-
ture T1, we have for n1/n0

n1/n0 = (g1/g0)exp [—E1/kl}] = (gi/go)10_5O4O'lITf (30)

Here V1 is the excitation potential expressed in volts. Because of the funda-
mental relationship between f and A (equation 18) we have

(f12/A21)(A20/f02) = (212/202)2(g0/g1) (31)

Substituting equations 30 and 31 into equation 29 we get

= —5040v1j (32
21 a02 \. 02)
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This equation clearly shows the strong dependence on V1/Tf of the fluorescence
signal in case b when compared to case a. For T1 2 500° K and V1 = 1 V
the exponential factor is about 102. This bad effect may be (partly) com-
pensated for by a large value of the pre-exponential factors occurring in
equation 32, as we shall presently investigate. It is curious to note that the
ratio F20/F21 is independent of the A and f values as well as of the quenching
rate constant and statistical weight factors of the levels involved.

Consider first the case when a continuum source is used for excitation,
and let the ratio E 12/E02 be identical to that for an (imaginary) black body
with temperature TI;. We may formally consider TI; as the 'colour temperature'
of the source. Using Wien's law for black-body radiation:

cx:2 exp [—hvikTj

we can formally express E12/E202 in TI;. Thus we, get, while replacing
(hv02 — hv12) by E1,

F20/F21 = 105040V1(T;1
-

Tj1) (33)

This simple expression retains only V1 as atomic parameter, while the source
and flame are solely characterized by TI; and Tl}, respectively. We conclude
from the latter equation that case b becomes even more favourable than
case a when TI; < 77,.. The bad effect of a relatively low population of state I
is then overcompensated by a large ratio of EA5 at the two wavelengths
compared. When V1 1 V, TI; = 5000°K and T1 = 2500°K, the fluorescence
photon flux is lower by a factor of only ten in case b than in case a, although

= 2 x 10-2 according to Boltzmann's law.
For a tungsten strip lamp TI; is estimated to be about 3 000°K in the visible

and near-ultra-violet part of the spectrum, whereas TI; may even exceed
5000°K for the high-pressure xenon arc (compare Prugger10). It is noted
that the 'colour temperature' TI; may differ from the radiance temperature
TI; defined in Section la. However, for a blaëk body both temperature
values are identical to the true temperature of the radiating body. In general
TI; may depend on the wavelengths of the atomic lines compared.

When an atomic line source is used for irradiating the flame at either 202
or 212, we have to replace the spectral irradiance E in equation 32 by E/A2,
as mentioned above. If we disregard self-absorption in the atomic light-
source and optical losses, the total intensities of the exciting lines at 202 and
212 are in the proportion: A20hv02 :A21hv12, since the lines originate from
the same upper level 2. Assuming that the effective width AA of the absorp-
tion line in the flame is determined mainly by Doppler broadening, we have
A102/A212 = 202/212. Consequently equation 32 reads, for a narrow-line
source,

= i0°'1"1 (34)
F21 A20 \.202)
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For the case of thallium with V1 1 V mentioned in Section 3a and with
Tf 2 500°K, we find from this equation

F3775 —
FO x 108 (535Q\3 10—2 — 55 102

F5350
—

5 >< io ) — X

When the non-resonance TI-line at 5350 A is chosen for excitation, the
fluorescence photon flux measured at 3775 A is thus about 20 times as small
as in the reverse case. However, self-absorption or even self-reversal of the
resonance line at 3775 A in the source could appreciably reduce this factor.

In the case of direct-line fluorescence, we conclude that the reduction in
fluorescence signal when the non-resonance line is used for excitation, need
not be as bad as expected from the Boltzmann occupation of the lower level.
Even when the lower level of the non-resonance line lies 1 eV above the
ground level, this reduction may not be insurmountable in practice for flame
temperatures above 2000°K. It depends on other, circumstantial factors
whether this loss in fluorescence signal is compensated by a lower background
noise, etc.

When atoms are raised from state 1 to state 2 by absorption of a strong
radiation beam, a depletion of the lower excitation level 1 could result. This
reduction of n1 would unfavourably affect the fluorescence signal according
to equation 28. The magnitude of this depletion can be roughly estimated
by kinetic considerations. It can be shown that under practical conditions
the deviation of the actual value of n1 from the thermal equilibrium value
(fi)e might be at most of the order of one per cent.

Let the number of optical transitions from state 1 to state 2 per second and per cubic centi-
metre, induced by the source radiation, be given by k 2n1 The balance equation for the stationary
population n1 then reads

n1(k10 + k'12) = n0k01 (35)

where k10 and k01 are the rate constants of collisional (de-)excitation of level 1 [Figure 5(b)].
Other radiative or radiationless transitions to or from this level are considered unimportant.
In thermal equilibrium (that is, without external field) we have the balance equation

(ui)e1iø = (?10)ekøi (36)

Making the quite plausible approximation n0 = ('o)e, we find by combination of equations 35
and 36

= k10/(k10 + k'2) (37)

The relative deviation of n1 from (n1),, will be less than one per cent if k'1 2/k10 is less than 10 2
For excitation levels lying at least some tenths of an electron volt above the ground level the
quenching rate constant k10 is expected to range roughly from iO to io sec1 in flames at 1 atm.
The precise value depends among other things on whether argon or nitrogen is used as diluting
gas5. We note that k10 is not expected to depend critically on the excitation energy E1 or flame
temperature.

An upper estimate of k'12 at 6200 A can be made when the intense high-pressure xenon lamp
calibrated by Prugger1° is used as exciting source. A spectral irradiance EA 106 erg sec1 cm2
per unit wavelength interval in A thay be attained if this source is imaged under a solid angle of
one sterad on the flame. Making use of the theoretical expression for the integrated absorption
coefficient29, we get

k2 = 1020 x (EA/hvl2)A2fl2 = 12 x 105f12 sec_i (38)

where i' isexpressed in A and hv11 in ergs. Even when f12 is unity, k'12 will still be at least 100
times smaller than the quenching rate constant k1 . We may thus safely neglect the depletion of
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the lower level by photon absorption. This qualitative conclusion is expected to be true for
other wavelengths too.

(c) Stepwise line fluorescence
See Figures 5(c) and (d). Since here the photo-excited state and the state

from which the observed fluorescence is emitted are different, efficient
coupling between these states is a pre-requisite for the appearance of useful
fluorescence. We assume here that this coupling or mixing is achieved by
collisions. In the case of Figure 5(c) this implies that the collisional rate
constant k21 should at least be comparable to the sum of A20 and the quench-
ing rate constant k2. The major constituent of the flame gas should thus have
a small quenching cross section, as well as a relatively large mixing cross
section for the states concerned. This condition is not fulfilled for the alkali
doublet levels in flames burning with air, as nitrogen is an efficient quencher.
For rubidium and caesium the quenching cross section of nitrogen is even
larger than its mixing cross section. In flames diluted by a noble gas efficient
mixing and low quenching of the Na- and K-doublet levels can be expected.
The mixing rates for the Rb- and Cs-doublets having larger energy separa-
tions might be too small in these flames to compete with the radiative
de-excitation rates. A general survey of recent data and interpretations
has been given by Alkemade and Zeegers5.

When mixing becomes fast enough compared to all other radiative or
radiationless transitions, a partial equilibrium will be maintained between
the populations of both excitation levels. The ratio of their populations is
then practically the same as in thermal equilibrium and obeys Boltzmann's
law

= (g2/g1)exp [—(E2 — E1)/kl}]

The rate of transitions 1 —* 2 then balances the rate of the reverse transitions
2 —÷ 1. This holds irrespective of whether level 1 or level 2 is primarily
excited by the source, or whether the quenching rates k1 and k2 are equal
or not.

If this partial equilibrium applies, a simple expression can be derived
for the ratio F20/F10 of fluorescence signals obtained in case d and c of
Figure 5, respectively. Suppose first that a continuum source is used to excite
directly atoms from the ground state to either state 1 or state 2. The ratio
F20/F10 is determined by the corresponding ratio of photo-excitation rates,
the ratio of optical transition probabilities A20/A10, and the constant
proportion in which the excited atoms are distributed over the levels 2 and 1.
We thus find by similar calculations as given in Section 3b, while taking

'02 here,

F20 E, f01A20g2
exp [—(E2 — El)/kTf] (39)

F10 E02f02A10g1

Making use of equation 18, we have f01A20/f02A10 = g1/g2, so that

I'20 oi 10—5040V/Tf (40)F10 E02
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where L V is the difference in excitation potentials (in volts) of the two excita-
tion levels. We note that the ratio F20/F10 does not explicitly contain the
oscillator strengths, optical transition probabilities or statistical weights
(compare equation 32).

When we formally describe E,01/E,02 by a colour temperature 7, as in
Section 3b, we can write instead of equation 40

—Tj') (41)

which is analogous to equation 33. For T Tf, the fluorescence signal is
the same in case d as in case c, irrespective of AV. For 7 > case c gives
the larger signal. However, since AV is smaller than 01 V for the first reson-
ance doublets of the alkali atoms, the difference in fluorescence signals is
small in this case.

When a narrow-line source is used for excitation, we have to replace
EA01 /E02 in equation 40 by the corresponding ratio of integrated line in-
tensities, if the effective widths of the two absorption lines are equal. The
latter assumption is reasonable for the components of the alkali doublets
in flames. In the case of the Na D-doublet where the exponential factor in
equation 40 is virtually unity, the fluorescence signals are in the proportion
of the exciting line intensities. If no self-absorption occurs in the light-
source, the ratio of line intensities equals the ratio of statistical weights.
Thus we have for sodium F2Ø/F10 = g1/g2 . The fluorescence signal
is then twice as large in case c as in case. d. However, when strong self-
absorption occurs in the light-source, the peak intensities of the exciting
doublet lines may become nearly equal, and about the same fluorescence
signal may be expected in the two cases. The peak intensities, and not the
total line intensities are relevant here, because at strong self-absorption
the width of the source lines may markedly exceed the absorption line widths
at low metal concentrations in the flame.

The equations derived in this Section are valid under rather special
conditions only. The conditions of strong collisional mixing of the two
excitation levels might not easily be met when their energy separation
exceeds, say, 001 eV. The mathematical expressions then become more
elaborate since they involve the mixing and quenching cross sections as
well as the optical transition probabilities for each of the two excitation
levels (see Jenkins34).

The expressions given also become useless when optical transitions to or
from the ground level are allowed for only one of the fine-structure levels.
This case applies for the 2D-doublets of Ti, of which only the 2D level is
optically connected to the 62P1 ground level.
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