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Summary (English)

The backup bearing is a mechanical component designed to improve the safety
and reliability of Active Magnetic Bearings (AMBs). Rotors levitated by AMBs can be
subjected to delevitation and consequently to impacts if a power loss happens because
real-time active control is necessary to keep them running. When impacting on a stator
surface, the rotor can develop a dangerous behavior caused by the friction force known
as the full annular backward whirl. In this situation, the rotor will describe a trajectory
around the surface of the bearing at a dominant superharmonic frequency and with
large radial forces. Remaining in this condition, it may lead to permanent damage or
total failure of the machine. This is why the backup bearing design has to be carefully
planned and investigated as to whether it helps to protect the integrity of the machine.

This PhD thesis provides a comprehensive study of two types of backup bearings,
which are investigated experimentally and theoretically. The first type is a conventional
ball bearing commonly used in industrial applications. The second is an unconventional
bearing that, which contains pins inside the clearance for the rotor to impact on. The
main objective of this work is to investigate the rotor-to-stator contact dynamics under
certain conditions and to explore dynamical phenomena that emerge, so advantages and
drawbacks can be stated based on a solid theoretical model validated experimentally.

The mathematical model is discontinuous since the contact forces exist only if the
rotor surpasses the boundaries defined by the type of backup bearing. The compliance
models proposed by Lankarani and Hunt and Crossley (H&C) are employed to represent
this interaction between the rotor and the backup bearing. As a matter of comparison,
plots of shaft orbits, of contact force values in time and double-sided frequency spectra
are given.

The test rig consists of a horizontal rotor and is able to exchange backup bearings.
Thanks to the force transducers, displacement sensors, and an encoder, one is able to
characterize the lateral vibration of the rotor, the impact forces and to ascertain that
the same conditions are met for each test run. The parameters of the test rig were
determined accordingly, so the tests match with the mentioned theoretical analysis. The
problem of crossing the resonance frequency is undertaken. In this case, the magnetic
forces are weakly damped. It means that they are unable to withstand the occurrence
of high orbits close to the resonance frequency. The pinned bearing is introduced and
the pins are made of POM (polymer), whose contact characteristics are investigated.
The different behaviors of the center of the shaft for the two types of backup bearings
are analyzed. One concludes that the pinned bearing reduces the interval of impact by
advancing the jump towards a safer contactless orbit while crossing the critical speed.
The polymeric pins are softer than the rotor’s surface, so they wear from the impacts,
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saving the rotor. This is confirmed by a Finite-Element model of the contact case. For
both types of bearings, the backward whirl could not be detected for the mentioned
tests. Moreover, the H&C compliance model reproduced satisfactorily the changes in
amplitude performed by the rotor and it is considered appropriate to represent both
types of bearings for further investigation.

Also, a full failure of the control and a rotor drop on the ball bearing as backup
bearing is investigated by removing the magnetic forces. The nonlinear features of the
dynamics of the rotor are assessed for different levels of unbalance. It has been shown
that the proposed mechanical model for the rotor drop matches with the conducted
experiments, as illustrated by the bifurcation diagrams, where three distinct behaviors
are observed. The double-sided spectra demonstrate that higher unbalance values cause
the rotor to perform a forward whirl trajectory.



Resumé (Dansk)

Gribelejer er en mekanisk komponent designet til at forbedre sikkerheden og pålide-
ligheden af aktive magnetiske lejer (AMB’er). Realtidsregulering er nødvendig for
stabil levitation med AMB’er. Der er derfor risiko for at AMB’erne taber rotoren hvis
et strømsvigt indtræder. I dette tilfælde vil rotor og stator komme i kontakt med store
friktionskræfter til følge som i sidste ende vil forårsage en annulær baglænshvirvling
af rotoren. I denne situation vil rotoren hvirvle langs overfladen af lejet med en dom-
inerende superharmonisk frekvens og med store radielle kræfter. Denne tilstand kan
føre til permanent skade eller total fejl i maskinen. Dette er grunden til, at gribele-
jedesignet skal gennemføres omhyggeligt, og det skal undersøges om designet hjælper
til beskyttelse af maskinens integritet.

Denne ph.d.-afhandling giver en omfattende undersøgelse af to typer gribelejer, som
undersøges eksperimentelt og teoretisk. Den første type er et konventionelt kugleleje,
der almindeligvis anvendes i industrielle applikationer. Den anden er et ukonventionelt
leje, som indeholder stifter i klaringen som skal ramme rotoren for at påvirke dens bane.
Hovedformålet med dette arbejde er at undersøge rotor-til-stator kontaktdynamikken
under visse forhold og at udforske dynamiske fænomener, der opstår, så fordele og
ulemper kan fremstilles på baggrund af en velfunderet teoretisk model, der er valideret
eksperimentelt.

Den matematiske model er diskontinuerlig, da kontaktkræfterne kun eksisterer, når
rotor og stator er i kontakt. Her er grænsen for kontakt/ingen kontakt defineret ud fra
type af gribeleje. Modellerne for en elastisk repræsentation af lejeskallen udarbejdet af
Lankarani, Hunt og Crossley (H&C) er implementeret til at repræsentere interaktionen
mellem rotoren og gribelejet. Den teoretiske og eksperimentelle opførsel af rotorens
bane, kontaktkraftværdier i tid og dobbeltsidede frekvensspektre er præsenteret.

Teststanden består af en vandret rotor samt gribelejer der kan udskiftes. Vha. kraft-
målerne, forskydningssensorerne og en encoder er man i stand til at karakterisere
rotorens laterale vibration, kontaktkræfterne og man kan sikre, at de samme betin-
gelser er opfyldt for hver testkørsel. Parametrene for teststanden er bestemt, så testene
stemmer overens med den nævnte teoretiske analyse. Problemet med at krydse reson-
ansfrekvensen er udført. I dette tilfælde er de magnetiske kræfter svagt dæmpet. Det
betyder, at de ikke er i stand til at modstå forekomsten af store rotorvibrationer tæt på
resonansfrekvensen. Kontaktegenskaber for gribelejet med stifter lavet af POM (poly-
mer) er undersøgt. De forskellige opførsler af akslens centrum for de to typer gribelejer
er blevet analyseret. Det kan konkluderes, at gribelejet med stifter reducerer varigheden
hvor rotor og stator har kontakt ved at muliggøre at rotoren kan hoppe fra tilstanden
med kontakt til den kontaktløse tilstand, mens man krydser den kritiske hastighed.
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Polymerstifterne er blødere end rotorens overflade, så de slides fra stødene og skåner
rotoren. Dette bekræftes af en Finite-Element model. Det var ikke muligt med nogen af
gribelejerne at fremprovokere den annulære baglænse hvirveltilstand under de nævnte
tests. H&C-modellen for en elastisk lejeskal var tilfredsstillende overensstemmelse med
eksperimenter, og de udarbejdede modeller anses for passende repræsentationer af
begge typer lejer til yderligere undersøgelser.

Ydermere undersøges situationen hvor AMB’erne sættes fuldstændig ud af drift og
et rotordrop på gribelejet (i dette tilfælde kun et kugleleje) opstår. De ikke-lineære
egenskaber ved rotorens dynamik vurderes for forskellige niveauer af ubalance. Det
har vist sig, at den foreslåede mekaniske model for rotordroppet passer med de eksperi-
mentelle resultater, som illustreret af bifurkationsdiagrammerne, hvor tre forskellige op-
førsler er observeret. De dobbeltsidede frekvensspektre viser, at større ubalanceværdier
forårsager rotoren til at udføre en forlæns hvirvelbane.
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Chapter 1

Introduction

1.1 Motivation

Among mechanical machines, it is almost impossible to imagine a mechanism
without a rotating element inside. It has been an important tool capable of storing or
converting energy as simple as the wheels of a car, gears, turbines and the big cranks of
diesel engines on ships. Although being always present in the history of civilization,
scientific studies regarding rotors only appeared in the late 19th century from the works
of scientists and engineers such as DeLaval, Jeffcott, and Föppl. Since then it has been
a prolific topic of research in mechanical engineering, known as rotordynamics.

In the 21st century, one of the most cutting edge technologies in this field are the
levitated rotors by active magnetic bearings (AMBs) in use in turbines, pumps, and
compressors. These rotors work in a vacuum or ambient pressure environment and rely
on an active control to change the magnetic field of the AMB in order to maintain the
rotor within a reasonable distance from the structure inside the clearance. The dynamics
of the rotor is quite predictable and stable if one solves the governing equations of
motion and the rotor stays in the vicinity of the equilibrium point. If the rotating
machine is affected by an unaccounted phenomenon that generates high orbits, it can
make the behavior of the rotor unstable. In the case of an AMB, the main concern is the
consequences of the impact when the rotor overcomes the clearance and hits the wall.

During the impact, normal contact forces and friction forces appear, thus leading
the rotor into dry-whip trajectories or rolling on the surface of the stator in a full
annular backward whirl behavior. These effects are considered highly nonlinear and
can eventually cause permanent damage and a sudden stop to the machine. Usually,
a full annular whirl is rare, due to the control and its robustness, which create an
overdamped response. But a complete power failure while running, even for a brief
time, is plausible. Certainly, it will make the rotor fall and hit the structure. Therefore,
an additional mechanical element called a “backup bearing”1 is employed, which leaves
a gap between the rotor’s shaft, but small enough to be hit first instead. Also, it has to
be designed to withstand impacts and to protect the structure.

Understanding the interaction between the rotor and the backup bearing is relevant
in order to improve the reliability of magnetic bearing rotors and to help grow the

1This nomenclature varies among authors: “catcher bearing”, “safety bearing”, ‘ ‘auxiliary bearing” and
“retainer bearing” are also found in published papers.
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number of machines using this kind of technology in the industry. The present thesis
aims to approach this with a theoretical and experimental investigation of a test rig
assembled specifically for this purpose at the Technical University of Denmark. Two
kinds of bearings, an ordinary ball bearing and a pinned one, will be presented and their
performance under different scenarios will be assessed. Results concerning unbalance
response, orbit patterns, comparison of the magnitudes of the forces and the efficiency
to cross the resonance frequency are given and commented on.

1.2 Literature review

As mentioned at the beginning of this section, there is an extensive collection of
books and research papers about rotordynamics available in the literature. Among the
book authors in this field, the most important ones are [1], [2], [3] and [4]. Also, most
of the rub-related works are addressed by Muszynska in her literature survey in [5].
She mentions that backward whirl is the most important problem related to the friction.

On the rotor-to-stator contact

One of the first to deal with the clearance problem in rotors was Johnson [6],
in 1962. When he published his work he mentioned that there was some suspicion
that a clearance was affecting the overall behavior of the rotor. He introduced two
models: a non-damped and a damped model of a rotor; both without friction force,
though. Later Billet [7] showed, that close to the resonance, friction induces the rotor
to perform a backward whirl. Ehrich and O’Connor [8] published in 1967 a study
where they classified the types of vibration depending on the relationship between the
stiffnesses of rotor and bearing. In 1968, Black [9] built upon Johnson’s work and
became one of the most cited references in the field. He added friction to the model and
presented the limits for the whirl and whip to happen. His work was later confirmed
experimentally by Lingener [10] and Crandall [11], who reported to have found stable
coupled eigenfrequencies of the system, but slightly lower.

Beatty [12] compared experimental data on a controlled rubbing test with analytical
prediction. The response was calculated in terms of a Fourier series expansion and
theoretical-experimental investigation using Fourier expansion terms. One of the
conclusions was that the monitoring of only the synchronous vibration is misleading, due
to the instabilities created by the full annular rub. In his doctoral thesis, Szcygielski [13]
investigated the dynamics of a high-speed rotor touching a rigid boundary. The contact
was modeled with a piecewise-linear but strongly nonlinear globally. A high sensitivity
to initial conditions was detected dependent on the control parameter. Furthermore,
he established the relationship of the motion developing into chaos. The analysis of
the transient of the rub interaction was undertaken by Choy and Padovan [14]. They
developed a numerical simulation of the rotor-stator rub and showed the variation of
the magnitude of the rub forces in time and depending on the imbalance and on the
friction coefficient. Zhang [15] presented some analytical results the using perturbation
method and verified them experimentally. The contact on the seals problem has also
been conducted by Pennachi et al. [16], in which the authors identify the contact
dynamics on a test rig and which were reproduced by a finite-element model.
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Nonlinear analysis

In parallel to the advances in rub-related phenomena, major advances occurred
in the second half of the 20th century regarding techniques for analyzing nonlinear
dynamical systems, which became popular worldwide. These techniques can be found
in many applied cases. Strogatz’s book on chaos [17] covers these nonlinear analyzing
tools and presents them using a variety of practical examples in different scientific areas
and in nature. It would not be different in rotordynamics. In his paper, Erich [18]
showed the appearance of chaotic behavior on a simple rotor model with bilinear spring
models. Chaos in rotordynamics was also reported by Goldman and Muszynska [19, 20].
In his PhD. thesis, Isaksson [21] showed several simulated cases of rotor-to-stator contact
multivalue solutions and hysteresis jumps. Also, stable solutions existed even for an
offset stator and full annular rub contact. Experimental tests were conducted by Piccoli
and Weber [22] in 1998, detecting the chaotic motion of a rubbing rotor. The authors
concluded that the possibility of a chaotic motion was determined by the observation
of Poincaré diagrams and the computation of the Lyapunov exponents. Pavloskaia
et al. [23] in 2004 (later confirmed by Karpenko [24] in 2006) demonstrated that
preloading changed significantly the bifurcation structure for a two-degree-of-freedom
model of the Jeffcott rotor with the preloaded snubber ring and unbalance. In industrial
applications rubbing-related problems are in fact rare but, according to Rosenblum
[25], damage to a damp turbine has been mentioned to be caused by rubbing. Popprath
and Ecker [26] conducted a nonlinear dynamics study of an intermittent-impact rotor.
The authors investigated the effect of the visco-elastically suspended stator on the rotor
motion and they show that by decreasing damping, periodic solutions with few contacts
become less likely and non-periodic behavior of the system dominates. Likewise, a
theoretical-experimental work from Chavéz et al. [27] analyzed the onset of impacts
between the rotor and the ring for different speeds and validated the proposed model.

Bachshmid [28] presented an useful method for the industry to determine the occur-
rence of rubbing. Thus he applied his technique to a balanced 320 MW turbogenerator
with an identical one, but the latter was showing rub compared with the former. Later
he added thermal effects to the theoretical model caused by the rubbing forces in [29]
and in [30]. It was validated by experimental results with a 50 MW generator. For a
rotor rubbing on non-moving parts van Barten [31] presented in his PhD thesis several
impact force models and simulated them for different parameters and compared the
results, stating the advantages and disadvantages of each one. In order to have an
adequate fast simulation program, the impact was modeled as purely elastic, whose
damping contribution was considered as resisting torque on the shaft.

Whip and whirl motion

Bartha’s works in [32] and [33] diverged with respect to the findings from Black [9],
Lingener [10] and Crandall [11]. The mechanical model used by Bartha was expanded
so that the bearing was modelled as a ring capable of moving in the horizontal and
vertical directions. He used Floquet multipliers to determine the stability of the system
as a whole instead of through static force equilibrium. This seems to be in accordance
with the work of Yu et al. [34], in which the onset of dry friction whirl was pointed out to
be generated spontaneously outside the region mentioned by Black. Jiang and Ulbrich
[35] conducted experiments to explain the onset of dry whips in rotor-stator systems
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and discovered that negative (natural) frequencies were the physical reason for it. Using
the multiple scale method, the analytical onset condition had good agreement with
the numerically simulated one. Yet the forward and backward whirl nonlinear normal
modes were investigated by Chen and Jiang [36] with respect to the stability depending
on the friction and the cross-coupled stiffness. They show the importance of them to
avoid the appearance of stable backward whirl motions. Since friction force is one of
the major issues in rotordynamics, one can deal with it via high-frequency analysis to
create a smoother function. The work of Thomsen [37] describes how high-frequency
excitation effectively turns dry friction into a viscous-like form of damping.

Following the statements of Bartha and Yu et al., Childs and Hattacharya [38] found
that accurate whirl-range predictions required an adequate rotor-stator model and pre-
dicted multiple whirl regions, but only the first whirl region and its whipping frequency
could be reproduced in simulations. Wilkes et al. [39] resumed the investigation of
Childs and Hattacharya with experimental and numerical methods of the nature of
dry-friction whip and whirl for a variety of materials and clearances. They reported that
the whip/whirl regions changed depending on whether the angular velocity was being
increased or decreased. In 2011, Inoue et al. [40] showed that the forward rub could
be curbed by a directional difference in the support stiffness of the guide or the backup
bearing. Their findings were demonstrated theoretically and experimentally that at
600 rpm the forward rub was avoided when the velocity was increased up to 750 rpm.
Yu [41] discussed the reverse full annular rub based on a two degrees-of-freedom
rotor/seal model in which rubbing occurred. The analytical model together with the
experimental setup proposed by the author embraced a variety of whirl/whip motions.
The case of a rotor impacting on two points has been addressed by Wilkes and Allison
[42]. The authors compared the experimental results with a general model presented
in the same paper of a multi-contact dry-friction whip and whirl.

More recently in 2012 Cole and Wongratanaphisan [43] extended the current theory
by considering systems for which the rotor–stator contact interaction may occur in
multiple transverse planes. They found a good correlation between their theoretical
predictions on the whirl modes for a flexible rotor. Subsynchronous whirl induced by
friction was investigated by Cole and Hawkins in [44] and [45]. Their case study was
undertaken for a 140 kW energy storage flywheel. Model-based predictions were com-
pared with measured data from spindown tests and showed a good level of agreement.
The study confirmed the role of friction related forces in driving forward-whirl response
behaviors.

Magnetic levitated rotors

The research on rotors with a clearance had not attracted much attention from
the industry and remained as an interesting academic topic until the appearance of
magnetically levitated rotors, especially those with active magnetic bearings. They rely
on the power supply and on the active control techniques to handle the rotor with
relatively small orbits. The book of Schweitzer and Maslen [46] is a major reference
regarding magnetic bearings. Schweitzer [47] and Ulbrich et al. [48] presented the
first theories to approach a rotor suspended by magnets and applications. Also, the
advantages of low damping proved that the importance of backup bearings is to restrain
high orbits from becoming even greater.

There are essentially two types of backup bearings: axial and radial. Both have to
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be designed to hold the rotor in the case of a full power failure and to protect the rest of
the machine and everything around. Therefore most of the published works are related
to rotor drop and the subsequential interaction with the backup bearings. One of the
most cited works is Pradetto and Schmied [49] from 1992 when a one-ton compressor
was allowed to fall onto its auxiliary bearings. Followed by Bently [50], he expressed
concerns over the reliability of auxiliary bearings in the design of an AMB system due to
its finite load capacity. Later, in 1996, Ishii and Kirk [51] studied the transient response
of a flexible-rotor drop test theoretically. The simulation began from the time prior to
the AMB shutdown and resumed with the rotor drop onto the backup bearing. The
fowolling year, Fumagalli [52] presented his PhD thesis, in which he analyzed several
rotor drops and investigated impact models such as the ones proposed by Hertz [53]
and Hunt and Crossley [54]. The impact parameters were estimated by the signal data
of acceleration. Later in 1999, Kirk [55] reviewed the analytical techniques to predict
the rotor transient response. Results of transient response evaluation of a full-size
compressor rotor were presented to illustrate some of the important parameters in the
design for rotor drop. AMBs have also been applied in the diagnosis of turbomachinery
by Aenis et al. [56].

Keogh and Cole [57] developed numerical models of a two-dimensional and flexible
rotor interacting with a bushing-type auxiliary bearing, where the rotor started with
different initial conditions. The manner in which the rotor progressed through these
contact modes depends on the initial conditions of the first contact. It also changed
the possibility of recovering control of a rotor in a contact mode and is demonstrated
in Part 2 of the paper in reference [58]. Hawkins [59] tested the backup system for
an expander/generator completing full drops up to 30,000 rpm. Position orbit data
and time–history data were presented from one of the full speed drops and a nonlinear
simulation analysis helped to interpret the results and to estimate the loads received by
the backup bearings. Thermal effects caused by the contact that affect the dynamics
were approached by Zhao [60] and published more recently in 2016. Other relevant
drop tests were published by Kärkkäinen et al. [61] and later by Halminen et al. [62].
A literature review of rotor-to-stator is offered by Richardet et al. [63].

Backup bearing designs

Different strategies have emerged in the last twenty years to try to bring back the
control of the rotor after it started contacting with the backup bearing. After the rotor
performs a full backward whirl behavior, the standard procedure would be to shutdown
the machine in order to regain a contact free orbit. It has to be done because the rotor
stays in a dangerous stable trajectory too difficult to remove. This behavior would
be called in nonlinear dynamics a strong attractor. The backup bearing of a flywheel
levitated by an AMB was tested by McMullen et al. [64] and the authors showed the
damage the inner ring suffered.

Since a round bushing bearing favors the appearance of the backward whirl, Si-
mon [65], in his PhD thesis, proposed that the inner geometry of the backup bearing
had a polygonal form. The idea was evaluated theoretically and experimentally for
many shapes and the rotor did not develop the backward whirl for the triangle one.
Although its trajectory assumed a contacting quasi-periodic motion. Ginzinger et al.
[66] presented an active auxiliary bearing with linear actuators, which showed a signi-
ficant reduction of the contact forces. They used a three-phase control strategy, which
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stabilized the rotor system in the case of an impact load. As the load ceases, the auxili-
ary bearing separates from the rotor again and the normal operation mode resumes.
Then Zülow and Liebich [67] designed a flexible pin with a roller on the tip, it was
patented later [68]. The roller’s purpose was meant to reduce the friction forces during
contact. In this way more degrees of freedom were added to the mechanical system.
Additionally, in the purely theoretical work of Keogh [69], the author also outlined and
discussed the benefits of making the auxiliary bearing as an active element similar to
a conventional backup bearing. A ball bearing with an irregular surface of the inner
ring was theoretically investigated by Halminen et al. [70] by introducing a waviness
function to it. They observed the influence of the frictional losses for different waviness
functions and the results were compared with values given in the literature.

Lahriri et al. [71] presented the idea of an unconventional backup bearing: pins
were screwed inside the clearance of the backup bearing of a vertical rotor. These
authors tested whether the pins helped to maintain the spin of the rotor despite being
in a contact orbit. Later, Lahriri and Santos conducted several tests regarding the onset
of the backward whirl on a sleeve backup bearing and the friction properties and the
magnitude of the contact force between the shaft and the backup bearing. Their findings
were published in [72, 73, 74]. In the same test rig assembled vertically by Lahriri et al.
[71], Fonseca et al. [75] turned the pins active, thus, whenever the rotor achieved a
backward whirl orbit or was spinning close to the known resonance the pins screwed
themselves inside. Doing so, the rotor was able to surpass its critical speeds at any
speed rate, which otherwise it could not. Also Fonseca et al. [76] presented a nonlinear
study of the different shapes of orbits that emerge from the interaction between the
rotor and the pins as a function of the applied driven torque.

1.3 Outline and originality of the work

The main objective of this thesis is to develop a consistent theoretical-experimental
analysis of a horizontal rotor, which will eventually impact the radial backup bearing.
Figure 1.1 presents the actual test rig completely mounted at the facilities of the
Technical University of Denmark. The project design of this test rig is available in
Petersen [77].

The two types of backup bearings are shown in Figure 1.2. The use of each of them
constitutes the scope of the present research. The Ph.D. thesis at DTU can be presented
either by a thoroughly documented thesis or by a compendium of the articles developed
by the Ph.D. student through his studies. The present work follows the latter.

Thus, the work is divided into three articles, which are presented in chapter 2 [P1],
chapter 3 [P2], and chapter 4 [P3]. These articles have been respectively published,
accepted for publication and submitted for review. They are followed by a conference
paper included in appendix C1 after a comprehensive chapter of conclusions and
bibliography.

• The main contribution of the first paper [P1], is to show the influence of unbal-
ance into the orbits pattern. The ball bearing is chosen as the suitable backup
bearing. The unbalance was increased up to extreme levels, in order to observe
the nonlinear nature of its influence and to detect any appearance of a backward
whirl. It is analyzed both theoretically and experimentally. Here the rotor does
not levitate, as the magnetic bearing has been removed. So it is in contact with
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Figure 1.1: The rotor and assembled test rig components.

the surface of the inner ring of the backup bearing. As the unbalance increases,
the rotor gains enough kinetic energy to detach from the contact state but falls
again immediately after and repeats the process. This cycle creates nonlinear
orbit patterns and causes high valued forces at every return of the bearing’s inner
surface. Higher unbalances completely change the overall behavior of the rotor,
as the rotor permanently stays in contact. However, it performs a forward whirl,
so one concludes that the rotor is always sliding in this situation on the surface
of the inner ring of the bearing. The changes in the orbit pattern are seen in
Poincaré maps, where the points are collected every time the rotor crosses the
vertical axis positioned at the center backup bearing and the different behaviors
are shown in separated regions. The results of this theoretical/experiment work
were presented at the conference ISMB15 in Kitakyushu, Japan, which is annexed
in C1.

• In [P2], the work takes a different approach. It is completely experimental and
starts analyzing how the different bearings affect the rotor. This time the magnetic
bearing is present and supports the weight of the rotor, so it levitates. Initially,
there is no interaction with the backup bearing and the shaft. Nevertheless, the
rotor is driven from a stand-still state to 20 Hz incrementally. As a consequence, it
crosses its own natural resonance frequency around 10 Hz. The magnetic forces
are weakly damped. It means that they are unable to withstand the occurrence
of high orbits close to the resonance frequency. Also, the pinned bearing will
be compared with the conventional ball bearing. Its material was defined as
polymer known as POM and the friction properties of the interaction with the
aluminum shaft were checked on a pin-on-disk test rig. The orbits are plotted
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Figure 1.2: The ball and pinned bearings used for experimental test rig as the backup bearings.

and double-sided spectra charts track the governing frequencies of the dynamics
and of any appearance of a backward whirl. Besides, the data of the impact
force magnitudes are collected to give an overview of the performance between
the two types of backup bearings. It is concluded in this article that the pinned
bearing had shown a better response to the crossing of the resonance frequency
because it removed from the impacting orbits earlier than the ball bearing as a
backup bearing. A scenario, in which an unbalanced rotor is tested proved to be
catastrophic because the rotor could not remove itself from the contact state till
twice the speed of the known resonance speed.

• The main original contribution of the third paper [P3] is the proposal and valida-
tion of a theoretical model for the rotor and the backup bearing, which it is used
together with an appropriate contact model, developed by Hunt and Crossley
[54]. The theoretical model is based on the one studied by Lahriri et al. [74],
but the ball bearing and the new type of pinned bearing were included for the
present study. In order to do so, all conducted experimental results are necessary
to provide a sound model to extract the parameters of the test rig and represent its
dynamics. In the first place, the natural frequency and the damping coefficients
of the test rig are defined, then experimental drop tests allied to the Hertzian
hypothesis of contact provide acceptable interval values for the elastic coefficient
of impact and the restitution coefficients. Finally, with all the values determined,
the model is integrated in time with zero the initial conditions, so that it generates
the same performance as shown by the experimental tests published in [P2]. All
of this is done for the ball bearing as well as for the pinned bearing. The benefits
and the disadvantages of each are interpreted from the overall results and given
in the conclusion.
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a b s t r a c t

Rotor drops in magnetic bearing and unbalance in rotors have been objective of study for

many years. The combination of these two well-known phenomena led to an interesting

chaotic response, when the rotor touches the inner race of the back-up bearing. The

present work explores the nonlinear rotor backup bearing dynamics both theoretically

and experimentally using a fully instrumented test rig, where the position of shaft, its

angular velocity and the contact forces between the shaft and the backup bearing are

sampled at 25 kHz. The test rig is built by a removable passive magnetic bearing, which

allows for simulation of magnetic bearing failure (loss of carrying capacity and rotor fall).

The rotor is studied numerically as well as experimentally. A theoretical approach is given

beforehand and supplies the basis of the study. Finally the presented results are com-

mented on the point of view of nonlinear dynamics applied to the practical use. The

theoretical and numerical analyses are shown through orbit plots, phase plans, Poincaré

maps, force response in time and double sided spectrum. The latter is important to

characterize the condition at different levels of unbalance between forward and backward

whirl. Our preliminary results indicate that for smaller amount of unbalance the rotor

swings at the bottom of the bearing, the more the unbalance increases, other dynamical

behavior occur and some can be extremely harmful, since the rotor can be lifted from the

contact state and return, starting to impact innumerable times without reaching a steady

state.

& 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The possibility of using magnetic bearing rotors in industrial applications cannot be considered correctly without the use

of proper backup bearings. Applications are various, such as in reaction wheels, in centrifuges, in energy efficiency machines,

as cited for instance by Gasch [1] and Schweitzer and Maslen [2]. For all these machines, a safety element has to be installed

to prevent failures such as power loss, which would cause the shaft to fall. The safety element consists normally of a rolling

bearing with inner race diameter greater than the shaft diameter, but smaller than the one of the magnetic bearing. It is

designed to withstand the loads and impacts of a rotor. It also protects the whole system and prevents even more disastrous

situations.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jsvi

Journal of Sound and Vibration

http://dx.doi.org/10.1016/j.jsv.2017.01.020

0022-460X/& 2017 Elsevier Ltd. All rights reserved.

n Principal corresponding author.
nn Corresponding author.

E-mail addresses: cefonse@mek.dtu.dk (C.A. Fonseca), ilsa@mek.dtu.dk (I.F. Santos), hans@puc-rio.com (H.I. Weber).

Journal of Sound and Vibration 394 (2017) 482–496

10 Chapter 2



Throughout the years, several works have been published on this subject. A good overview of the state of rotordynamics

research of rub-related phenomena is given in Muszynska [3]. In the work of Johnson [4], a vertical shaft was studied

analytically and he investigated the changes in the radial peaks when a bearing with clearance is introduced. Black [5] also

considered a rotor with a clearance stator but added friction on the contact. He conducted an analytical study, whose results

about synchronous and counter whirl were verified experimentally. Also in reference [6], a gyro pendulumwith a piecewise

linear model was investigated in good agreement with experimental results. Choy and Padovan [7] presented a numerical

investigation of the interaction between the rotor and the casing of the bearing wall, in which different parameters were

tested, such as imbalance and friction coefficients.

By employing a proper impact model, the occurrence of chaotic behavior was reported by Goldman [8]. Moreover Piccoli and

Weber [9] successfully investigated the identification of chaotic motion with Lyapunov exponents and Poincaré diagrams ex-

perimentally. In Jiang and Ulbrich [10], the onset of dry friction whip was investigated with an unbalanced rotor to stator contact

explaining the recurrence using the multiple scales method. Regarding rotor drops, the work from Pradetto [11] describes the

resulting phenomena of the drop of a one-ton rotor as its backup bearing. Fumagalli [12] tested the performance of the ball

bearing instead of a plain circular one as a backup bearing when the rotor drops, slides and tumbles on its inner race. His results

led to the information about the rotor's whirl and motion as well as the contact forces at each impact. More recently, [13]

presented a simulationwith experimental validation of a 9-ton-active-magnetic-bearings-rotor drop then compared and validated

the proprietary code to several drop test as a tool for future reliability tests. Jacquet-Richardet et al. [14] analyze the rotor-to-stator

impact of a turbo-machinery with a thermocoupled model with dynamical system. Their findings explore the nonlinear nature of

the impact response and the interaction with the blades of the rotor with the casing.

In combination with Active Magnetic Bearings (AMB) technology as mentioned by Schweitzer [2] and in [15], it is clear

that safety bearings are an important subject of study. Chapter 27 in the book of Gasch et al. [16] also treats the cases, in

which the rotor starts impacting on the stator including resonance passage and sudden unbalance. Ishii and Kirk [17] ana-

lyzed numerically the transient response of a rotor drop. There it is cited that low damping causes backward whirl that leads

to high-magnitude forces. The work of [18] presents a very detailed mechanical model of a flywheel with two safety bearings

with power loss. The authors conducted a series of simulations, whose response changed according to the parameters such as

friction and the preload applied. Ginzinger [19] developed an active actuator to avoid rubbing and thus reduce the severity of

the contact. He applies a feedback control with a powerful magnetic actuator to smoothen the transition from an impact-free

to full contact eliminating impacts. Moreover, in Keogh [20], a comprehensive study of different performances of auxiliary

bearings was presented. Non-conventional geometries of the backup bearing were considered by Simon [21], and later by

Zülow [22] and then the new kind of bearing with pins is presented by Lahriri [23] and analyzes the forces that the structure

receives on a sleeve backup bearing. The rotor is externally impacted and the dynamics of the first impacts and the high

radial forces in that generated by the backward whirl are assessed. In Fonseca et al. [24] it is shown that the same pins help to

surpass the critical speed avoiding the backward whirl. However, in most industrial operating machines, the usual safety

bearing is a rolling bearing element, and the rotor will lay down at the bottom allowing it to rotate without much damage to

the system. An analysis of the rigid rotor on a safety bearing showing chaotic behavior is presented in reference [25]. Later the

contact between the shaft and the inner race was modeled using a nonlinear matrix equation and presented by Cole et al.

[26], whose authors analyzed different configurations of rolling bearings in order to identify the dynamics conditions of the

rotor during impacts events and to try to specify a proper backup bearing. More recently, Inayat-Hussain [27] gives an insight

about the response of a two dimensional rotor to different imbalance levels with bifurcation diagrams, which show chaotic

behavior when impacting on the wall of the backup bearing. In his thesis, van Rensburg [28] applied to his rotor model and

AMB test rig several rotational speeds and showed different dynamical behaviors and harmful cases. In Hakwings et al. [29]

the result of a series of drop tests of 140 kW flywheel on a backup bearing is presented and illustrates the dynamical behavior

of the rotor in the case of total failure and unassisted spin down.

In the present work, a theoretical and an experimental study of a passive magnetic bearing rotor colliding on the ball bearing

inner race is presented. The failure of the rotor will be induced by the rapid removal of the passive magnetic bearing, letting the

rotor fall on the backup bearing. The tests will be compared with simulated results coming from a model of the rotor as a rigid

body impacting on an compliant surface of a compliant housing support. The main contribution of this work is to show that

different levels of unbalance change the dynamical behavior of the system at least into three separate regions, and some of them

may lead to harmful situations. In order to create these different levels of unbalance, small masses are added to the disk of the

rotor, but the velocity was kept constant. The findings are best portrayed in bifurcation diagrams that describe the changes. Also,

these features appear on orbit plots, doubled-sided spectra and time-varying force plots.

In Section 2, the dynamical model for the rotor-backup-bearing interaction is developed. In Section 3, the simulation and

experimental results are shown and discussed. Finally, in Section 4, we present our conclusions.

2. Modeling the rotor-housing kinematics

2.1. The shaft

In Figs. 1a and b, a schematic description of the rotor is made to reproduce the assembled test rig. The rotor is supported

by one spherical ball bearing at point O and one movable passive magnetic bearing at point C. The backup bearing is
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mounted between them at point B. The rotor is modeled as a rigid body and external forces from the magnets, imbalance

and coupling are applied at points C, A and D respectively. In these figures the reference frames used are shown and the

moving reference frame B3 fixed to the rotating shaft and positioned at the supporting point of the rotor. Fig. 2a is a

photograph of the complete test rig and Fig. 2b is another one taken above the magnetic bearing and pointed to the backup

bearing.

The rotor is only allowed to rotate according to the following three angular degrees of freedom: Γ( )t , β( )t , θ( )t , around the

respective coordinate axes xi, y1, z2, for which we define the angular velocities

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦β θΓ β θΓ̇ = ̇( ) ̇ = (̇ ) ̇ = (̇ ) ( )t t t0 0 , 0 0 and 0 0 . 1I
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1 2

Then the rotational matrices ΓTI , βTB1 and θTB2 are defined as
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Each external force will generate a moment with respect to O and the relevant position vectors are given by

Fig. 1. The moving frame references and the points of interests, A, B and C, where forces are present.

Fig. 2. (a) Photograph from the test rig assembled for tests with different backup bearings. A – Passive magnetic bearing; b – Rotor with disk; c – Backup

bearing. Here the backup bearing is a plain wall bearing; d – Backup bearing housing; e – AC Motor. (b) Details from the shaft and the rolling bearing

backup bearing.
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where =I m r lxz u u OD. The absolute angular velocity represented in the coordinates of the moving reference frame B3 (where
the inertia tensor is constant) is given by
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The absolute acceleration written in B3 is written as:

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ω

θ θ β Γ θ β β Γ θ β Γ θ θ β θ β

θ θ β Γ θ β β Γ θ β Γ θ θ β θ β

β β Γ β Γ θ

̇ =

− ̇ ̇ − ̇ ̇ + ¨ + ̇ ̇ + ¨

− ̇ ̇ + ̇ ̇ − ¨ − ̇ ̇ + ¨

̇ ̇ + ¨ + ¨
( )

sin cos cos sin cos cos cos sin

cos cos sin sin sin cos sin cos

cos sin

.

6

B3

2.2. The inner and outer housing

In order to determine and measure the force between the rotor shaft and the inner race, the backup bearing is mounted

on a special casing, where there are four force transducers. It is inside a block that is mounted inside a frame, called an outer

house. Then, the inner house is only allowed to move vertically inside it. Subsequently, the outer house moves only hor-

izontally. Figs. 3a and b show a scheme of the complete assembly.

The elastic elements kft represent the force transducers positioned between the bodies; the damping elements ch and cv
represent the structural damping. These damping terms are present due to the four beams that make the inner house slide

vertically and the outer house horizontally, two terms for each direction.

The dynamics of both housings is included in the mechanical model. The dynamical coupling between the inner house

and the rotor is introduced by the impact forces, the normal force N and the friction force Ffric. The beams that support the

housings have the stiffness calculated as clamped–clamped beam
( )

=
−

K
EI

Fa l a
beam

48

3 42
, and the damping coefficients are ap-

proximated by:

ζ ζ= ( + ) = ( ) ( )c K m m c K m2 and 2 . 7h ih oh v ihbeam beam

Thus the equations of motion for both housings are written as follows:

Fig. 3. Assembly of the inner housing and the outer housing.

C.A. Fonseca et al. / Journal of Sound and Vibration 394 (2017) 482–496 485

Chapter 2 13



α α¨ = − − − + + ( )m y k y c y m g N F2 2 sin cos . 8ih ih ft ih v ih ih fric

( ) α α+ ¨ = − − + − ( )M m x k x c x N F2 2 cos sin . 9oh ih oh ft oh h oh fric

Consequently, the radial term rr can be calculated and allows one to know whether the system is impacting or not, and it

is equal to

( )( )β Γ= − + − ) − ( )r l x l y . 10r OB oh OB ih

2 2

The impact is analyzed at each time step if the rotor displacement at the position of the backup bearing is greater than or

equal to the radial gap, δ ≥ = −r r rr0 1 . The impact is modeled following a stepwise elastic model proposed by [30], that is:
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in which the stiffness coefficient is given as:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

ν ν
=

−
+

− −

( )

k

E E

r r

r r

4

3
1 1

.

12

imp

s

s

i

i

s

s
2 2

1

1

1/2

and e is the coefficient of restitution. The model of impact has the advantage of avoiding the determination of a damping

factor and relies only on the value of the coefficient of restitution, which can be determined easier through experiments. On

other side, it is a piece-wise model that can lead to numerical instabilities in the numerical integration in time. Therefore it

is recommended to employ techniques like Filipov or manipulate the tolerances into the computational code.

Therefore, the forces acting on the mechanical model are the rotor's own weight, the magnetic force and the damping

force plus the impact forces
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Finally, one writes Euler's equation with respect to the supporting point O
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and one solves the set of equations considering the angles Γ and β small. The motor has an independent control and is

capable of delivering the necessary torque to keep the angular velocity θ ̇ fixed. The differential equations are highly non-

linear, with many coupled terms, and the terms of the differential equations may be determined using the symbolic program

®Maple . However, we are more interested in the position of the center of shaft at the backup bearing plane and, using the

transformation matrices, the coordinates are written as:
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where the following initial conditions are taken into consideration: t¼0, Γ( ) =0 0 and β( ) =0 0.

The complete expressions for Γ̈ and β̈ are available in Appendix A.

2.3. The backup bearing

When the rotor drops and hits the rolling backup bearing, as seen in Fig. 4, the friction force accelerates the inner race

and the spheres. The angular position of the inner race, θIr, is also a degree of freedom. Fig. 4a illustrates a schematic view of

balls and inner race and their velocities. Since the outer race is not moving and the spheres are not sliding on the touching

point with it, point Osph, the tangential velocity is half of the one on the edge between the sphere and the inner race, point E.

The force acting on one rolling bearing ball is shown in Fig. 4b and the following equations for one isolated ball are written:

∑ θ= ¨
( )IMoment 16O sph sphsph
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Therefore, the angular acceleration of the inner race θ̈ir can be obtained by taking into account the influence of all rolling

spheres j:
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3. Simulation and nonlinear analysis

3.1. Integration in time

The equations of motion (14), (21), (8) and (9) are integrated in time using a combined Matlab differential equation solver

ode45 and a dedicated Runge–Kutta algorithm. The former is employed together with an Event function in order to find the

exact moment of the impact. The latter is applied during the short period of impact. This is because it is a highly stiff

problem and demands an enormous amount of time with very tight integration tolerances of the algorithm. Therefore, a test

of convergence was performed and the adequate step time was set to 10�6 s. During the impact, the relative velocity

between the shaft and the inner race, vrel, plays an important role. The friction force depends on it, and if the velocities

match, there is no friction. Otherwise, the friction force is modeled as μ= ( )F N vsign rel . The model parameters are shown in

Table 1.

Fig. 4. (a) The shaft inside the inner housing in contact with the inner race. (b) The forces acting at each ball of the backup bearing.
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3.2. Simulated results and experimental comparison

As mentioned before, in Section 2.1 the test rig is a rotor suspended at one end by a removable passive bearing. From the

moment that the magnetic force is removed, there are three distinct stages: (a) the rotor free fall inside the bearing; (b) the

recurrence of contact between rotor and the inner race surface leading to the deformation of both of them and the ap-

pearance of an angular acceleration of the inner race; and finally (c) the almost vanishing of the relative velocities between

the inner race and shaft surfaces with the rotor finding a steady state condition at the bottom of the backup bearing. In fact,

since the rotor keeps executing small translational movements around the equilibrium state, rarely will the tangential

velocities of the shaft and the inner race coincide. This occurs in spite of the fact that the steady-state general dynamical

behavior of the rotor changes significantly according to the unbalance level. After removing the magnetic force, the rotor

falls down and impacts several times on the surface of the inner race. The energy will be dissipated by the damping from the

coupling between the inner and outer housing and due to the impact with the compliant surface.

The changes in the steady-state behavior can be evaluated more explicitly with a Poincaré map, as seen in Fig. 5. The

variables Y, ̇X and ̇Y are sampled every time the center of the shaft crosses the vertical line; in other words, when X¼0. The

first plot on the top of Fig. 5 shows the vertical position, Y, through which the rotor crosses the vertical line as a function of

the control variable, i.e., the unbalance U.

Overall, the phenomena are captured by both experiment and simulation. We can divide the bifurcation diagram into

three specific regions. First, the rotor center is always crossing at the bottom of the shaft at Y¼�1.5 mm in region I.

Suddenly, there is a change and more crossings at the vertical line occur. This can be seen in region II of Fig. 5. The more

unbalance, the more evident the fact that the center of the shaft performs chaotic trajectories. In the simulation it is ex-

pected that the rotor will cross from the bottom to the top of the bearing, but the mechanical setup shows a gradual increase

in the vertical crossing as the unbalance gets bigger until the rotor is able to perform a full whirl. At the right end of the plot,

region III, the rotor is only executing a full whirl so the rotor is crossing the vertical line in the extremes, = −Y 1.5 to

Y¼1.5 mm. In the following plots, the horizontal and the vertical crossing velocity, ̇X and ̇Y , are plotted against the un-

balance and, once again, the experimental and the simulation measurement tend to agree with each other.

It can be seen that the unbalance plays a considerable role in the dynamics of the shaft and its size can strongly influence

the dynamical pattern. The initial conditions were kept the same in experiments and simulations but in the experiments the

rotor starts in contact with the bearing and the magnetic bearing is removed, while in the simulations, we start with the

rotor at the center and the magnetic bearing is turned off later. From the start until the magnets are removed the orbit is

painted in black, later, the color is red for one second of simulation, which then changes to blue.

The first case is presented in Fig. 6, where there is no additional mass. The shaft is constantly in contact with the bearing

inner race just oscillating. The numerical result shows the shaft falling and impacting the inner race and after some hits it

stays on the bottom of the bearing. The difference between them exists because there is a misalignment at the coupling

between the shaft and the motor.

Next, in Fig. 7 we see a discrepancy between the experiment and the numerical result. While numerically it is shown that

the rotor is whirling, falling and hitting a great number of times, the test rig developed a less complex orbit, in which the

Table 1

Parameters set applied to the simulation.

Parameter of the shaft

Mass without unbalance m¼1.28 kg

Length to magnetic bearing [ ]=r 0, 0, 0.384 mOC

Length to rolling bearing [ ]α α= ( ) ( )r r rcos , sin , 0.211 mOB r r

Shaft diameter dr¼25 mm

Parameter of the rolling bearing

Inner diameter = =d r2 28 mm1 1

Inner race outer diameter = =d r2 37 mm2 2

Sphere radius =r 5.0 mmsph

Impact stiffness = ×k 2.5 10 N/mimp
10 3/2

Friction coefficient μ¼0.20

Restitution coefficient e¼0.90

Parameter of the inner and outer house

Mass from inner house =m 1.70 kgih

Damping 1 = ×c 7.04 10 N s/mh
2

Mass from outer housing =M 8.87 kgoh

Damping = ×c 2.28 10 N s/mv
2

Force sensor

Force transducer stiffness = ×k 8.3 10 N/mft
7
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Fig. 6. Angular velocity 10 Hz. Experimental (a) and simulated (b) orbit with no unbalance weight. (U¼0.0 g mm). (For interpretation of the references to

color in this figure, the reader is referred to the web version of this paper.)

Fig. 7. Angular velocity 10 Hz. Experimental (a) and simulated (b) orbit with unbalance magnitude of U¼105.0 g mm. (For interpretation of the references

to color in this figure, the reader is referred to the web version of this paper.)

Fig. 5. 10 Hz simulated bifurcation for different unbalance levels together with 8 different experimental tests with unbalance levels of U1¼0.0 g mm,

U2¼15 g mm, U3¼21 g mm, U4¼30 g mm, U5¼105 g mm, U6¼207 g mm, U7¼318 g mm and U8¼420 g mm.

C.A. Fonseca et al. / Journal of Sound and Vibration 394 (2017) 482–496 489

Chapter 2 17



Fig. 8. Angular velocity 10 Hz. Experimental (a) and simulated (b) orbit with unbalance magnitude of U¼207.0 g mm. (For interpretation of the references

to color in this figure, the reader is referred to the web version of this paper.)

Fig. 9. Angular velocity 10 Hz. Experimental (a) and simulated (b) orbit with unbalance magnitude of U¼318.0 g mm. (For interpretation of the references

to color in this figure, the reader is referred to the web version of this paper.)
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center of the shaft makes a quasi-periodic motion. One can see that the hits are concentrated around three regions. An

additional increase in unbalance changes the orbit generated by the test rig and matches with the expected behavior as

demonstrated by the simulation in Fig. 8. The chaotic behavior shows some similarity when comparing numerical and

experimental results.

Finally, Figs. 9 and 10 reveal the last observed change in the rotor trajectories. The unbalance is high enough to maintain

the rotor always in contact with the inner race, after the initial hits. Both the experiment and the numerical results are in

clear accordance. Besides, there is a predominance of the forward whirl in both of them. The reason for the recurrence of the

forward whirl is that the friction force is at a “stick” phase and therefore its magnitude is small and the wall is moving.

To visualize the existence of chaotic trajectories performed by the rotor center, a double-sided spectrum is displayed in

Fig. 11. Each graph corresponds to one red unbalance level in Fig. 5. At low levels the heights of the peaks are approximately

the same. Several levels of unbalance are chosen; the cases U¼0.0 g mm, U¼15.0 g mm, U¼21.0 g mm, and U¼30.0 g mm

represent region I. The noise clearly rises when the unbalance is U¼105.0 g mm and U¼207.0 g mm from region II, which is

a clear indication that chaos is happening. In region III higher unbalance levels, U¼210.0 g mm and U¼420.0 g mm, show

clearly higher peaks at Ω = − 10.0 Hz than the opposite pair, confirming the predominance of a full whirl in the same

direction as the rotor spinning. Negative values of ω mean the same spinning direction of the rotor.

As mentioned in Section 2.2, the test rig has four force transducers positioned between the inner and outer housing.

Fig. 11. 10 Hz double sided spectrum. Effect of the unbalance in the general behavior of the rotor; from oscillatory movement, to chaos and full whirl.
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Their signals are converted to Newtons and are sampled simultaneously with the other signals. For the same unbalance

levels from Figs. 6–10, the horizontal (blue) and the vertical force (red) present on the bearing's inner race are plotted in

Fig. 12. Every addition in the unbalance increases the transient time until the steady state disappears for a level of unbalance

belonging to region II of the bifurcation diagram. At a low level of unbalance there is a predominance of the vertical force,

since the rotor is only moving on the bottom of the backup bearing.

Fig. 12 demonstrates the effect of chaotic cases, in which the inner race receives multiple high magnitude impacts. The

magnitude of the force reaches up to 200 N in each direction, which is considerably high for a rotor whose weight is only

12.74 N. This situation changes for the regions III cases, since the shaft is always in contact with the surface of the inner race

and is no longer impacting. The level of the forces oscillates between �20 and 20 N for both horizontal and vertical forces.

The bearing has to be able to only withstand the centrifugal force in order to not break.

4. Conclusion

From the theoretical and experimental nonlinear analysis carried out in this paper, one can conclude that the rotor-

backup bearing system has three distinguished dynamical behaviors depending on the level of rotor unbalance. For region I,

characterized by low unbalance level from (0, 60] g mm, simple oscillatory movements of the rotor center at the bottom of

the backup bearing are seen. For region II with unbalance levels from (60 to 280] g mm, chaotic motions are followed by

impacts between the rotor and backup inner race surface. Finally, for region III characterized by high unbalance levels, full

forward whirl of the rotor center takes place.

The magnitude of the forces at the three different regions changes and supports the idea that it may damage the backup

bearing. At low levels of unbalance, the magnitude of the forces varies slightly in time and just enough to support the fallen

rotor. Chaotic cases cause multiple impacts, which means that the contact forces are always high with a short duration.

Although a rotor with big unbalance remains in contact with the inner race, the strength of the force drops significantly.
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Fig. 12. Force analysis for 10.0 Hz as angular velocity. Light gray is the resultant vertical force and black the horizontal force. The transient time takes longer

to cease at every increase in the unbalance. Chaotic cases show high impact magnitude forces, but high unbalance lowered them, when the rotor is

permanently in contact.
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Appendix A. Equations for Γ̈ and β̈

⎡
⎣⎢( )

( )

( ) ( ) ( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Γ
β θ

ββΓ β θ θ

β θ θ β θ θ δ δ

βθ βθ βθ θ βθ

ρ α β θ θ θ

βθ θ β θ Γ θ

Γ β θ θ δ β θ

δ β θ δ β θ δ β θ

βΓθ θ βΓβ θ Γ δ β θ Γ δ β θ

Γ δ θ θ Γ δ θ θ

Γ δ θ θ Γ δ θ θ

Γ δ θ θ Γ δ θ θ Γ δ θ θ

Γ δ θ θ θ Γθ θ

Γθ θ θ α θ θ ρ θ θ

α θ θ ρ θ θ Γ α β θ θ

Γ ρ β θ θ Γβ θ θ

Γ α β θ θ Γ ρ β θ θ

Γβ θ θ ββΓ δ β δ β

δ β ββΓ δ β βΓβ θ

β θ Γ θ Γ β θ θ

δ θ θ δ θ θ

δ θ θ δ θ θ

θ Γθ θ θ Γ θ

Γ θ θ βΓ θ Γ θ θ θ

δ θ δ θ Γ θ

¨ = −
−

− ̇ ̇ + ̇

− ̇ + ̇ ̇ + −

+ ̇ ̇ + ̇ ̇ + ̇ ̇ − ̇ ̇

− ( ) − ( ) − ̇ + ̇

− ̇ ̇ + ̇

− ̇ −

+ − −

+ ̇ ̇ + ̇ ̇ − −

− +

− −

+ − +

+ + ̇ ̇

− ̇ ̇ + ( ) + ( )

− ( ) − ( ) − ( )

− ( ) −

+ ( ) + ( )

+ + ̇ ̇ + −

− − ̇ ̇ − − ̇ ̇

− ̇ + ̇

+ +

− −

− ̇ ̇ − ̇

+ ̇ − ̇ ̇ + ̇ ̇

+ − −

I I I
I I I

I I I Izz N l I F l I

I I Izz I I I

cl I K l I I I I I

I Izz I

I Izz I N y

I N x I fx I F y

I I I Izz I N l I fl

N y I N x I

F x I F y I

I N y I N x I F x

I F y Izz I

I Izz I K l I cl

K l I cl I K l I

cl I gmr I

I K l I cl

I gmr Izz I N x I F x I

F y I I I N y I I

I I

N l I F l I

I N l I F l

I I I

I I I I I

I N l I fl r mgI

1

cos
cos sin

cos sin cos sin cos

cos

sin sin sin sin

cos cos sin

cos sin cos cos

sin cos cos cos sin cos

2 sin cos cos cos sin cos

cos cos sin sin cos sin

cos cos sin sin cos sin

cos cos sin sin cos sin cos cos sin

sin cos sin cos sin

cos sin cos cos sin cos cos sin

cos cos sin cos cos sin sin cos sin

sin cos sin cos sin

sin cos sin sin cos sin

cos sin sin cos

sin cos cos

cos sin cos sin

cos cos sin sin cos sin

cos cos sin sin cos sin

cos sin cos sin

cos sin 2 cos cos sin

sin cos cos cos sin

yy xx xz
xx xz xx

xz yy yy s xx fric s xx

xx yy xx xx xx

Q xx Q xx xz xx xz xx

yy xx

yy yy B

yy B yy B yy fric B

xz xx yy yy s yy s

B xx B xx

fric B xx fric B xx

yy B yy B yy fric B

yy fric B xx

yy yy Q yy Q

Q xx Q xx Q xx

Q xx OA z xx

yy Q yy Q

yy OA z xx B xx fric B xx

fric B xx yy xx B xx yy

xx yy

s xx fric s xx

yy s yy fric s

xx xz xx

xz yy xz yy yy

yy s yy s OA x xx

2 2 2

2 2 2

2 2 2

2 2

2 2 2

2 2

2 2 2

2 2 2

,

,

2 2

2 2 2 2

2 2 2

2 2 3 2

2 2

,

C.A. Fonseca et al. / Journal of Sound and Vibration 394 (2017) 482–496 493

Chapter 2 21



⎤⎦

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

α θ ρ θ θ

ββΓ θ β δ θ β δ θ

β δ θ β δ θ βθ θ α θ

δ θ δ θ

ρ θ θ

ββΓ θ βΓ θ

βΓ δ θ βΓ δ θ

β θ Γ Γ δ β Γ δ β

− − −

− ̇ ̇ + −

+ + − ̇ ̇ +

− +

+ +

+ ̇ ̇ + ̇ ̇

+ + −

− ̇ ̇ − − ( )

I K l I cl I gmr

I Izz I N y I N x

I fx I fy I Izz I K l

I N l I fl

I cl I gmr

I I I

I N l I fl gmr I

I I N l I F l I

sin cos sin cos cos

cos cos cos sin cos

cos cos sin cos cos sin cos

sin cos cos cos

sin cos cos

cos 2 cos

cos cos sin cos

2 cos cos sin A.1

yy Q yy Q yy OA z

xx xx B xx B

xx B xx B xx xx Q

xx s xx s

xx Q xx OA z

xx xx xz

xx s xx s OA z xx

xz xx s xx fric s xx

2 2 2

,

2 2 2

2 2 2 2

2 2

2 2

,

2 2 3

2 2

,

⎡
⎣⎢( )

( ) ( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

β
θ β

θ β β θΓ β θ Γ β

θ Γ β θΓ βΓ θ θ ββ

Γ θ ββ θ θ ββ θ θ ββ Γ θ ββ

Γ θ ββ α θ β ρ θ β θ β

θ β δ θ β δ θ β δ

θ β δ θ β δ θ β δ θ β δ

θ θ Γβ θ β δ θΓ θ ββ θ Γ θ ββ

θ θ Γβ α θ β θ θ θ β α θ

ρ θ θ θ Γ θ θ θ β θ δ

θ δ θ Γ δ θ Γ δ

θ Γ δ θ Γ θ Γ δ ρ θ β

θ θ Γβ θ Γ θ ββ θ θ βΓ δ θ θ βΓ δ

¨ = −
−

̇ + ̇ ̇ − ̇

+ ̇ − ̇ ̇ − − ̇ ̇

− ̇ ̇ + ̇ ̇ + ̇ ̇ − ̇ ̇

+ ̇ ̇ − ( ) − ( ) −

− − −

+ + + −

− ̇ ̇ + − ̇ ̇ − ̇ ̇

+ ̇ ̇ − ( ) + ̇ ̇ + ( )

+ ( ) − ̇ ̇ − ̇ ̇ −

− + +

+ + − − ( )

+ ̇ ̇ + ̇ ̇ − +

I I I
I I I

I I I I gmr I I

I I I I I I I I

I I I K l I cl I gmr

I N y I F x I F y

I N x I N l I F l I F l

I I I N l I I

I I I K l I I K l

I cl I I I I N l

I F l I N y I F x

I F y I gmr I N x I cl

I I I I N l I N l

1

cos
cos 2 cos

cos sin

sin sin sin sin

sin sin sin sin sin sin

sin cos sin cos sin sin

sin sin cos cos cos sin sin cos

3 cos sin sin 2 cos sin cos sin

cos cos cos cos sin cos cos

cos cos cos cos sin cos cos

cos sin cos cos cos cos

cos sin cos cos sin cos cos

cos cos sin cos sin cos cos sin cos

yy xx xz

xz xz xz

xx yy xx xz OA x xx xz

xx xz xz yy xz zz xz yy

xz zz xz Q xz Q xz OA z

xz B xz fric B xz fric B

xz B xz s xz fric s xz fric s

xx xz xz s xz yy

xz zz xz Q xx xx Q

xx Q xx zz yy xx s

xx fric s xx B xx fric B

xx fric B xx OA x xx B xz Q

yy xz xx yy s xx s

2 2 2 2 2 2 2 2

2 2 2

,

2 2

2
,

2 2 2

2

2 2

2 2

2 2 2 2

2 2 2

2

,

2

2

C.A. Fonseca et al. / Journal of Sound and Vibration 394 (2017) 482–496494

22 Chapter 2



⎤⎦

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

θ θ βΓ δ θ θ βΓ δ θ β θ β

θ θ θ β θ Γ β β θ Γ θ β

θ θ δ θ θ δ θ θ θ β

θ θ θ β θ θ δ θ θ δ

θ Γ θ β α θ θ ρ θ θ

θ θ α θ θ ρ θ θ

θ θ θ θ β δ θ θ β δ

θ θ β δ θ θ β δ

θ θ β δ θ θ β δ θ θ β δ

θ θ β δ θ Γ θββ θ Γ θ ββ

θ β Γ δ θ β Γ δ θ β Γ

θ βΓ δ α θ β Γ θ βΓ δ

θ βΓ δ θ βΓ δ ρ θ β Γ

θ βΓ α θ βΓ ρ θ βΓ θ θ Γ

θ Γ β θ Γ β θ Γ β θΓ

Γ β θ δ Γ θ δ Γ

θ δ Γ θ δ Γ α θ βΓ

ρ θ βΓ θ βΓ θ Γ β θ θ Γ

α θ θ δ ρ θ θ δ

θ θ Γ θ Γ θ β θ Γ β

ρ βΓ βΓ α βΓ Γ β δ δ

ρ θ Γ θ β θΓ α Γ δ

Γ δ Γ δ Γ δ

+ − + ̇ + ̇

− ̇ − ̇ + ̇ − ̇ − ̇ ̇

+ − + ̇ ̇

− ̇ ̇ + −

+ ̇ ̇ + +

+ − −

− + +

+ +

− − −

− − ̇ ̇ + ̇ ̇

− − −

+ − −

− − −

+ + + + ̇ ̇

+ ̇ − ̇ − ̇ + ̇ ̇

+ ̇ − −

− + −

− − + ̇ + ̇ ̇

− + − +

− ̇ ̇ − ̇ + ̇ − ̇

+ + + − ̇ − −

+ + ̇ − ̇ − ̇ ̇ + +

+ + − A.2

I F l I F l I I I

I I I I I I I I I

I N l I F l I I

I I I F l I N l

I I I K l I cl

I gmr I K l I cl

I gmr I N x I N y

I F x I F y

I N x I F x I F y

I N y I I I I

I N l I F l I gmr

I N x I K l I N y

I F x I F y I cl

I gmr I K l I cl I

I I I I I I I

I I F x I F y

I N y I N x I K l

I cl I gmr I I I I

I K l I N l I cl I F l

I I I I I I

I cl I gmr I K l I I I N l I F l

I cl I I I I I I I K l I F x

I F y I N y I N x

cos sin sin cos sin sin cos

cos cos cos 2 cos sin

cos sin sin cos sin cos cos sin

cos sin cos sin cos cos sin sin

2 cos sin sin cos sin sin cos sin

cos sin sin cos sin sin cos sin

cos sin cos sin sin cos sin cos

cos sin cos cos sin sin

cos sin sin cos sin cos cos sin sin

cos sin cos cos sin cos sin

sin cos sin sin cos

cos sin sin cos cos cos

cos cos cos sin sin cos

cos sin cos sin cos cos

cos cos cos

cos cos cos sin

cos cos cos sin sin cos

sin cos cos cos cos

cos cos cos cos cos cos cos sin

cos cos cos cos

sin sin cos sin

cos cos cos cos cos

sin cos sin

xx fric s yy fric s xz xx xz

xx xz xx xz xx xz xz yy xz

yy s yy fric s yy zz

xx zz xx fric s xx s

xx xz xx Q xx Q

xx OA z yy Q yy Q

yy OA z yy B xx B

xx fric B xx fric B

xx B yy fric B yy fric B

yy B xx zz yy zz

xz s xz fric s xz OA z

xz B xz Q xz B

xz fric B xz fric B xz Q

xx OA z xx Q xx Q xx

xz zz xx xz xx zz yy

yy yy fric B yy fric B

yy B yy B yy Q

yy Q yy OA z yy zz yy zz

yy Q yy s yy Q yy fric s

yy xz yy xz yy yy

yy Q yy OA z yy Q yy zz yy s yy fric s

yy Q yy xz yy xz yy zz yy Q yy fric B

yy fric B yy B yy B

2 2 2

2 3 2 3 2 2 2 2

2

,

,

2 2 2
,

2

2

2

,

2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

2 2 2

2 2

,

2 2 2

2 2 2 2

2 2 3 2 3 2 2 2 2

,

2

2 2

C.A. Fonseca et al. / Journal of Sound and Vibration 394 (2017) 482–496 495

Chapter 2 23



References

[1] R. Gasch, R. Nordmann, H. Pfützner, Rotordynamik, 2nd ed. Springer Verlag, Berlin, 2002.
[2] G. Schweitzer, E.H. Maslen, Magnetic Bearings, 1st ed. Springer-Verlag, Berlin, Heidelberg, 2009.
[3] A. Muszynska, Rotor-to-stationary element rub-related vibration phenomena in rotating machinery - literature survey, Shock Vib. Dig. 21 (3) (1989)

3–11.
[4] D.C. Johnson, Synchronous whirl of a vertical shaft having clearance in one bearing, Arch. J. Mech. Eng. Sci. 1959–1982 (vols. 1–23) 4 (1) (1962) 85–93.
[5] H.F. Black, Interaction of a whirling rotor with a vibrating stator across a clearance annulus, Arch. J. Mech. Eng. Sci. 1959–1982 (vols. 1–23) 10 (1) (1968)

1–12.
[6] M.S. Wojciech, Dynamisches Verhalten eines schnell drehenden Rotors bei Anstreifvorgangen (Ph.D. thesis), TU Karlsruhe, 1986.
[7] F.K. Choy, J. Padovan, Non-linear transient analysis of rotor-casing rub events, J. Sound Vib. 113 (1987) 529–545.
[8] P. Goldman, A. Muszynska, Chaotic behavior of rotor/stator systems with rubs, J. Eng. Gas Turbines Power 116 (3) (1994) 692.
[9] H.C. Piccoli, H.I. Weber, Experimental observation of chaotic motion in a rotor with rubbing, Nonlinear Dyn. 16 (1) (1998) 55–70.

[10] J. Jiang, H. Ulbrich, The physical reason and the analytical condition for the onset of dry whip in rotor-to-stator contact systems, J. Vib. Acoust. 127 (6)
(2005) 594.

[11] J.C. Pradetto, J. Schmied, Behaviour of a one ton rotor being dropped into auxiliary bearings, in: Proceedings of 3rd International Symposium on
Magnetic Bearings, 1992, pp. 145–156.

[12] M.A. Fumagalli, Modelling and measurement analysis of the contact interaction between a high speed rotor and its stator (Ph.D. thesis), ETH – Swiss
Institute of Technology Zurich, 1997.

[13] G. Siegl, T. Tzianetopoulou, J. Denk, Simulation and experimental validation of a 9 ton AMB rotor landing in rolling element back-up bearings, Mech.
Eng. J. 3 (1) . 15-00136.

[14] G. Jacquet-Richardet, M. Torkhani, P. Cartraud, F. Thouverez, T. Nouri-Baranger, et al., Rotor to stator contacts in turbomachines. Review and appli-
cation, Mech. Syst. Signal Process. 40 (2) (2013) 401–420.

[15] G. Schweitzer, Applications and research topics for active magnetic bearings, in: Proceedings of IUTAM-Symposium on Emerging Trends in Rotor
Dynamics, March 2009.

[16] R. Gasch, R. Nordmann, H. Pfützner, Die harte Statorberührung – Fanglager [The Strong Stator-Contact – Catcher Bearing], Springer, Berlin, Heidelberg,
1975, pp. 555–573.

[17] T. Ishii, R.G. Kirk, Transient response technique applied to active magnetic bearing machinery during rotor drop, Trans. ASME 118 (April) .
[18] G. Sun, A. Palazzolo, A. Provenza, G. Montague, Detailed ball bearing model for magnetic suspension auxiliary service, J. Sound Vib. 269 (3–5) (2004)

933–963.
[19] L. Ginzinger, H. Ulbrich, Control of a rubbing rotor using an active auxiliary bearing, J. Mech. Sci. Technol. 21 (6) (2007) 851–854.
[20] P.S. Keogh, Contact dynamic phenomena in rotating machines: active/passive considerations, Mech. Syst. Signal Process. 29 (May) (2012) 19–33.
[21] U. Simon, Rotor - Stator - Kontakt in polygonförmigen Fanglagern [Rotor–stator-contact in polygonal catcher bearings] (Ph.D. thesis), Technischen

Universität Carolo-Wilhelmina zu Braunschweig, 2001.
[22] D. Zülow and R. Liebich, Ein aussenrollenlager als fanglagerkonzept für magnetgelagerte rotoren [An external ball bearing as catcher bearing concept],

in: SIRM 8. Internationale Tagung Schwingungen in rotierenden Maschinen, Wien, Austria, paper-ID 11, 2009.
[23] S. Lahriri, I.F. Santos, Experimental quantification of dynamic forces and shaft motion in two different types of backup bearings under several contact

conditions, J. Mech. Syst. Signal Process. 40 (1) (2013) 301-321.
[24] C.A. Fonseca, H. Weber, P. Fleischer, I. Santos, Analyzing the use of pins in safety bearings, J. Braz. Soc. Mech. Sci. Eng. 37 (2015) 1425–1434.
[25] X.X. Wang, S.S. Noah, Nonlinear dynamics of a magnetically supported rotor on safety auxiliary bearings, ASME J. Vib. Acoust. 2 (120) (1998) 596–606.
[26] M.T. Cole, P.S. Keogh, C.R. Burrows, The dynamic behavior of a rolling element auxiliary bearing following rotor impact, ASME J. Tribol. 2 (124) (2001)

406–413.
[27] J.I. Inayat-Hussain, Nonlinear dynamics of a magnetically supported rigid rotor in auxiliary bearings, Mech. Mach. Theory 45 (11) (2010) 1651–1667.
[28] J.J.J. van Rensburg, Delevitation modelling of an active magnetic bearing supported rotor (Ph.D. thesis), North-West University, 2014.
[29] L. Hawkins, P. McMullen, V. Vuong, Development and testing of the backup bearing system for an AMB energy storage flywheel, in: Proceedings of

GT2007, ASME ed., May 2007.
[30] H.M. Lankarani, P.E. Nikravesh, A contact force model with hysteresis damping for impact analysis of multibody systems, J. Mech. Des. 112 (3) (1990)

369.

C.A. Fonseca et al. / Journal of Sound and Vibration 394 (2017) 482–496496

24 Chapter 2



Chapter 3

Experimental comparison of the
nonlinear dynamic behavior of a
rigid rotor interacting with two
types of di�erent radial backup
bearings: Ball & Pinned

Paper accepted for publication in the journal Tribology International on 18th of
July 2017. Available online on 6th of November 2017. DOI: https://doi.org/10.
1016/j.triboint.2017.07.018



Experimental comparison of the nonlinear dynamic behavior of a rigid rotor

interacting with two types of different radial backup bearings: Ball & pinned

Cesar A.L.L. Fonseca a, Ilmar F. Santos a,*, Hans I. Weber b

a Mechanical Department, Denmark Technical University, Nils Koppel All�e, 404, Kongens Lyngby, 2800 Denmark
b Department of Mechanical Engineering, Pontifícia Universidade Cat�olica, R. Marquês de S~ao Vicente, 225 G�avea, Rio de Janeiro - RJ, 22430-060, Brazil

A R T I C L E I N F O

Keywords:

Rotordynamics

Backup bearings

Experimental nonlinear dynamics

Dry friction whirl

A B S T R A C T

Rotors on magnetic bearings rely on external controls to guarantee stability and are designed in case of partial or

total failures, when impacts happen and potentially lead to a breakdown. Therefore backup bearings are indis-

pensable. In such rotor-stator interactions the main undesired phenomenon is the backward whirl. The current

work investigates the experimental behavior of a horizontal rigid rotor interacting laterally with two types of

backup bearings during run up testing. The experimental data is analyzed by orbit analysis, spectrum analyzers,

and force magnitudes collected by sensors installed. It is shown experimentally the nonlinear behavior of the

rotor-bearing system and the elimination of backward whirl. The advantages and drawbacks of each type of

backup bearing are given.

1. Introduction

Developments in the field of rotordynamics have increased the

important role of mechanical devices required by safety measures to

protect the rotating machines, thanks mainly to the recent advances in

magnetic bearings. These machines have still not been used in many

industrial applications due to safety concerns among others. Therefore a

lot of effort and research has been done to understand the consequences

of the interaction between the rotor and the backup bearing for

improving the quality and thus the safety properties of such elements.

The safety bearing consists usually of a bearing with a slightly smaller

clearance than that of the magnetic bearing, thus avoiding contact on the

final one.

Johnson [1] was one of the first to publish a study on rotors with

clearance. His model describes two cases, one undamped and another

damped, with the rotor impacting on a circular surface, but he did not

include the friction force itself. His investigation was more related to

equilibria stability and whether the solutions of the synchronous whirl

are positive. The friction force was added in the work of Black [2], whose

2Dmodel presented a whirling and whipping effect caused by the friction

coefficient when the rotor is in contact with the surface. Szcygielski [3]

performed an analytical and experimental comparison of a gyro

pendulum. His results showed good agreement with his piecewise linear

model for impacts on the mechanical model. Lingener [4] and Crandall

[5] published their findings confirming Black's theoretical results that the

rotor may whirl with a slightly lower coupled eigenfrequency. However

in 2000, Bartha [6] contested their results using an extended model. He

proposed that the system should be modeled as a rotor inside nes-

ted rings.

Since the rotor with clearance is subjected to non-smooth impact and

friction forces, other nonlinear phenomena may appear such as chaotic

motion. Ehrich [7] indicated that when the rotor is performing a rubbing

it can develop into chaotic behavior. This was confirmed by Goldman and

Muszynska [8] as long as a proper impact model is employed. Muszynska

[9], and Jacquet-Richardet [10], have also published an extensive review

on the contact of a rotor and stator mentioning some of its most common

problems in the academia and industries and how to deal with it.

The backup bearing is an essential element for the feasibility of

magnetic rotors according to Schweitzer [11]. These machines are

designed to be levitated rotors in vacuum and to operate at very high

speeds. Therefore the control of the magnetic field has to be reliable.

Nevertheless, failures and external factors can lead to malfunctioning and

shutdown that eventually will cause the rotor to execute bigger ampli-

tudes. The safety bearings work as the final mechanical threshold, in

order to save the rest of the machine from further damages. The several

contacts between the shaft and the backup bearing introduce nonlinear

features in the dynamics of the system. In the thesis of Isaksson [12] the

contact between a disk with a moving wall showed clearly nonlinear
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phenomena such as bifurcation diagrams and hysteresis when acceler-

ating and decelerating. Fumagalli [13] developed an investigation of the

contact with different impact models previously done by Hertz [14] and

Hunt and Crossley [15]. The impact parameters were determined and

how they influence the dynamics of the system when the rotor slides and

tumbles on the backup bearing. Pradetto and Schmied [16] presented an

experimental investigation with a one-ton rotor drop, which provided

valuable results on a real rotating machine drop test on its auxiliary

bearing. In 1998, Piccoli and Weber [17] observed experimentally

chaotic motion in rotors and confirmed it using Lyapunov exponents.

Polygonal shapes of backup bearings were tested analytically and

experimentally by Simon [18]. The bearing wall was geometrically var-

ied from a simple circular wall, to a triangle and a square and could be

extended to any polygon. In any of these cases the numerical simulations

showed that the disk described a quasi periodic trajectory while hitting

all edges of the bearing, although the circular one induced a backward

whirl motion. Ginzinger et al. [19] presented an active auxiliary bearing

with linear actuators, which showed a significant reduction of the contact

forces. Then Zü low and Liebich [20] designed a flexible pin with roller

on the tip, which was meant to reduce the friction forces during contact.

More recent published works by Said et al. [21,22] determined

through a pin-on-disk experiment the coefficient of friction of a body

probe and later tested it on a horizontal rotor. Later in 2012 the Said and

Santos [23] tested the idea of using pins instead of a circular guide as a

backup bearing. Both papers give a good overview of the advantages of

employing pins instead of circular wall, especially when avoiding the

backward whirl scenario. A further study from Fonseca et al. [24] used

length varying pins on a vertical rotor bench. The setup helped the rotor

to surpass the known resonance while accelerating. Hui Ma et al. [25]

also investigated theoretically the dynamical response of a pinned

Fig. 1. Test rig setup.

Fig. 2. The drawings illustrate how the shaft is able to move inside the bearing. In a), one sees the angles that describe the movement of the shaft. In b), the force transducers.

Table 1

Specifications of the levitated test rig at DTU's facilities.

Rotor Inner and outer house

Mass without unbalance 1.28 kg Mass from inner house 1.70 kg

Length to magnetic bearing 384 mm Mass from outer housing 8.87 kg

Length to rolling bearing 211 mm Force Sensor

Shaft diameter dr ¼ 25 mm Force transducer stiffness 83 MPa

Rolling bearing Pins

Inner diameter 28 mm Length of the pins 2.0 mm

Inner race outer diameter 32 mm Radius of the pins 4.0 mm

Sphere radius 5.0 mm Radius of the circular wall 38 mm
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backup bearing using the Finite Elements Method to characterize the

impact phenomenon. The authors also showed the difference between

three to four pins in the orbit patterns and performed a frequency anal-

ysis where multiple frequencies were excited. In his Phd Thesis, van

Rensburg [26] let an active magnetic bearing rotor to drop on backup

bearings and defined delevitation levels for several angular velocities.

Similarly, in Fonseca et al. [27], chaotic orbits were observed depending

on the unbalance mass the rotor has. Both works conducted an experi-

mental and theoretical approach to the topic. In Ref. [28] the authors

used a Stribeck-model of friction model for a thermal analysis of a drop

test on a sleeve backup bearing. Halminen et al. [29] published a rotor

drop test model of misaligned backup bearings, where a ball bearing

isconsidered as backup bearing. They mentioned that in case of large

misalignment, it may lead to significant damage to the rotor and the

bearing. In Ref. [30], the authors proposed a technique to acquire

experimentally the forces of an active magnetic bearing during contact

with backup bearing. Cole and Hawkins [31] developed a model to

predict possible subsynchronous whirl behaviors found in rotor drops.

The current work aims mainly to compare two types of backup

bearings for magnetic bearings rotors through experiments. The first one

will be an ordinary ball bearing, widely used in the industry, and the

second one a pinned bearing designed to withstand the impact forces.

Meanwhile, this pin is intentionally made of a polymer instead of metal

from past tests. Its friction properties will be assessed with a pin-on-disk

device in order to present the pinned bearing a solution to the safety

issue. The magnets at the magnetic bearing of the test rig are, in fact, not

capable of limiting the orbit of the shaft as it crosses through its own

natural frequency. Therefore the test rig is ideal for representing the cases

of real active magnetic bearings, whose control is faulty or weak. In this

work, the shaft is run at different speeds and its position is constantly

being tracked and the forces measured by force transducers inside the

backup bearing housing. The different ways that the rotor crosses its own

resonance will now be presented and dynamical nonlinear features

explored for each type of backup bearing.

2. Rotor-bearing-system

Fig. 1 is a photo of the test rig at the facilities at DTU. This test bench

Fig. 3. The passive magnetic bearing.

Fig. 4. Different types of backup bearings.
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rotor with a passive magnetic bearing in one end of the shaft is simply

supported at the other end and also connected through a coupling to an

embarked control AC-Motor. The shaft is made of aluminum and contains

a disk which can hold an unbalance mass, (see Fig. 2a). This setup has

been widely tested in previous works [22]- [23] and the design and

construction of the parts in Ref. [32] with the main specifications given

in Table 1. The rotor has a backup bearing mounted inside a housing, in

which four internal force transducers allow the force vector to be

measured. Thus, it is possible to determine the contact forces that

eventually occur when the rotor touches the backup bearing. The housing

can be separated into three pieces: the external structure, the outer

housing and the inner housing. The external structure is considered rigid

all the time, while the others are only allowed to move each in one di-

rection. The outer house moves horizontally and the inner house, verti-

cally. Therefore there is no coupling between the movements. Observe

Fig. 2b where the locations of the transducers are shown.

The magnetic bearing is built as a set of cylindrical neodymium

magnets distributed circularly. Although the shaft is made of aluminum,

there are also magnets inside it. Therefore the shaft interacts always

repelling with each magnet in the bearing, except the top one, which has

its polarity inverted. A schematic of the faulty magnet and the assembled

piece is displayed in Fig. 3.

The type of backup bearing varies according to the desired study. In

previous works [22],- [23], the backup bearing was a simple circular

wall, Fig. 4a. When the rotor impacted on it, the risk of developing a

backward whirl was high and consequently high radial forces were

detected. For this reason, in industrial applications, the most common

safety device is the ball bearing, Fig. 4b.

The backup bearing is inside the inner house and is a common ball

bearing, on whose inner ring the shaft impacts, slides and rolls. The inner

ring accelerates until its tangential angular velocity matches with the one

on the surface of the shaft. The acceleration is only caused by the existing

friction force. As long as the tangential velocities are not the same, the

friction force is considered as a sliding force proportional to the normal

contact force and is acting on both bodies. The design of this test rig has

the advantage of being rather easy to change the type of backup bearing

by just modifying the inner housing.

Another backup bearing type is the adjustable length pinned bearing,

Fig. 4c and d. It is a circular bearing that contains four screwed pins. The

Fig. 5. Photographs of the Pin-on-Disk test rig.

Fig. 6. The change in time of μ due to wear.
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length of the pins are equal and set to match the minimum in order to

avoid any contact with the metallic structure. Further details will be

discussed in sections 3 and 4.

The purpose of the present work is to compare the dynamical

behavior of the rotor while it is levitated by a weak magnetic bearing and

is in contact with two types of the backup bearing. The impacts will

happen, when the rotor slowly reaches and crosses the resonance, or it is

hit by an external device.

3. Characterization of the pins

If one is interested in the determination of the efficiency of a new

mechanical design, its parameters and physical properties should be

analyzed. The pinned bearing will have to support strong impacts and the

shaft would certainly not settle down or stay at a permanent contact state

if there is any kind of failure. Since the interaction is between polymer

(POM) and aluminum, two parameters become the subject of investiga-

tion, i.e. the friction coefficient and wear rate. The test rig available at

DTU, shown in Fig. 5c, is designed to acquire those two parameters. The

test rig was developed by Jacobsen and Christiansen [33] and follows the

specifications given by the American Society for Testing and Materials

(ASTM) standard G99. The test pin is positioned under a pivoted arm and

it touches a 134 mm diameter disk that is rotated by a hanging motor

under the test rig frame. The structure that supports the rotor has a lever,

which is attached to a force transducer. Therefore it is possible to mea-

sure the friction force as a relationship between the radial distance from

the center of the disk to the point of contact of the pin with the lever

length. Finally the normal force applied to the pin can be adjusted by

block sliding over the arm. The setup is actuated and run by a Labview

acquisition board and it gathers all possible information on time. The

tests are performed following the work of Sarkar [34]. The test rig is also

able to measure temperature at the point of contact through a laser sensor

and the vertical gap from the pin to the disk for wear related problems.

Two types of pins are tested for simulating friction and wear on the

backup bearing pin end. One is flat and the other is round, Fig. 5b. The

former is required for the determination of the coefficient of friction and

the latter is strictly used for wear tests and to verify the dynamics of this

coefficient in time when the contact is extended for hours. For the pur-

pose of this work the pin is made of POM and has the same diameter as

the pin. Observe also in Fig. 3d the round tip on the pin, that is then

reproduced in the pin with a round surface. The disk is made of

aluminum, the same as the shaft.

Three different speeds at the point of contact are tested; Vcontact ¼ 0:1

m/s, Vcontact ¼ 0:2 m/s and Vcontact ¼ 0:3 m/s. Since the scenario of a

permanent contact between the shaft and the pins is not probable, a

steady but slower angular velocity with an applied force of 200 N (� 3:9

MPa) is enough for the desired tests. Then one sees the evolution in time

of the coefficient of friction in Fig. 6. In every test the distance the pin

should slide is 100m. It is clear that in a few seconds, the values converge

and the results show that the sliding friction between the two materials is

approximately between 0.18 and 0.22. Fig. 7 illustrates the histograms

together with a boxplot for each of the runs as summarized in Table 2.

3.1. Wear test

Subsequently, another test is performed, in which a round tip pin is

Fig. 7. Histograms of the coefficient μ.

Table 2

μ parameter.

Average pin-on-Disk test results for friction

Vcontact ¼ 0:1 m/s μ ¼ 0:1778 σ
2
¼ 0:00194

Vcontact ¼ 0:2 m/s μ ¼ 0:2012 σ
2
¼ 0:00190

Vcontact ¼ 0:3 m/s μ ¼ 0:2180 σ
2
¼ 0:00299
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installed. The idea behind this test is to observe the wearing process

between the two materials. It is not unrealistic to think that a device that

withstands a lot of impact will experience some wear effects. Also, as

mentioned in the beginning of this section, the round pin serves to

imitate the result of a long used pin in the backup bearing, Fig. 4c and d.

The test differs from the previous ones not only with the type of pin,

but also with the normal force applied (150 N) and most importantly for

the distance, which now is 5000 m until the stop as observed in Fig. 8.

The development of the friction coefficient is similar to the previous one,

because it shows an earlier saturation around 0.2. Actually its value rose

reaching a peak of 0.4 and slowly went back and stayed at 0.35 while the

temperature kept steadily rising. The result is seen in Fig. 9b where the

punctual contact became a wide area. In the beginning, the area of

contact is zero thus the tension on the surface is theoretically infinite.

This means it is expected that there will be initially some wear but would

slow down later. After the test the pin has lost around 20% of its original

volume and the surface flattened.

4. The ball bearing experimental results

The main reason that there is a backup bearing is to limit the orbits of

a rotor and to protect the rest of the machine. The gap between the shaft

and backup bearing is smaller than the one where the magnets are, and

thus the magnetic bearing is spared. Here the rotor is accelerated by a

Danfoss 4 HP AC motor that is capable of keeping its angular velocity

constant, thanks to an embedded controller. The desired angular velocity

is given by a signal from a computer. Also an encoder is connected to the

rear end of the motor the angular position and the actual velocity are

monitored in real time.

So, the rotor is configured to run an increased stepped response in

time from 0.5 Hz until it reaches 20 Hz increasing every 10 s by 0.5 Hz.

This result in 40 different levels of angular velocities applied to the rotor.

The time interval is enough to eliminate any transient. The velocity

pattern is plotted in Fig. 10 Through a Fourier Spectrum graph, the

natural frequency of the rotor is close to 11 Hz and high orbits are ex-

pected close to this velocity. The weak magnetic bearing force and the

shaft's own weight cause the resting position to be already close to the

backup bearing inner ring. Consequently, the first impacts are already

seen at speeds higher than 8.5 Hz.

The impacts and the shaft's interaction with the magnets change the

Fig. 8. Dynamics of the coefficient of friction during a long wear test.

Fig. 9. Wear on the round pin.

Fig. 10. Velocity pattern applied to the rotor. In the detail, one sees the angular velocity being constant after each increase.
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shape of the orbit. Primarily, the impacts happen at one point inside the

circular bearing surface, but as the angular velocity increases the shaft

impacts on more locations. Besides, the rotor keeps in this whip move-

ment even after the resonance is surpassed. After 15 Hz the orbits get

smaller and there is nomore contact on the backup bearing. Interestingly,

when decelerating from 20.0 Hz to 0.0 Hz the rotor will only return to

impact at 12 Hz. This is a common nonlinear hysteresis case in which

there is a stiffening effect happening acting on the mechanical system,

see Fig. 11a.

Thanks to the position sensors placed on the disk, it is possible to

recreate the orbits for each angular velocity. Fig. 14a and b illustrate the

run up and down accordingly. These orbit plots give us a good insight

into the trajectory of the shaft. It became clear that there is a shift in the

trajectory after the resonance. What was once a rather large orbit hitting

the backup bearing in two points, now shifts to a “hop”movement almost

vertically. With these impact dynamics conditions, an external hit is

given to the rotor and it lowers the orbit. On the side of the rotor, a so-

lenoid actuator is mounted to hit the rotor, (see in detail in Fig. 13). The

purpose of the actuator is to try to provoke a hysteresis jump, or in other

words, to remove from an impactless orbit to a repeatable impacting one

and vice-versa. Here a single hit was capable to remove from the impact

state at 15 Hz to an ordinary circular orbit. This change is seen in Fig. 11a

with a dashed line.

4.1. Effect of the unbalance

When running close to the natural frequency, the expected large

amplitudes caused by the unbalance are limited by the backup bearing.

Consequently the impacts on the bearing wall may happen earlier at

slower angular velocities and the hysteresis is broader. If the unbalance is

big enough and if the magnetic bearing is completely deactivated, it is

possible that the rotors perform a chaotic trajectory. A sequence of hits

done by the solenoid tried to remove the shaft from the contact state

when decelerating. For every decrement in angular velocity, a single hit

is given, but proved to be unsuccessful.

Problems regarding the unbalance in rotor-machinery are also dealt

with in testing. In the present case, where there is an imperfect suspended

magnetic rotor with an additional unbalance mass (30.0 g at 33 mm from

the center of the shaft), the nonlinear hysteresis phenomenon is not

present and it stayed always in contact. The rotor radial displacement is

displayed in Fig. 12a and their respective orbits are plotted in Fig. 15. A

sequence of hits done by the solenoid tried to remove the shaft from the

contact state unsuccessfully when decelerating. For every decrement in

angular velocity, a single hit is given.

The contact state is dependent on the relative velocity between the

shaft and the inner ring surfaces. When it reaches zero the friction force is

minimum, the backward whirl is not excited and the rotor executes a 1X-

Fig. 11. Captured hysteresis of different scenarios. a) The given hit at the shaft changes the shaft's behavior. b) The pinned bearing case.

Fig. 12. Captured hysteresis of different scenarios. a) The change at 14.7 Hz in the double sided spectrum before and after an external hit. b) Permanent contact due to high unbalance.

Fig. 13. Solenoid actuator with return spring.
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Fig. 14. Comparison of the rotor's orbit between the two types of backup bearings: the ball bearing and pinned bearing. The angular velocity is kept constant at 40 different values from

0 to 20 Hz a) run-up 0–20 Hz b) run-down 20-0 Hz.
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forward whirl, even if the unbalance is high. In Fig. 16a and b one can

compare the nature of the trajectory (whether it is forward or backward),

through a waterfall diagram. The solid lines represent the 1X and 2X

frequencies on the positive and negative sides. The region painted in

green in Fig. 16b is the permanent contact state and only the 1X fre-

quency is seen as relevant.

Additional pieces of information that are important can also be

extracted from this test rig. First, the rotor can be accelerated/deceler-

ated fast enough so that it does not impact the backup bearing. Then, the

maximum allowed unbalance mass is determined that can be mounted at

33 mm radially on the shaft's disk. All of these results are written

in Table 3.

5. A pinned bearing solution

The test rig is designed in a way that it is easy to change the type of

backup bearing. In past works [22],- [23], a pinned bearing was proposed

and its efficiency tested in many cases. The back up bearing has slightly

more space for the shaft to move, but this is determined by the length of

the pins. The tighter and smaller the inner space is, the more the pinned

backup bearing would look like a simple circular wall. The current set up

provides the maximum space of the shaft to move around without

touching the metallic casing. Hence the shaft needs to touch on two pins

at the same time and hypothetically in one point on the metal casing. To

avoid any encounter between the shaft and the wall, each pin was given

an additional quarter turn. If one has loose or broken pins the shaft will

impact the structure and it will cause a metallic sound hit that is easily

perceived. Extremely tight pins can provoke the shaft to develop a

backward whirl trajectory.

In previous experimental tests, the pins were made of steel [22],-

[23], then the angular velocity of the rotor was never higher than 7.0 Hz,

because it damaged the shaft significantly, while crossing the resonance

around 10.0 Hz due to the high magnitude of the impacts. The solution to

this problem was to change the pin to a different and softer material,

which is Polyoxymethylene (POM). This polymer has some advantages,

for example, a relevant damping effect, and it has been in use in indus-

trial applications to avoid mechanical vibrations such as pump parts and

connectors.

The same 0–20.0 Hz velocity pattern shown in Fig. 10 is employed

again, which means that the rotor shall cross the resonance and impact

on the pins. The radial displacement is displayed in Fig. 11b and shows

the rotor does bigger displacements in relation to the previous case,

Fig. 11a. In the same manner as before with the ordinary ball bearing, the

rotor has a slightly different behavior when decelerating which produces

a hysteresis effect.

The expected behavior showed that impacts happened when the

angular velocity was close to the resonance hitting from one pin

repeatably to three pins in a disordered manner. However, the trajectory

changes to a rather simple contact state, in which the rotor impacts on

pins in opposition to each other around 10.5 Hz. Later, the trapped tra-

jectory dissolves into an ordinary circular one after being increased to

13.7 Hz, see Fig. 14.

The behavioral change of the rotor when impacting is related to the

friction force. It strengthens the backward whirl orbits and stays “hop-

ping” in the vertical direction because it is weaker in this direction.

Fig. 15. Unbalance test.
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6. Force comparison

As mentioned previously, section 2, the test rig contains four force

transducers between two housings. Hence, it is possible to measure the

horizontal and vertical impact force components. During acceleration the

rotor's impacts are detected when it spins closer to the resonance. The

closer it reaches the resonance the bigger the magnitude of the impact is.

The changes in magnitude for each angular velocity are shown in Fig. 17,

where the black line represents the ball bearing case and the gray line is

the pinned bearing case.

The first difference between them is that the pinned bearing allows

the rotor to enter a safe circular orbit at a slower angular velocity.

Consequently it avoids the highest forces detected by the ball bearing

case, which happen after resonance around 15 Hz. This transition is

shown above the main plot. Here the gray spikes of each impact vanish

after 271.5 s when the black ones continue. But the pinned bearing

presents bigger force magnitudes especially at every change in velocity.

However, when decelerating not only the shapes of the orbits are

different, but also the magnitudes of the force start considerably lower in

the pinned bearing case in relation to the ball bearing case.

� Stress analysis on the pin

In light of the impact problems of the test rig and since the pin ma-

terial was changed, a stress analysis of the pin becomes indispensable. A

finite element model (FEM) is generated in the Ansys environment with

two bodies representing the pin and half a shaft, whose opposing faces

are configured as contact elements with friction. The bottom of the pin is

fixed and the half plane of the shaft receives a normal force of 90 N. Also

the shaft is set to have an angular velocity of 94 rad/s (15.0 Hz), which

corresponds to the last impacting velocity orbit. These values were

extracted from the experimental data shown in Fig. 17 in the worst

case scenario.

The FEM produced a consistent result, where one sees the tip of the

pin showing extremely higher stresses, Fig. 18a. The highest calculated

stress is located in the pin and is in the order of magnitude of 130 MPa.

This magnitude of the stress is above anymeasured yield strength of POM

(σyield ¼ 64 MPa).1On the other side, the shaft's surface receives the same

magnitude, but it is below the yield strength of the aluminum, see

Fig. 18b. Therefore the surface of the rotor is preserved.

7. Conclusions

The test performed helped to understand the different advantages and

drawbacks between two types of backup bearings designed for rotors

such as magnetic levitated rotors. The rolling bearing and the pinned one

as backup bearings showed efficiently that the rotor could surpass its

critical speed step-by-step in the test scenarios of a faulty magnetic

bearing. The case of the rotor with an unbalance mass was revealed as

troublesome, because it remained in the contact state after crossing the

resonance for a long period and even the external small hits were inef-

fective to remove from the contact state. Further tests could not be per-

formed due to high radial force that would lead to damages to the shaft.

Also during the tests the onset of backward whirl was not observed,

highlighting the efficiency of both types of bearings as the speed accel-

erates and decelerates.

When comparing the both types of bearings, it is possible to conclude

that the pinned bearing can better prevent sustained contact when

running through critical speeds due to the fact the pins are made of POM.

POM has definitely better properties towards vibration attenuation than

a wall made of steel. Nevertheless, comparing the clearances of the

pinned bearing with the ball bearing, one can conclude that they are

slightly larger in the case of the pinned bearing, allowing the rotor to

execute orbits with larger amplitudes. Besides, the friction forces will be

discontinuous and their direction will change at each impact. This defi-

nitely plays a role. It is important to highlight that too tight clearances

with longer pins approximate the borderline to a square gap, as presented

in Ref. [21], and causes the rotor to perform backward whirl, which in-

validates any advantages of the use of pins.

The material POM has also revealed itself to be a good choice for

manufacturing the pins especially after their friction and wear charac-

teristics were assessed. Since POM is a softer material, wear is expected to

happen mostly on it, however, wear was only determined for a very long

contact case meaning pins have to be checked after a series of many

impact events. These results are corroborated by the finite element model

showed that pin's tip experiences loads higher than yield stress, whereas

the shaft is not.

Fig. 16. a) Double sided FRF no unbalance mass. b) Double sided FRF with unbal-

ance mass.

Table 3

Special characteristics for the current test rig.

Time to accelerate without any impacts (no unbalance) 0.75 s

Time to decelerate without any impacts (no unbalance) 0.50 s

Maximum allowed imbalance for permanent contact state 6.20 g

1 Online resource in Ref. [35].
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ness of a pinned bearing on a horizontal rotor compared with a conventional
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with each other and that the pinned bearing is able to reduce the interval
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the validity of the pinned in contrast to the rolling one as a relevant type of
backup bearing.
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1. Introduction

The use of levitated rotors through magnetic bearings has been in the
last few years an interesting topic of research with a broad interdisciplinary
coverage in mechanical systems; from the nonlinear dynamics of interacting
bodies with impacts to nonlinear control design. It has many advantages such
as to be able to rotate at a very high speed in a low friction environment,
to provide high efficiency and a low maintenance demand. Therefore these
magnetic rotors have been used in industrial application such as pumps,
turbines and on energy-storing flywheels, Gash et al. [1]. But the rotor relies
on the safety bearings as a fail-proof mechanical design that should hold
the spinning shaft and protect the structure in case of a sudden or partial
breakdown. Besides, since the rotor is running in a vacuum environment,
any unknown disturbance can cause the occurrence of high orbits of the
center of the shaft. Also, crossing the resonance or the appearance of sudden
unbalance can make the rotor to impact on the bearing wall, thus leading it
to a highly destructive behavior well known in rotordynamics, namely, the
backward whirl.

The design and study of magnetic bearings can be found in the book of
Schweitzer and Maslen [2]. The rotor is levitated either by passive or active
magnets and the shaft is set to spin within a gap in vacuum or low-pressurized
air. Before active magnetic bearings became a novelty, earlier results in the
1950s already explored the relationship between a rotor and bearing with a
clearance. Black [3] was one of the first to deal with the subject of rotors
with a clearance. In his modeling the friction force was neglected and it
would be treated later in the work of Choy and Padovan [4]. In the work of
Jin and Ulbrich [5] the dry friction whip movement of the unbalanced rotor
was observed when it collided on the stator and was explained through the
multiple-scale method.

The worst-case scenario for a magnetic bearing is a power loss, which
makes the rotor to fall completely. Therefore rotor drop tests are of immense
value. One of the most cited works is from Pradetto [6] in which a one-ton
rotor was left to fall and orbit and forces were sampled. In the work of Ishii
and Kirk [7] the transient response of a rotor drop was assessed. Fumagalli
[8] replaced the circular clearance wall by a ball bearing and tested for several
rotor drops, where the rotor interacts with the inner ring, on which the rotor
slides and tumbles. The different levels of unbalance were also tested by
Fonseca [9] during a rotor drop. Depending on how high the level of the
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unbalance was, the behavior changed from a simple oscillating body resting
on the inner ring of a ball bearing to a chaotic dynamics impacting several
times.

The compliance interaction between the rotor and the structure is highly
nonlinear. Contact dynamics is a complex topic and the literature is wide.
The first one to propose a model was Hertz [10], in which the impact force
is proportional to the power of the deformation, F = kδn, but this model
is purely energy conservative although nonlinear. It would later be gener-
alized to include the dissipative effects and it is known as the Kelvin-Voigt
model, i.e., F = kδn + cδ̇. Such a model can be observed as a simple spring
damping system where the displacement is substituted by the deformation.
Nonetheless, the model causes a sudden increase of the force at the moment
the impact begins and a negative net force when the system returns. To
correct this phenomenon a new updated model was presented by Hunt and
Crossley [11], F = kδn + cδ̇δn, see Figure 1. Other models like the one by
Lankarani-Nikavesh [12] reinterpreted the Hunt and Crossley model to ex-
press the damping term as a direct function of the coefficient of restitution
and the initial impact velocity. The approach of contact analysis was con-
densed in a literature survey by Gilardi [13] and later by Machado et al.
[14].

The shape of the impact region plays also an important role in the dy-
namics of the impact and on the efficiency of the backup bearing. Polygonal
shapes have been tested by Simon [15] in his doctoral thesis. He compared
the geometries with a theoretical approach and mounted a test rig to observe
their dynamical response. Later, a more complex geometry for the backup
bearing was considered in that pins are placed inside the bearing, that adds
pins inside the circular wall. One of the first to deal with this problem was
Said et al. [16]. They described the mathematical model impacting on a
housing in order to extract the forces and validated the model with a test
rig. The goal was to set the rotor to perform the backward whirl on a com-
mon circular wall and compared with the pinned solution. Other examples
of backup bearing can be found in the work of Ginzinger and Ulbrich [17]
with linear actuators and Zülow and Liebich [18, 19], who added small ball
bearings to the stator. Its design can be found in the patent [19]. Hui Ma
et al. [20] also investigated theoretically the dynamical response of a pinned
backup bearing using the finite-element method to characterize the impact
phenomenon. The authors also showed the difference between three to four
pins in the orbit patterns and performed a frequency analysis, where multiple
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0 0 0}
}

Figure 1: Differences between the impact models.

frequencies were excited.
The main contribution of the present work is to validate the vibro-impact

dynamical model with the observed behavior performed by the rotor on the
test bench at the Technical University of Denmark (DTU). The tests con-
sist on increasing the angular velocity step-wise until it crosses the rotor’s
resonance. Two types of backup bearings were tested: one with pins and
an ordinary ball bearing. A mathematical model is proposed to describe
the dynamics of the rotor and the compliance equations of impact with the
backup bearing are presented. The parameters are extracted from the test
rig and the equations are integrated in time and compared with the exper-
imental data. Finally, a comment of the effectiveness of the pinned bearing
is addressed in the point of view of the orbits, maximum vibration and the
contact forces.

2. Modeling the rotor-housing kinematics

The photograph in Figure 2 shows the test rig to be analyzed. It is a hor-
izontal rotor with a steel disc and a passive magnetic bearing at one end. At
the other extremity the shaft is connected to the motor by a flexible coupling
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a Passive Magnetic Bearing; b Disk; c Backup bearing; d Coupling;

e AC Motor with dedicated control circuit; f Backup bearing casing;

g Motor remote controller; h Acquisition board.

Figure 2: Test rig assembly.

and the motor is controlled externally by an embedded control hardware in
order to ensure a constant driven velocity. Next to the coupling there is a
spherical bearing that supports the rotor but lets it rotate in this position.
Then between the disc and the spherical bearing, one finds the casing where
the backup bearing is. Depending on how loose the gap at this backup bear-
ing is, impacts between the surfaces occur at a certain angular velocity as it
approaches the resonance frequency. Thanks to the design of the magnetic
bearing, it works as a linear spring, creating a single resonance frequency
around 10 Hz.

Figures 3a and b show the two types of bearings that are analyzed in the
present work. The ball bearing is a SKF 62/28 and the pinned bearing is
custom made for the test rig. Each one is tested individually and mounted
in the same position.
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a)

b)

Figure 3: a) Photograph from the test rig assembled for tests with different backup bear-
ings. a) ball bearing; b) Pinned bearing.

2.1. The shaft

In Figure 4, a schematic description of the rotor is presented to reproduce
the dynamics of the assembled test rig shown in Figure 2. The fixed reference
frame is positioned where the rotor is supported by one spherical bearing at
point O. The moving reference frames B1 and B2 are also positioned at the
supporting point of the rotor and correspond to a rotation at the xI and
y1-axes, respectively. The rotor turns around the z-axis which forms the last
reference frame B3. However, to develop the dynamics of the rotor, it is
enough to describe the system from the reference frame B2. Thus, the rotor
is only allowed to rotate according to the following three angular degrees of
freedom: Γ(t), β(t), θ(t), around the coordinate axes xI , y1, z2, respectively,
whose angular velocities are defined as

IΓ̇ =
[

Γ̇(t) 0 0
]T

, B1β̇ =
[

0 β̇(t) 0
]T

and B2θ̇ =
[

0 0 θ̇(t)
]T

. (1)
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Figure 4: The reference systems of the shaft in a) and a schematic of the forces acting on
the rotor in b).

The backup bearing is mounted at point B and the passive magnetic bearing
is at point C. The rotor is modeled as a rigid body and external forces from
the magnets, gravity, imbalance and coupling are applied at points C, A, E
and D respectively.

Then the rotational matrices ITΓ, B1Tβ and B2Tθ are defined as

ITΓ =

⎡

⎣

1 0 0
0 cos Γ(t) sin Γ(t)
0 − sin Γ(t) cos Γ(t)

⎤

⎦ , B1Tβ =

⎡

⎣

cos β(t) 0 − sin β(t)
0 1 0

sin β(t) 0 cos β(t)

⎤

⎦ ,

B2Tθ =

⎡

⎣

cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1

⎤

⎦ . (2)

The inertia tensor referred to the supporting point is

B2IO =

⎡

⎣

Ixx 0 0
0 Iyy 0
0 0 Izz

⎤

⎦ . (3)

The absolute angular velocity represented in the coordinates of the moving
reference frame B2 is given by

B2Ω =B2 Γ̇+B2 β̇ =

⎡

⎣

Γ̇ cos β

β̇

Γ̇ sin β

⎤

⎦ , (4)

7

46 Chapter 4



whereas the absolute reference frame velocity is

B2ω =B2Ω+B2 θ̇ =

⎡

⎣

Γ̇ cos β

β̇

Γ̇ sin β + θ̇

⎤

⎦ . (5)

The absolute acceleration in ref. frame B2 is written as:

B2ω̇ =

⎡

⎣

Γ̈ cos β − Γ̇β̇ sin β

β̈

Γ̈ sin β + Γ̇β̇ cos β + θ̈

⎤

⎦ . (6)

In the present case, the angular acceleration with respect to the z-axis, θ̈ is
zero. Any change in velocity is considered instantaneous.

The determination of the equations of motion comes from the Euler for-
mulation.

∑

B2Moments0 =B2IO ·B2ω̇ +B2Ω× (B2IO ·B2 ω̇) . (7)

The equations are:

∑

B2M0 =

⎡

⎢

⎢

⎣

Ixx

(

Γ̈ cos β − β̇Γ̇ sin β
)

+ (Izz − Iyy) Γ̇β̇ sin β + Izzβ̇θ̇

Iyyβ̈ + (Ixx − Izz) Γ̇
2 sin β cos β − IzzΓ̇θ̇ cos β

Izz

(

β̇Γ̇ cos β + Γ̈ sin β
)

+ (Iyy − Ixx) Γ̇β̇ cos β

⎤

⎥

⎥

⎦

.

(8)

The forces applied to the rotor are the magnetic FMag, the damping force
FD, the unbalance force Fu and the contact forces FN , Ffric, the shaft’s
weight P , and finally a vertical coupling force,Fcoupl, which necessary for
the equilibrium position and written as:

B2Fu =

⎡

⎢

⎢

⎣

muεθ̇
2 cos

(

θ̇t+ φ
)

muεθ̇
2 sin

(

θ̇t+ φ
)

0

⎤

⎥

⎥

⎦

, IP =

⎡

⎣

0
−mg
0

⎤

⎦ , (9)

IFN =

⎡

⎣

N cosα
N sinα

0

⎤

⎦ , IFfric =

⎡

⎣

µN sinα
−µN cosα

0

⎤

⎦ , (10)

IFMag =

⎡

⎣

K cos ξ
K sin ξ

0

⎤

⎦ , IFD =

⎡

⎣

c cos ρ
c sin ρ
0

⎤

⎦ , IFcoupl =

⎡

⎣

0
−Fcoupl

0

⎤

⎦ , (11)
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where the two angles ξ and ρ are defined; ξ is the angle of the displacement
of the rotor to the origin in the fixed reference frame and ρ is the angle of
the velocity of the rotor to the origin in the fixed reference frame. At the
contact on the backup bearing the angle of contact is designated as α. Each
force is applied at points, whose vectors are as follows:

B2rOA =

⎡

⎣

0
0
lA

⎤

⎦ , B2rOB =

⎡

⎣

0
0
lQ

⎤

⎦ , B2rOC =

⎡

⎣

xB

yB
lS

⎤

⎦ , (12)

B2rOD =

⎡

⎣

0
0

−lD

⎤

⎦ , B2rOE =

⎡

⎣

0
0
lE

⎤

⎦ . (13)

Finally, a torque from the motor is given as T =
[

0 0 T
]T
. But the value

of T is unimportant in the present analysis, because it is supposed that
the torque is ideally supplied by the motor to keep the angular velocity θ̇
constant. Therefore the expression of the sum of the moments is

∑

B2M0 =B2

(

rOA × P + rOC × FMag + rOC × FD + rOB × FN+

+ rOB × Ffric + rOE × Fu + rOD × Fcoupl + T
)

. (14)

2.2. Contact criteria and housing dynamics

The contact on the backup bearing is responsible for the appearance
of an interaction with the whole dynamics of the rotor in a way that is
strong enough to be represented by linear models. Moreover, the impact
force influences the dynamics of the structure that holds the backup bearing.
This means its dynamics has to be included in the mechanical system. Two
housings holding the backup bearing are built in a manner that each one
moves in a different direction, i.e. the inner house moves vertically and the
outer house horizontally and no coupled movement is present. Between them
there are force transducers that are modeled as spring elements. A sketch of
the inner and outer houses and the four force transducers is shown in Figure
5. Sliding beams provide the damping effect and the restriction of other
movements. Their equations of motion are written as:

mihÿih = −2kftyih − 2cvyih −mihg +N sinα + µN cosα (15)

(Moh +mih) ẍoh = −2kftxoh − 2chxoh +N cosα− µN sinα. (16)
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Figure 5: Housing and the four force transducers (FT).

For the impact to happen, the shaft center has to cross a boundary sur-
face, otherwise the normal force is nonexistent, N = 0. The two types of
backup bearings have different geometries implying two rules for the thresh-
old. The rolling bearing is the easiest to define since it is a round surface too
and yet it is a moving wall. So, whenever the shaft center, r, at the plane
S of backup bearing is at a distance greater than the nominal gap, r0, an
impact state is in place.

rir − rs = r0, or the gap (17)

r > r0,→ in contact, (18)

where rir is the inner radius of the inner ring and rs the radius of the shaft.
The tangential velocity at the contact point is also relevant, because the
friction force is exerted against the relative velocity between the edge of the
shaft and the inner ring of the ball bearing.

Therefore we should include another degree of freedom to the mechanical
system, namely, the acceleration of the bearing’s inner ring:

Iringθ̈ir = |B2rs ×B2 Ffric| − cirθ̇ir, (19)

where cir is a damping coefficient exclusive for the bearing that comes from
the friction with the spheres.

The model of the contact is the one proposed by Hunt and Crossley [11].
This expression has been applied to model the impact between rotors and
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the inner ring in the works of references [21] and [22]:

N = kimpδ
n
(

1 + 1.5ηδ̇
)

. (20)

The term in η represents the damping contribution of the impact, which
depends not only on the velocity of the deformation but also on the defor-
mation itself, so with it one avoids the hysteresis effects or numerical errors.
The value of this parameter was determined experimentally and will be com-
mented later in this work. The term η is correlated to the coefficient of
restitution ce and the initial velocity of contact as follows:

ce = 1− ηδ̇−. (21)

The pinned backup bearing simplifies the mechanical system, because
the walls are not rotating, yet it makes the the geometry of contact more
complicated. If we consider only the tip of the pin as a punctual element,
the resulting boundary has the shape of a parametric curve known as an
astroid. It is the combination of four circle-like curves equally distant from
the origin. The equation of the curve is written as

[X(s), Y (s)] :=[a cos3(s), a sin3(s)], (22)

for 0 ≤ s ≤ 2π, see Figure 6.

Figure 6 illustrates the difference between the geometries of the contact from
the circular gap and the astroid function.

The aperture δ formulae necessary for equation (20) are written as:

δ =

√

(X − xoh)
2 + (Y − yih)

2 − r0, (23)

for the ball bearing and

δ ∼= | (X − xoh, Y − yih)− Pini| (24)

for the pinned one. Here X and Y are the displacement of the center of the
shaft at the contact plane S, given by

⎡

⎣

X
Y
Z

⎤

⎦ =IT
T
Γ B1T

T
β

⎡

⎣

0
0
ls

⎤

⎦ . (25)

Figure 7 demonstrates geometrically the meaning of the penetration for the
pinned case, where rpin is the position of the tip of a pin in relation to the
moving housing.
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Figure 6: Difference between the types of contact geometries.

3. Simulation of the mechanical system

With all the parameters mentioned before having been defined, one needs
to develop a numerical time integration program in order to reproduce the
test rig dynamical behavior. Two state variable vectors are introduced, the
first for ball bearing case and the second for the pinned one as:

X =
[

Γ Γ̇ β β̇ yoh ẏoh xih ẋih θir θ̇ir
]T

, (26)

or for the pinned bearing case:

X =
[

Γ Γ̇ β β̇ yoh ẏoh xih ẋih

]T
. (27)

The vectors can be split in two because the link between the elements (shaft
and the casings) is defined by an expression, given by eq. (20), which only ex-
ists when contact happens, δ ≥ 0. The shaft can be independently calculated
alone so that eq. (8) can be rewritten as:

AZ̈ +G(θ̇)Ż +Ne(Z, Ż) =
∑

B2M0, (28)
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Figure 7: Deformation δ shown for the pinned case.

where

A =

[

Ixx 0
0 Iyy

]

, G(θ̇) =

[

0 Izz θ̇

−Izz θ̇ cos β 0

]

,

Ne(Z, Ż) =

[

−IxxΓ̇β̇ sin(β) + (Izz − Iyy)Γ̇β̇ sin(β)

(Ixx − Izz)Γ̇
2 sin(β) cos(β)

]

and

Z =
[

Γ β
]T

.

It results:
Z̈ = A−1

[

∑

B2M0 −
(

G(θ̇)Ż +Ne(Z, Ż)
)]

. (29)

Thus equations (29), (19), (16) and (19) can be assembled together and
integrated in time using a combination of ode45 from Matlab and a simple
4th-order Runge-Kutta routine for the impact state, when required. The
dynamics the during the impact is a stiff numerical problem to be calculated
with an adequate precision. When the solver is unable to reach the error
tolerances, the fixed-step-4th-order-Runge-Kutta integrator takes over and
resumes. The angular velocity of the rotor changes in time stepwise, which
means that it is considered constant during a desired time interval. The rotor
goes from 0-20 Hz. A fluxogram of the program is illustrated in Figure 8.
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Figure 8: Illustration of the algorithm to calculate the dynamics of the rotor housing
interaction.

4. The test rig and its parameter identification

For a theoretical-experimental work it is important that the values of the
coefficients and parameters are well defined under a solid theoretical back-
ground are experimentally validated. The geometric and physical properties
come from project’s technical drawings, ref. [23], and the masses and mo-
ments of inertia are measured on a scale and calculated by CAD software.
The first parameters to be determined are the natural frequency and damp-
ing factor. The displacement of the shaft is acquired by two proximity probes
located in the same plane where the disk is assembled and the time data are
represented in Figure 9. With the rotor at rest, θ̇ = 0 rad/s, one observes
the validity of the assumption of a linear spring, since there is only one rel-
evant natural frequency at 10.1 Hz. One gets that the elastic coefficient is
K = 2090 N/m to match the natural frequency of the rotor. The damping
c is calculated from the oscillatory decays after an impulsive response. The
damping comes from a combination of many sources: the coupling with the
motor, from the magnets, the supporting spherical bearing and friction with
the air. All effects are considered as a single damping element at the end of
the shaft together with the spring element and its value is determined to be
as c = 1.5 Ns/m.

The damping coefficient of the ball bearing, cir is also determined by
observing that the inner ring stopped after few seconds. We define a proper
value that takes the inner ring from 10 Hz to 1.0 Hz in one second. The
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Figure 9: Displacement captured at the disk caused by lateral impacts.

friction coefficient between the shaft and the inner ring µ is set at 0.4 and
0.2 for the ball bearing and pinned bearing respectively. These values come
from the nominal aluminum-steel sliding contact and a from pin-on-disk test
for the pin case.

Finally, the coupling with the motor applies a vertical force on the rotor.
This force can be determined, because the resting position of the shaft at the
backup bearing is slightly downwards, and because the shaft is considered as
a rigid body. Therefore we include a force Fcoupl = −12j N. Besides that,
a weak linear torsional spring elements is added. Its value is very low so it
does not change significantly the natural frequency mentioned before.

The remaining parameters of the mechanical system are available in Ta-
bles 1, 2 and 3.

4.1. Defining the value of the impact parameters

The setup has two different backup bearings to be tested, therefore two
different methods to determine the elastic coefficients have been performed.
The case of ball bearing is hard to do, mainly because the contact case is not
easily found on the lists of hertzian contacts. This is due to the fact that the
contact between the shaft and the inner ring is a line contact with an angle.
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Rotor

Mass m =1.28 kg
Residual unbalance mu.ε = 7.5 · 101 g.mm
Length to magnetic bearing lQ =384 mm
Length to disk lD = 303.5 mm
Length to rolling bearing lS = 211 mm
Length to center of mass lA = 195.9 mm
Length to motor coupling lE = 60.8 mm
Shaft diameter dr = 25 mm
Diametral inertia Ixx = Iyy = 0.07714 kg.m2

Polar inertia Izz = 7.8 · 10−4 kg.m2

Table 1: Specifications of the rotor.

Inner and outer house

Mass of inner house mih = 1.70 kg
Mass of outer housing Moh = 8.87 kg
Damping coefficient horizontal ch = 704 Ns/m
Damping coefficient vertical cv = 228 Ns/m

Force Sensor

Force transducer stiffness 83 MPa

Table 2: Specifications of the housing.

In fact the shaft makes a contact with the surface of the edge of the ring,
which means that the contact type approximates the case of a cylinder on
a sphere. Thus we define the value of the exponent in eq. (20) as n = 1.5.
Besides there are other contacts between the inner ring and the spheres and
subsequently to the outer ring and the inner housing, which will not be dealt
here. So an equivalent elastic coefficient was determined after making a series
of rotor drop tests and observing the aperture δn and its velocity δ̇ versus the
measured contact force Fn. Figure 10 illustrates the center of the shaft falling
from the top of the bearing to the opposite bottom. The elastic coefficient
kimp and the damping term η were determined by using a Nonlinear Least
Square (NL-LSq) method, using the trust-region-reflective algorithm, which
minimizes a function using the experimental data set:

min‖g(δ, δ̇)‖2 = min
(

g1(δ, δ̇)
2 + g2(δ, δ̇)

2 + . . . gn(δ, δ̇)
2
)

, (30)
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Rolling bearing

Inner diameter 28 mm
Inner race outer diameter 32 mm
Inner ring inertia Iir = 3 · 10−5 kg.m2

Pinned bearing

Total length of the pins 2.0 mm
Radius of the pins 4.0 mm
Radius of the circular wall 38 mm

Table 3: Specifications of the backup bearings.

where

g(δ, δ̇) = kimpδ
1.5

(

1 +
3

2
ηδ̇

)

− Fn. (31)

Each impact force versus the aperture is shown in Figure 12 together with the
solution obtained by the NL-LSq in a dashed black line. One sees the agree-
ment between the obtained solution and the experimental data, although
another oscillation is seen experimentally due to the housing own dynamics.
From η, a value of the coefficient of restitution is obtained for the simu-
lation, namely ce = 0.71 [0.58; 0.84]. Then we get for the elastic term
kimp = 8.35 ± 3.38 · 107N/m1.5. The velocity of the aperture during the
impact is plotted in Figure 12 on the right side, which shows that the im-
pacts had the same initial condition. The impact dynamics is also compared
in time and is shown in Figure 11, where the standard deviation is plotted
with 0.95% of confidence. It is seen that the model follows the trend during
the impact. Points out of the confidence range are caused by the housing
oscillation.

On the other hand the contact of the shaft on a pin is a classical case
of a cylinder on a sphere contact, i.e. n = 1.5. But the NL-LSq could not
be applied to this case because the penetration δ could not be determined
experimentally. So the elastic coefficient is determined by the geometric
features of both surfaces and the material properties i.e. its Young Modulus
and the Poisson number for Aluminum and POM polymer. Thus kpin

imp =
5·107 N/m1.5 and the coefficient of the restitution was obtained by comparing
the total velocity before and after the impact by monitoring the measured
force. The coefficient was determined as ce = 0.68± 0.12.
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Figure 10: Center of the shaft at a rotor drop test. (Experiments)

5. Crossing the natural the frequency. Experience and theoretical

results

In the experiments, we rely on a dedicated control that guarantees the
desired angular speed and gives enough power to the motor to keep it spinning
at constant speed. Nonetheless, an encoder gives the correct angular velocity
and its signal is captured and so the steadiness of the angular velocity on
time can be guaranteed. The angular velocity increased step-wise every 10
seconds by 0.5 Hz from 0-20 Hz. The same velocity profile was given as an
input to the simulation program.

In Figure 13 it is shown the maximal radial displacement of the center
of the shaft inside the backup bearing after the transient phase. In a linear
model without impacts, after the resonance is crossed, the shaft should have
acquired a low orbit away from the level of impact, but the shaft remains
in contact with the backup bearing. The mechanical barrier of the safety
bearing creates a stiffening effect and the rotor is able to return to a safer orbit
only at a much higher angular velocity than predicted by the simple linear
case. This is seen in both cases of backup bearing when the radial position
drops sharply after 15.5 Hz for the ball bearing and 14 Hz for the pinned case.
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Figure 11: Impact dynamics with experimental data and the NL-LSq solution.

One sees that the theoretical results follow the same experimental pattern.
To achieve this goal the values of the elastic term of the impact kimp and the
coefficients of restitution were adjusted between the interval defined by the
standard deviation.

It is worth mentioning that the influence of the residual unbalance in the
model was tested. The initial angle φ of the rotor was changed from 0 to
π/2, π and 3π/2. Although the unbalance is small, it was able to remove the
shaft from the impact condition at the pinned case 1 Hz before at π while
the other two only 0.5 Hz. The rolling bearing is indifferent to the angular
initial condition of the rotor.

Figure 14 shows some selected orbits for the rolling bearing case, all of
them above the resonance. On the top there are the experimental data for
their respective nominal angular velocity. Right below we see the simulated
result for the same velocities. The patterns are similar. The rotor hits the
lower half of the inner ring of the bearing. Later, at 14.5 Hz, the orbit changes
to an almost vertical one and is equally reproduced by the simulation.

In Figure 15, the same analysis is done for the pinned bearing. Instead
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Figure 12: Impact in time with the NL-LSq solution.

of a circular gap, the astroid function is plotted. We see that the center of
the shaft follows the barrier created by the pins. Initially the rotor does an
erratic trajectory impacting on multiple pins, but later it performs a diagonal
movement hitting on a single pin. This change explains the sudden fall in
Figure 13 at 12 Hz before the definitive one at 14.5 Hz. The diagonal orbit
appears only at one case at 14 Hz. Still, the last value velocity to show
impacts remains the same.

6. The feasibility of the backup bearings

One of the goals of representing the rotor with mathematical models
and then simulating and comparing with the experimental phenomena is to
confirm the efficiency of the safety elements and to design a proper one for a
certain rotor machinery. Being so, the machine elements are subject to forces
and moments and have to be able to withstand all loads involved in them.
Here the forces felt by the whole structure are stipulated by the following
expression:

Fcontact = kft

√

x2
oh + y2ih, (32)
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where kft is the elastic coefficient of the force transducers located inside the
test rig. Its value is determined from the manufacturer data sheet by dividing
the maximum allowed displacement by the corresponding maximum force.
So, equation (32) represents the whole magnitude force, that is a normal and
friction forces. They come from the vectorial sum of the displacements of
the inner and outer housing.

In Figure 16a and b we show the calculated forces of contact and the
measured forces respectively. The forces from the simulation at the pinned
bearing clearly reaches a higher magnitude than the force from the test rig.
The rolling bearing has an agreement between the experiments and the sim-
ulated results. Nevertheless, it is clearly seen that the pinned bearing makes
the shaft to stop impacting before as the magnitudes of the forces disappear
whereas the ones in the rolling bearing case remain.

To illustrate even more the validity of the model of rotor-structure in-
teraction, the transition from the impacting orbit to the safer one is plotted
in Figure 17 for the rolling bearing and in Figure 18 for the pinned case.
The rotor decreases its orbit after each impact on the backup bearing every
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Figure 14: Comparison between experimental in blue and on the top and theoretical orbits
in red below for the ball bearing case.

time the angular velocity is increased by 0.5 Hz. Therefore the safe orbit is
achieved during the transient of the sudden increase of the angular velocity.
The simulation had the expected behavior from the test rig. The value of
the last impact forces have the same order of magnitude and the same rate
of decay.

7. Conclusion

In this work a set of governing equations with a discontinuous contact
interaction is presented in order to reproduce the dynamical behavior of
the test rig. These equations are integrated in time with the parameters
obtained from the test rig. Within the parameters’ standard deviation the
numerical results are shown to be in good agreement with the experimental
data. We have also found that one compliance model based on the Hunt
and Crossley work [11] was adequate to reproduce the interaction between
the shaft and both types of backup bearings. The following conclusions are
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Figure 15: Comparison between experimental in blue on the top and theoretical in red
below orbits for the pinned bearing case.

addressed below.
For the ball bearing case, the theoretical model reproduces with a good

agreement the experimental behavior of the test rig. The nonlinear jump
phenomenon is captured at the same angular velocity the rotor experimen-
tally at 16.0 Hz, see Figure 13. The simulated trajectories of the rotor inside
the clearance show some similarities with the observed ones, although they
are slightly lower. The magnitudes of the impact forces are identical to the
ones captured by the force transducers, while the rotor is crossing the reso-
nance. Discrepancies here are caused by noise on the signal. Additionally,
the transient period from the impact state to a contact free one is recreated
by the simulated accordingly, as the rotor establishes a circular orbit in less
than a second.

The pinned bearing case has also showed a good agreement between the
theoretical model and the experimental behavior of the test rig. Likewise,
the nonlinear jump is observed for the same experimental angular velocity at
14.0 Hz earlier than the ball bearing case. However, some other discrepancies
are found and need to be mentioned. The first orbits have a similar shape,
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Figure 16: Force exerted on the structure for both types of bearings calculated by the
simulation in time, a), and measured by the test rig, b).
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Figure 17: Ball Bearing Case: Theoretical and experimental, a) and b) respectively, tran-
sition from the impacting orbit to a safe one with the last impact forces shown at 15.5 Hz.

but for some faster ones were did not match precisely, see Figure 15. The
maximum magnitude of the forces differs about 49% higher for the simulated
results than the ones observed on the test rig. This is due to the fact that
the forces are not measured exactly on the tips of the pins. The transient
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Figure 18: Pinned Bearing Case: Theoretical and experimental, a) and b) respectively,
transition from the impacting orbit to a safe one with the last impact forces shown at
14.5 Hz.

time in Figure 18 takes also longer (+1.0 seconds) and is more erratic for
the rotor than the simulated one, which is smoother and impacts only in one
pin.
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Chapter 5

Conclusions and future
perspectives

The present work has shown through the papers comprising Chapters 2, 3 and
4 the upsides and downsides of two types of backup bearings being tested under
certain conditions. The conducted research deals with a mechanical rotatory system
impacting on the surface of a backup bearing. The mechanical model derived from the
laws of motion of Newton-Euler describes successfully the behavior of a rotor making
intermittent contacts with a housing where the backup bearing was mounted. The
parameters of the model come from an actual test bench designed for the purpose of
testing backup bearings. The numerical issues regarding the extreme non-linearity of
the contact are dealt with by dividing the algorithm into a non-contacting state and a
contacting one. Doing so helps to correctly find the impact boundary and to substitute
for an adequate solver type for stiff-related problems. Meanwhile, the test bench has
been improved with a new data acquisition board, new sensors, and a linear solenoid
actuator. These improvements allow the test rig to be fully automatized and adjustable
to a desired purpose. It means that every test is repeatable, thus ensuring that the
initial conditions are essentially the same and that the non-linearity features such as
bifurcation diagrams can be plotted.

In the first paper presented in chapter 2, the theoretical results are matched with the
sampled experimental data and it is shown that both appeared to be in accordance. It
is shown through bifurcation diagrams, that at a power-loss scenario the characteristics
of the motion of the rotor at a constant speed are sensitive to the unbalance with
three distinctive levels. It is seen in Figure 5 of this Chapter, that at low unbalance,
determined by Region I, the rotor performed oscillatory trajectories; however higher
values of unbalance make the rotor to develop chaotic orbits at Region II or a stable
forward whirl trajectory at Region III. These behaviors can be characterized by doubled-
sided spectrum graphs for each level of unbalance experimentally. The conducted tests
represent the consequences of a sudden increase of the unbalance together with a
failure of the active magnetic bearing of a rotor, like the occurrence of high impact
forces for chaotic trajectories.

Thanks to the automation added to the test rig, it permitted that the same conditions
were applied to the rotor for different backup bearings. This is the main contribution
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of the second paper in chapter 3, in which the pinned bearing was compared with
the ball bearing. Previously, in older works, [74], the pins were made of metal, con-
sequently, this arrangement was constantly damaging the impact surface of the rotor.
Therefore, it is suggested to use a softer polymeric material. Hence the chosen material
is polyoxymethylene (POM). The friction properties between POM and aluminum are
determined and an adequate length of the pin was fixed for the backup bearings. The
test that was made consisted of crossing the rotor’s own critical speed accelerating
and decelerating without an additional unbalance mass and it showed that nonlinear
amplitude jumps happen for both types of bearings. Both avoided the undesired occur-
rence of the backward whirl and successfully recovered to impact orbit. However, the
pinned had a better performance since a safe contactless orbit was achieved at a lower
angular velocity at 14.0 Hz. The ball bearing case has removed from the impacting
orbits at 16.0 Hz. Since the pins are made of a material much softer than the shaft, it
means that they are the ones that wear. A finite-element simulation has shown evidence
that the applied stresses to the pin can overcome the yield stress of POM. When an
experimentally selected impact force is given as an input it caused a stress tension on
the surface of the pin of 130 MPa (66 MPa above the σyield).

Moreover, the same experimental scenario from chapter 3 is simulated by a mech-
anical model of the rotor on a test rig and is presented in chapter 4. The impact model
based on the work of Hunt and Crossley [54] is employed for both types of backup
bearings and its impact parameters of this compliance model are determined from
rotor drop tests. The mechanical model reproduces satisfactorily the crossing of the
rotor’s own critical speed constrained by a clearance. For the ball bearing case, the
theoretical model reproduces with good agreement the experimental behavior of the test
rig, considering that the nonlinear jump phenomenon is captured at the same angular
velocity the rotor experimentally at 16.0 Hz. The simulated trajectories of the rotor
inside the clearance show some similarities with the observed ones, although they are
slightly lower. The magnitudes of the impact forces are identical to the ones captured
by the force transducers, while the rotor is crossing the resonance. Discrepancies here
are caused by noise on the signal. Additionally, the transient period from the impact
state to a contact free one is recreated by the simulated one accordingly, as the rotor
establishes a circular orbit in less than a second.

The pinned bearing case has also show good agreement between the theoretical
model and the experimental behavior of the test rig. Likewise, the nonlinear jump is
observed for the same experimental angular velocity at 14.0 Hz, earlier than the ball
bearing case. However, some other discrepancies are found and need to be mentioned.
The first orbits have a similar shape, but for some faster velocities they did not match
as precisely. A point should be made regarding the magnitudes of the forces, though.
The pinned bearing case has in fact generated higher values of impact forces than the
ball bearing one. The maximum magnitude of the forces differs about 49% higher for
the simulated results than the ones observed on the test rig. This is due to the fact that
the forces are not measured exactly on the tips of the pins. The transient interval also
takes longer (+1.0 seconds) and is more erratic for the rotor than the simulated one,
which is smoother and impacts only in one pin.

Results like these add more knowledge to how the pins change the dynamics of an
impacting rotor, specifically a faulty AMB, and confirm the advantages of the pinned
bearing against the commonly used ones in the industry. A possible improvement can
be implemented if the impact force could be measured directly by the pins with force
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transducers attached to them. Also, retractable pins with embedded control techniques
could be a solution for:

• the worn pin problem, because it would screw itself inside and recover the missing
length;

• to advance even more the amplitude jump towards a safe orbit shortly after the
critical speed passage; and

• consequently to avoid or reduce the magnitude of the impact forces on the backup
bearing.

The application of smart materials for the pins and the assessment of their durability
and fatigue of is also proposed for future works.
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Abstract

Rotor drops in magnetic bearing and unbalance in rotors have been objective of study for many years. The com-

bination of these two well-known phenomena led to an interesting chaotic response, when the rotor touches the

inner race of the back-up bearing. The present work explores the nonlinear rotor-backup-bearing dynamics both

theoretically and experimentally using a fully instrumented test rig, where the position of shaft, its angular velocity

and the contact forces between the shaft and the backup bearing are sampled at 25 kHz. The test rig is built by

a removable passive magnetic bearing, which allows for simulation of magnetic bearing failure (loose of carrying

capacity and rotor fall). A theoretical approach is given beforehand and supplies the basis of the study. Finally

the presented results are commented on the point of view of nonlinear dynamics applied to the practical use. The

theoretical and numerical analyzes are shown through Poincaré maps and double sided spectrum. The latter is

important to characterize the condition at different levels of unbalance between forward of backwards whirl. Our

preliminary results indicate that for small levels of unbalance the rotor oscillates at the bottom of the backup bear-

ing. When the levels of unbalance increase, the dynamical behaviour of the rotor changes, leading to extremely

harmful conditions, since the rotor can be lifted from the bottom of the bearing (contact state) and return, starting

to impact on the backup inner race innumerable times without reaching a steady state.

Key words : Safety bearings, impact, friction, contact mechanics, nonlinear dynamics, magnetic bearing.

1. Introduction

The possibility to use magnetic bearing rotor in industrial applications cannot be thought correctly without the use

of proper back-up bearings. Applications are many such as reaction wheels, centrifuges, energy efficiency machines,

(Gasch et al., 2002), (Schweitzer and Maslen, 2009), and among others. For all these machines, a safety element has to be

installed to prevent failures such as, power loss, that would cause the shaft to fall. The safety element consists normally of

a rolling bearing with inner race diameter bigger than the shaft diameter, but smaller than the one at the magnetic bearing.

It is designed to withstand the loads and impacts of a rotor. It also protects the whole system and prevents even more

disastrous situations.

Throughout the years, several works have been published on this subject. (Muszynska, 1989) has given a good

overview of the state of rotordynamics research of rub-related phenomena. In the work of (Johnson, 1962) a vertical shaft

with clearance with impacts was studied . (Black, 1968) published a work of a two-degree-of-freedom rotor and stator,

which is highly cited through the years. While in (Wojciech, M. S., 1986), a gyro pendulum with a piecewise linear model

was investigated with a good agreement with experimental results. (Zhang, 1988) showed a multi-degree model rotor at

a full annular rub using Black’s model. (Choy and Padovan, 1987) showed also the interaction between the rotor and the

casing on a bearing wall. By employing a proper impact model, chaos was reported by (Goldman and Muszynska, 1994).

(Piccoli and Weber, 1998) investigated an application to identify chaotic motion with Lyapunov exponents and Poincaré

Diagrams. In (Jiang and Ulbrich, 2005), dry friction whip investigated with an unbalanced rotor to stator contact. One of

the most cited is the work from (Pradetto and Schmied, 1992), where a one-ton rotor drop is analyzed. (Fumagalli, 1997)

tested the performance of a rotor sliding and tumbling while touching the auxiliary bearing.

In combination with Active Magnetic Bearings (AMB) technology, (Schweitzer, 1975), it is clear that safety bearings

1
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are an important subject of study. (Kirk, 1996) analyzed numerically the transient response of a rotor drop. (Ginzinger

et al., 2009) developed an active actuator to avoid severity of the contact. Moreover, in (Keogh, 2012), a comprehensive

study of different performance on auxiliary bearings was presented. Non-conventional geometries of the back-up bearing

were considered by (Simon, 2001), and later by (Zülow and Liebich, 2009) and then the new kind of bearing with pins

is presented by (Lahriri and Santos, 2012) and analyzes the forces that the structure receives, where the backup is. In

(Fonseca et al., 2015) it is shown that the same pins help to surpass the critical speed avoiding the backwards whirl.

However, in most industrial operating machines, the safety bearing is a common rolling bearing element, and the rotor

will lay down at the bottom allowing it to rotate without much damage to the system. An analysis of the rigid rotor on a

safety bearing showing chaotic behavior is shown by (Wang and Noah, 1998). Later the contact between the shaft and the

inner race was modeled using a finite element and was presented by (Cole et al., 2001). More recently, (Inayat-Hussain,

2010) gives an insight about the response of the rotors to different parameters with the bifurcation diagrams.

In this work, a theoretical and an experimental study of a passive magnetic bearing rotor colliding on the ball bearing

inner race is presented. The failure of the rotor will be induced by the rapid removal of the passive magnetic bearing

letting the rotor to fall. The tests will be compared with simulated results coming from a model of the rotor as a rigid

body impacting on an compliant surface. The main contribution of this work is to show that different levels of unbalance

change the dynamical behavior of the system and may lead to harmful situations, for which the backup bearing is not

designed.

2. Modeling the rotor-housing kinematics

2.1. The shaft

In Figure 1a and b, the mathematical model of the rotor is built to reproduce the assembled test rig. The rotor is

supported by one spherical ball bearing at point 0 and one movable passive magnetic bearing at point C. The back-up

bearing is mounted between them at point B. The rotor is modeled as a rigid body and external forces from the magnets,

imbalance and coupling are applied at points C, A and D respectively. The rotor is only allowed to rotate according to the

following three angular degrees of freedom: Γ(t), β(t), θ(t) and the angular velocities:

I Γ̇ =
[

Γ̇(t) 0 0
]T
, B1β̇ =

[

0 β̇(t) 0
]T

and B2θ̇ =
[

0 0 θ̇(t)
]T
. (1)

In figure 1a it is possible to see the reference frames used and the moving reference frame, B3, fixed to the rotating shaft

and positioned at the supporting point of the rotor.

a)

b)

Fig. 1 The moving frame references and the points of interests, A, B and C, where forces are present.

ITΓ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0

0 cos Γ(t) sin Γ(t)

0 − sin Γ(t) cosΓ(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B1Tβ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos β(t) 0 − sin β(t)

0 1 0

sin β(t) 0 cos β(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B2Tθ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

Each external force will generate a moment with respect to O and the relevant position vector are given by:

B3rOA =
[

rOA,x 0 rOA,z

]T
, B3rOB =

[

rOB,x rOB,y rOB,z

]T
and B3rOC =

[

0 0 rOC,z

]T
. (3)
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The inertia tensor referred to the supporting point is:

B3IO =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ixx 0 −Ixz

0 Iyy 0

−Izx 0 Izz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

where Ixz = murulOD. The absolute angular velocity of the represented at the moving reference frame B3 (where the inertia

tensor is constant) is given by:

ωB3 =B3 Γ̇ +B3 β̇ +B3 θ̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos (θ) cos (β) Γ̇ + sin (θ) β̇

− sin (θ) cos (β) Γ̇ + cos (θ) β̇

sin (β) Γ̇ + θ̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5)

The absolute acceleration is given by:

ω̇B3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−θ̇ sin (θ) cos (β) Γ̇ − cos (θ) β̇ sin (β) Γ̇ + cos (θ) cos (β) Γ̈ + θ̇ cos (θ) β̇ + sin (θ) β̈

−θ̇ cos (θ) cos (β) Γ̇ + sin (θ) β̇ sin (β) Γ̇ − sin (θ) cos (β) Γ̈ − θ̇ sin (θ) β̇ + cos (θ) β̈

β̇ cos (β) Γ̇ + sin (β) Γ̈ + θ̈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6)

2.2. The inner and outer housing

In order to determine and acquire the force between the rotor shaft and the inner race, the back-up bearing is mounted

on an special casing, where there are four force transducers. The elastic elements k f t represent the force transducers

positioned between the bodies and the damping elements, ch and cv are structural damping. These damping terms are

present due to the four beams that hold the inner house to slide vertically and the outer house horizontally, two for each

directions. The back-up bearing is inside a block that is mounted inside a frame, called outer house. Then, the inner house

is only allowed to move horizontally inside it. Subsequently, the outer house moves only vertically. Figure 2a and Figure

2b show a schematic of the complete assembly.

a)
b)

Fig. 2 Assembly of the inner housing and the outer housing.

a)

b)

Fig. 3 Left: The shaft inside the inner bearing. Right: The forces acting at each ball of the back-up bearing.

3

80 Appendix C1



ISMB15

The dynamics of both housings are included in the mechanical model. The dynamic coupling between the inner

house and the rotor is introduced by the impact forces, N and the friction force F f ric. The beams that support the housings

have the stiffness calculated as clamped-clampled beam Kbeam =
48EI

Fa2(3l−4a)
. and the damping coefficients approximated by:

ch = 2ζ
√

Kbeam (mih + moh) and cv = 2ζ
√

Kbeam (mih). (7)

Thus the governing equations of both housings are written in Equations (8) and (9)

mihÿih = −2k f tyih − 2cvyih − mihg + N sinα + F f ric cosα. (8)

(Moh + mih) ẍoh = −2k f t xoh − 2chxoh + N cosα − F f ric sinα. (9)

Consequently, the radial term rr can be calculated and allows one to know whether the system is impacting or not, and it

is equal to:

rr =

√

(βlOB − xoh)2 + (−ΓlOB) − yih)2. (10)

The impact is analysed at each time step if the rotor displacement at the position of the back-up bearing is bigger

or equal than the radial gap, δ ≥ r0 = r1 − rr. The impact is modeled following a stepwise elastic model proposed by

(Lankarani and Nikravesh, 1990):

Fimp = N = kimpδ
3/2

(

1 +
3(1 − e2)

4

δ̇

δ̇−

)

, if δ ≥ 0, (11)

in which the stiffness coefficient is given as:

kimp =
4

3

(

1−ν2s
Es
+

1−ν2
i

Ei

)

(

rsr1

r1 − rs

)1/2

. (12)

Therefore, the forces acting on the mechanical model are the rotor’s own weight, the magnetic force and the damping

force plus the impact forces

IFg =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

−mg

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, IFmag =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−K cosα

−K sinα

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, IFdamp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−c cos ρ

−c sin ρ

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, IFimp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N cosα

N sinα

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and IF f ric =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F f ric sinα

Fimp cosα

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(13)

Finally one writes Euler’s equation with respect to the supporting point O

∑

B3Force MomentsO =B3 IO

(

d

dt
ωB3

)

+B3 ω × (B3IO ·B3 ω) (14)

and solves the set of equation considering the angles Γ and β small. The motor has an independent control and is capable

to deliver the necessary torque to keep the angular velocity to θ̇. The differential equations are highly nonlinear with

many coupled terms and the solution is found using the symbolic program Maple�. However, we are more interested in

the position of the center of shaft at the backup bearing plane and using the transformation matrices, the coordinates are

written as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X

Y

Z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
(

IT
T
Γ (t) ·B1T T

β (t) −I T T
Γ (0) ·B1T T

β (0)
)

·B2rOC , (15)

where the initial conditions are taken into consideration, t = 0, Γ(0) = 0 and β(0) = 0.

2.3. The back-up bearing

When the rotor falls and hits the rolling back-up bearing, Figure 3, the friction force accelerates the inner race and

the spheres.The angular position of the inner race, θIr, is also a degree of freedom. Figure 3a illustrates a schematic view

of balls and inner race and their velocities. Since the outer race is not moving and the spheres are not sliding on the

touching point with it, point Osph, the tangential velocity is half of the one on the edge between the sphere and the inner

4
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race, point E. The force acting on one rolling bearing ball is shown in Figure 3b the following equations for one isolated

ball are written in (16)-(18):

∑

MomentOsph
= Isphθ̈sph (16)

2rsphFi = Isphθ̈sph, since, vt = θ̇irr2 = θ̇sphrsph, (17)

2rsphFi = Isphθ̈ir
r2

rsph

, (18)

where Isph = 2/5
(

πr2
sph

)

+ msphr2
sph

. Newton equation for the tangential direction leads to:

Fi + Ro = msphat. From (17) and (18), Ro + Isphθ̈ir
r2

2
(

rsph

)2
= msphθ̈irr2. (19)

Therefore the angular acceleration of the inner race, θ̈ir can be obtained taking into account the influence of all rolling

spheres j.

θ̈irIir = f r1 − r2

Nsph
∑

j=1

(

Fi, j

)

, (20)

θ̈irIir = f r1 − r2Nsph

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

θ̈ir
Isphr2

2
(

rsph

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→ θ̈ir

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Iir + Nsph

Isph

2

(

r2

rsph

)2
⎞

⎟

⎟

⎟

⎟

⎟

⎠

= f r1. (21)

3. Simulation and nonlinear analysis

3.1. Integration in time

The governing equations (14), (20), (8), and (9) are integrated in time using a combined Matlab differential equation

solver ode45 and a dedicated Runge-Kutta algorithm. The former is employed together with an Event function in order to

find the exact moment of the impact. The latter is applied during the short period of impact. It was done so, because it is

a highly stiff problem and demands an enormous time with very tight integration tolerances of the algorithm. Therefore a

test of convergence was performed and the adequate step time was set to 10−6 s. During the impact the relative velocity

between the shaft and the inner race, vrel, plays an important role. The friction force is dependent on it. If the velocities

match, there is no friction. Otherwise, the friction force is modeled as F = μNsign (vrel). The model parameters are shown

in table 1.

Table 1 Parameters set applied to the simulation.

Parameter of the shaft

Mass without unbalance m = 1.28 kg

Length to magnetic bearing rOC = [0, 0, 0.384m]

Length to rolling bearing rOB = [rr cos(α), rr sin(α), 0.211m]

Shaft diameter dr = 25 mm

Parameter of the rolling bearing

Inner diameter d1 = 2r1 = 28 mm

Inner race outer diameter d2 = 2r2 = 37 mm

Sphere radius rsph = 5.0 mm

Impact stiffness kn = 2.5 · 1010 N/m3/2

Friction coefficient μ = 0.20

Restituition coefficient e = 0.90

Parameter of the inner and outer house

Mass from inner house mih = 1.70 kg

Damping 1 ch = 7.04 · 102 Ns/m

Mass from outer housing Moh = 8.87 kg

Damping cv = 2.28 · 102 Ns/m

3.2. Simulated results and experimental comparison.

As mentioned before, the test rig is a rotor suspended at one end by a removable passive bearing. From the moment

that the magnetic force is removed, there are three distinct stages: a) the rotor free fall inside the bearing; b) contact

5
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Fig. 4 10 Hz simulated bifurcation for different unbalance levels together with 8 different experimental tests with

unbalance levels of: U1 = 0.0 g.mm, U2 = 15 g.mm, U3 = 21 g.mm, U4 = 30 g.mm, U5 = 105 g.mm,

U6 = 207 g.mm, U7 = 318 g.mm and U8 = 420 g.mm.

between rotor and inner ring surfaces occurs leading to the deformation of the compliant and surface and angular acceler-

ation of the inner race; and finally c) the relative velocities between the inner race and shaft surfaces almost vanish and the

rotor fins a steady state condition at the bottom of the backup bearing. In fact, since the rotor keeps executing small trans-

lational movement around the equilibrium and rarely the relative velocity will coincide.Though this steady-state general

dynamic behavior of the rotor changes significantly according to the unbalance level. After removing the magnetic force,

the rotor falls and impacts several times on the surface of the inner race. The energy will be dissipated by the damping

from the coupling between the inner and outer housing and from the impact with the compliant surface.

The changes in the steady-state behavior can be evaluated more explicitly with a Poincaré Map, Figure 4. The

variables Y , Ẋ and Ẏ are sampled every time the center of the shaft crosses the vertical line, in other words, when X = 0.

The first plot on the top of Figure 4 shows the vertical position, Y , through which the rotor crosses the vertical line as a

function of the control variable i.e. the unbalance, U.

Overall the phenomena are captured by both experiments and simulation. We can divide the bifurcation diagram into

three specific regions. First the rotor center is always crossing at the bottom of the shaft at Y = −1.5 mm in region (I).

Suddenly there is a change and more crossings at the vertical line occur. This can be seen in the region (II) of figure 4. The

more unbalance the more evident that the center of the shaft performs chaotic trajectories. In the simulation it is expected

to see the rotor crossing from the bottom to the top of the bearing, but the mechanical set up shows a gradual increase

in the vertical crossing as the unbalance gets bigger until the rotor is able to perform a full whirl. In the right end of the

plot, region III, the rotor is only executing a full whirl so the rotor is crossing the vertical line in the extremes, Y = −1.5

to Y = 1.5 mm. In the following plots, the horizontal and the vertical crossing velocity, Ẋ and Ẏ , are plotted against the

unbalance and, once again, the experimental and the simulation tend to agree to each other.

To visualize the existence of chaotic trajectories performed by the rotor center, a double-sided spectrum is displayed

in Figure 5a and b. Two levels of unblance are chosen: U = 207 g.mm from region (II) and U = 420 g.mm from

region (III). The noise is significantly raised and several other peaks appear. This is a clear indication that chaos is

happening. Higher unbalance levels show clearly higher peaks at Ω = −10.0 Hz than its opposite pair, confirming the

predominance of a full whirl at the same directions of the rotor spinning. Negative values of ω means the same spinning

direction of the rotor.
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Fig. 5 Experimental 10 Hz double sided spectrum of the radial displacement, the unbalance corresponding to

0.27 kg.mm a) belongs to region II. For the unbalance corresponding to 0.42kg.mm b) A clear dominance

of one peak at Ω = −10 Hz indicates the full whirl in the same direction the shaft rotates stays in the

region III.

4. Conclusion and Future Aspects

From the theoretical and experimental nonlinear analysis carried out in the paper, one can conclude that the rotor

-backup bearing system has three distinguished dynamical behaviors depended on the level of rotor unbalance. Zone (I),

characterized by low unbalance level from (0, 60] g.mm, simple oscillatory movementes of the rotor center at the bottom

of the backup bearing are see. Zone (II) by unbalance levels from (60 to 280] g.mm, chaotic motions followed by impacts

between rotor and backup inner race surface. Finally, zone (III) characterized by high unbalance levels, full forward whirl

of the rotor center takes place.

There is much more to explore in this problem. The magnitude of the forces at the three different zones changes and

supports the idea that it may damage the backup bearing. The relationship between the radii of the rotor and the inner race

may also affect the magnitude of the forces and should be investigated in the next future. Different material properties and

angular velocities shall contribute a lot to the response of the system and further results shall point in that direction.
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